Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim."

Transkript

1 SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm. Benzer şeklde sağ ell leptonları da e SU() U(1) elller se Y SU() Fermyonların olarak belrlenmştr. Sol ell fermyonlar U(1) Y altında değşmezler. altındak yüklern Y f d, s ve b Q, lepton çftlern y se d (=1,,) le olarak olarak gösterelm. SM nn ayar grubu SU() olarak belrleyelm, yan altında çftler oluştururlar, sağ Y,Y,Y,Y...(farklı Q u d alelern, brbrlernn kopyası olduğunu varsaydık. Dolayısıyla farklı alelern hperyükler aynıdır). Bu durumda yazılablecek ayar teors agrange yoğunluğu Q DQ D u Du d Dd e De 1 1 BB 4 4 n W Wn olarak yazılablr. Burada B ve n W, U(1) Y ve SU() ayar bozonlarının şddet tensörlerdr. B B B W W W W W n n n nlm l m olarak verlr. Kovaryant türevler se 1

2 Y D Q g W g B Q n n Q 1 Y D g W g B Yu Du g1b u Y d Dd g1b d Y e De g1b e n n 1 olarak tanımlanır. Fermyonların kütle termler m ( ) Olarak yazılır ( eğer fermyonların yükler varsa, tek olasılık budur, eğer yükler yoksa, T gb, C gb de kütle term yazılablr. Bunlara Majorana kütles denr). Ancak sol ell fermyonlar le sağ ell fermyonlar SU() altında farklı davrandığından, bu termler altında nvarant değldr. Dolayısıyla agrange yoğunluğuna eklenemez. Br Hggs klsnn olduğunu varsayalım: SU() Ve SU() altında fermyon kller gb dönüşsün, klsnden, * * C * 1 * * 1 1 klsn tanımlayablrz. (hper yüküne) Y h dyelm SU() altında bu kl de gb dönüşecektr. nn U(1) Y yüküne bu durumda agrange yoğunluğuna;

3 D V( ) Q d Q u e h.c Y j j C j j j j d u e termlern eklersek, elde edeceğmz agrange yoğunluğu da Bu termler eklememzdek amaca gelnce; SU() altında değşmez olacaktır. Eğer V( ) v 4! Olarak seçersek potansyeln mnmumu Bu koşulu sağlayan bütün noktaları v koşulunu sağlayan bütün noktalar olacaktır. n n e v Olarak yazablrz. Evren bu mnmum noktalardan brn seçecektr. Bu mnmumu uygun br ayar dönüşümü le benzedğne bakalım; Yukava Termler ( Y ) v yapablrz. Bu mnmum da agrange yoğunluğunun neye Y j j v j j j j Q dd Q uu ee h.c. v v vd d vu u ve e h.c. Y j j j j j j j j d u u Bu termler fermyonların kütle termnden başka brşey değldr. Dolayısıyla, evrenn mnmumundan baktığımızda evrendek fermyonlar (nötrnolar harç) kütlel görünecektr. Hggs Knetk Term olduğunu kullanırsak Y D g W g B n n 1 h

4 1 g W W W Y h D g 1 1B W W W v 1 v gw W v gw D Y hg1b gw Yh g1b gw olacaktır. Dolayısıyla alanının knetk term v D g W W Y g B g W 4 h 1 haln alır. Burada WW term W bozonlarının kütle termdr. Z Y g B g h 1 g W Y g h 1 ve A Yh g1w gb g Y g h 1 olarak tanımlarsak knetk term olarak yazablrz. Burada 1 1 D m W W m Z m A w Z gv mw v m g Y g Z h 1 m Yan, potansyeln mnmumunda W kütlesz görünecektr. ve Z bozonları kütlel bozonlar olarak görünür. A se Eğer yazdığımız agrange yoğunluğu doğayı açıklayacak se A yü elektromanyetk potansyel olarak belrlemelyz. Ancak bu durumda A nün dğer parçacıklarla etkleşmesne de bakmamız lazım. 4

5 Genellkle cos sn w w g g g Y g h 1 gy 1 h Y g h 1 olarak tanımlanır. Bu durumda A B B cos w sn A w cos w sn w Z sn w cos w W W sn w cos w Z olarak yazılablr. Özellkle m g m g Y g w cos w Z h 1 olarak yazılablr. A yü elektromanyetk alan olarak belrlemek çn A nün dğer alanlarla etkleşmna bakmak lazım. Etkleşm termler kovaryant türevlerden gelecektr. Fermyonların knetk termlern sadece lgl kısımlarını yazarsak: Q DQ D u Du d Dd e De Y g B g W Q 1 Q Q... Yh g1b gw u YQg 1B gw u d YQg 1B gw d YQ g1b gw e YQg 1B gw e u Yu g 1Bu d Yd g 1Bd e Yd g 1Be Bu fade de B CwA SwZ ve W CwA SwZ, (Cw Cos w,sw Sn w) yazarsak 5

6 u u YQg 1Cw gsw d d YQg 1B gsw A YQg 1Cw gsw e e YQg 1Cw gsw u u Y g C d d Y g C e e Y g C Z... u 1 w d 1 w d 1 w elde ederz. Eğer A yü elektromanyetk alan olarak belrleyecek sek, bu fadennn 1 ea u u u u d d d d 1 e e e e Z... Şeklnde yazılablyor olması gerekr. Bu koşullardan yola çıkarak parçacıkların hperyüklern bulablrz. Nötrnoların elektrk yükler olmadığından YQ g1cw gsw olması gerekr. Eğer C w ve S w fadelern yerlerne yerleştrrsek Y Y h koşulunu elde ederz. Yne C w ve S w lern açık fadelernden Y g Cos g Sn h 1 w w olduğunu göreblrz. Bunu kullanırsak, A nün etkleşmler çn buluruz. Eğer u u YQ Yh d d YQ Yh e e Y Yh Ag1Cw u uyu d dyd e ey e e g C 1 w gg 1 g (g Y ) 1 h 6

7 olarak tanımlarsak, ve yukarıdak fadey fotonun etkleşm le kıyaslarsak buluruz. Daha önce bulduğumuz koşulu le de brleştrrsek 1 1 YQ Y h Yu YQ Y h Yd 1 1 Y Yh 1 Ye 1 1 Y Y h 1 YQ Y 1 h e Y 1 4 Yu Yd Y olarak buluruz. Burada dkkat edersenz teornn başında hperyükler herhang br değer alablyordu. Ancak gözlemledğmz elektrk yüklern açıklayablmek çn bell değerler almak zorunda kaldılar. Hperyüklern neden sadece bu değerler aldığı Standart Modeln açıklayamadığı sorulardan brdr!!!!. Fermyon Kütleler vd d vu u ve e h.c. Y j j j j j j j j d u u Termnn fermyonların kütlelern veren term olduğunu söylemştk. Termler açık şeklde yazacak olursak, ve j ler üzernden toplamlar v d d v s s v b b Y 11 d d d v d s v s d d d 7

8 olarak yazablrz. Her ne kadar brnc sıradak termlern katsayıları termlern katsayılarını d, s ve b kuarkların kütleler olarak belrlemek akla gelse de, knc sıradak termler gb farklı kuarkları brbrne bağlayan termlern varlığı buna zn vermez. Öncelkle alanlarımızı yenden tanımlayarak, bu termlerden kurtulmamız gerekr. Bundan önce tanımladığımız alanları bundan böyle O le gösterelm. Bu şeklde Yukawa termn Y o j oj o j oj o j oj d u e d M d u M u e M e... olarak yazablrz. Burada j j M v ( d, u,e) olarak tanımlanmıştır. Bu şeklde tanımlanan M u,m d,me matrslernn hermtsel, ünter vs. olmak gb herhang br özellkler yoktur. Böyle matrsler, kl ünter dönüşümler kullanarak, öz değerler reel olacak şeklde köşegenleştreblrz. Başka br deyşle, öyle ünter matrsler bulablrz k M D dag(m,m,m )D d d s b M U dag(m,m,m )U u u c t M E dag(m,m,m )E d e D,D,U,U,E,E şeklnde yazablrz. Burada a dag(a, b, c) b c dr. yen alanlarımızı olarak tanımlarsak, Yukawa termn d, d, u, u, s, D, s,, c, U, c,,... b, b t,, t, Y muuu mddd mccc msss mt tt mbbb m e e m m h.c. e olarak yazablrz. Artık operatörlern katsayılarını karşılık geldkler parçacıkların kütleler olarak belrleyeblrz. 8

9 Bundan sonra yapmamız gereken, agrange yoğunluğundak dğer termler de tanımladığımız yen alanlar cnsnden yazmaktır. Knetk Termler Öncelkle sadece u, lern knetk termlerne bakalım. u, lern knetk term u, u, Olarak yazılır. u, u, c, U, c, t t,, Olarak tanımladığından ve u, ünter olduğundan u u c U, c t t,, olur. Bleşenler cnsnden yazarsak u u, U, c t, olur. Knetk term de yerne yerleştrrsek j * k j k k u u u U U u j k,,,,,, =u U U u j,,,, j jk k,,,, =u U U u =u u dolayısıyla, yen alanlar cnsnden yazıldığında da knetk termler değşmez. j, jk j, 9

10 Her ne kadar bunu sadece u, kuarkları çn göstermş olsak da, dğer fermyonlar çnde aynı sonucun elde edleceğ gösterleblr. Dolayısıyla, knetk termlern yen alanlar cnsnden fades le esk alanlar cnsnden fades le aynıdır. Knetk termn değşmemesnn sebeb sadece u le u o nn ve u le u çermesdr. Dolayısıyla yen alanlar tanımladığımızda bu termler UU le değşt ve olduğundan, bu termler değşmed. Foton ve Z Etkleşmler B ve W etkleşmlerne baktığımızda, bunlarda sadece B W u le u o o nn ve nn çarpımları A u le u U U 1 çarpımlarının çerrler. Dolayısıyla ve etkleşmler ( ve dolayısıyla ve Z )şekl olarak alanları yenden tanımlamamızdan etklenmezler. Dolayısıyla f alanları cnsnden parçacıkları türlern değştrmedğ çn (farklı değerlernn çarpımını çermezler) yenden tanımlamadan sonra da parçacık türlern değştrmezler. Dolayısıyla, standart model de ağaç sevyesnde (Tree-level) çeşn (flavour) değştren yüksüz akımlar yoktur. W - fermyon Etkleşmler W fermyon etkleşmler kovaryant türevlerden gelr. Sadece lgl termler alacak olursak Q DQ D o o o o o g W o o g W o Q Q W W g g g g u W d d W u W e e W o o o o o o o o gw u d e gw d u e o o o o o o o o o o o o gw u d e h.c. Yen kuark alanları cnsnden yazarsak j j j gw u (UD )d E e şmdye kadar nötrnolar çn herhang br dönüşüm tanımlamadık. Bunun sebeb nötrnoların kütlesz olmasıdır. Kütlesz olduklarından nötrnoları stedğmz gb tanımlayablrz. Bu serbestlğmz kullanarak, o nn 1

11 e E o e o o olarak tanımlarsak W etkleşmler j j j gw u (UD ) d e CKM matrsn V U D CKM olarak tanımlarsak CKM matrs ünter br matrstr; g W u d V e j j j CKM g W u 5 j j 5 j (1 )d V CKM (1 )e V V D U U D D D 1 CKM CKM. 11

12 Detaylı blg çn Prof. Dr. Altuğ Özpnec ye danışınız Ulaş Özdem. 1

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri Elektrk Enerjs ve Elektrksel Güç Testlernn Çözümler Test 1 n Çözümü 1. Her brnn gerlm 1,5 volt olan 4 tane pl brbrne ser bağlı olduğundan devrenn toplam gerlm 6 volt olur. est S, uzunluğu / olan demr çubuğun

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir.

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir. ÖÜ 0 ODE SOU 1 DE SOUN ÇÖÜE anahtarı açık ken: ve lambaları yanar. ve lambaları yanmaz. N 1 = dr. 1. 3 1 4 5 6 al nız lam ba sı nın yan ma sı çn 4 ve 6 no lu anah tar lar ka pa tıl ma lı dır. CE VP. U

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ ENEJİSİ E EETİSE GÜÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma. Ünte. onu (Elektrk Enerjs ve Elektrksel Güç) nın Çözümler 1. Noktalama sstemyle Şekl

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

Parçacıkların Standart Modeli ve BHÇ

Parçacıkların Standart Modeli ve BHÇ Parçacıkların Standart Modeli ve BHÇ Prof. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü Parçacık Fiziği Maddeyi oluşturan temel yapı taşlarını ve onların temel etkileşimlerini arar Democritus (460 MÖ - 370 MÖ)

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

2. LİNEER PROGRAMLAMA

2. LİNEER PROGRAMLAMA İÇİNDEKİLER ÖZE... ABSRAC... EŞEKKÜR..... ŞEKİLLER DİZİNİ..... v. GİRİŞ.... Motvasyon...... emel anım ve Kavramlar...... Konvekslk ve lneer eştszlkler....3. Ekstrem Noktalar..... 0.4. Lneer Eştszlkler...

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri Elektrk Akımı, Potansyel Fark ve Drenç Testlernn Çözümler 1 Test 1 n Çözümü. 1. Soruda verlen akım-potansyel farkı grafğnn eğmnn ters drenc verr. 8 X 5 8 8 Z Ohm kanunu bağıntısıyla verlr. Bu bağın- k

Detaylı

Fizik 101: Ders 19 Gündem

Fizik 101: Ders 19 Gündem Fzk 101: Ders 19 Gündem Açısal Momentum: Tanım & Türetmeler Anlamı nedr? Sabt br eksen etrafında dönme L = I Örnek: 2 dsk Dönen skemlede br öğrenc Serbest hareket eden br csmn açısal momentumu Değneğe

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1.

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1. ELEKONİK DEELEİ I Kntrl ve Blgsayar Bölümü Yıl ç Sınavı Nt: Nt ve ktap kullanılablr. Süre İKİ saattr. Sru.- r 00k 5k 5k 00Ω 5 6 k8 k6 7 k 8 y k5 0kΩ Mayıs 995 Şekl. Şekl-. de kullanılan tranzstrlar çn

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ II, POTNSİYE F E DİENÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma 1.. Ünte. onu (Elektrk kımı) nın Çözümler ampul 3. Şekl yenden aşağıdak gb çzeblrz.

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc 009 Kasım FRENLER GENEL 40-4. Güven KUTAY 40-4-frenler-genel.doc İ Ç İ N D E K İ L E R 4 enler... 4.3 4. en çeştler... 4.3 4.3 ende moment hesabı... 4.4 4.3.1 Kaba hesaplama... 4.4 4.3. Detaylı hesaplama...

Detaylı

III-V YARIĐLETKENLERĐNDEN OLUŞAN HETEROYAPILARIN ELEKTRONĐK ÖZELLĐKLERĐNĐN YOĞUNLUK FONKSĐYONELĐ TEORĐSĐ ĐLE ĐNCELENMESĐ YÜKSEK LĐSANS TEZĐ

III-V YARIĐLETKENLERĐNDEN OLUŞAN HETEROYAPILARIN ELEKTRONĐK ÖZELLĐKLERĐNĐN YOĞUNLUK FONKSĐYONELĐ TEORĐSĐ ĐLE ĐNCELENMESĐ YÜKSEK LĐSANS TEZĐ III-V YARIĐLETKENLERĐNDEN OLUŞAN HETEROYAPILARIN ELEKTRONĐK ÖZELLĐKLERĐNĐN YOĞUNLUK FONKSĐYONELĐ TEORĐSĐ ĐLE ĐNCELENMESĐ YÜKSEK LĐSANS TEZĐ FĐZĐK ANABĐLĐM DALI Harun ÖZKĐŞĐ Danışman: Doç. Dr. Seyfettn

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK DİPOL GEÇİŞLER

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK DİPOL GEÇİŞLER T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK DİPOL GEÇİŞLER Gökhan TEKELİ YÜKSEK LİSANS TEZİ FİZİK ANABİLİMDALI Konya, 009 ÖZET Yüksek Lsans Tez ELEKTRİK DİPOL GEÇİŞLER Gökhan TEKELİ Selçuk

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü BÖLÜM: Temel Eğtm T.C SINCAN KAYMAKAMllGI Ilçe Mll Eğtm Müdürlüğü SAYı : 34203882-821 ı 1-1 C _:J 1...110/2013 KONU : Kompozsyon Yarışması TÜM OKUL MÜDÜRLÜKLERNE SNCAN Ilg :Vallk Makamının 25.10.2013 tarh

Detaylı

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur.

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur. . BÖÜ EETİ II IŞTI ÇÖZÜE EETİ II. k sa devre X - noktaları arasındak eşdeğer drenç, - noktaları arasındak eşdeğer drenç, 4 - noktaları arasındak eşdeğer drenç, - noktaları arasındak üç drençte paralel

Detaylı

NEM ALMA SİSTEMLERİNDE NEM KAZANCININ HESABI

NEM ALMA SİSTEMLERİNDE NEM KAZANCININ HESABI 62 NEM ALMA SİSTEMLERİNDE NEM KAZANCININ HESABI Ahet ARISOY ÖZET Ne ala, kla sste tasarıında en az karşııza çıkan konulardan brdr. Bu nedenle de az blnektedr. Chaz seçlernde daha çok aprk davranılakta

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

T.C BARTIN iı ÖZEL idaresi PLAN PROJE YATIRIM VE inşaat MÜDÜRlÜGÜ ...,... ... ...

T.C BARTIN iı ÖZEL idaresi PLAN PROJE YATIRIM VE inşaat MÜDÜRlÜGÜ ...,... ... ... T.C BARTIN ı ÖZEL DARES PLAN PROJE YATIRIM VE NŞAAT MÜDÜRlÜGÜ TARH: 25/11/2014 SAYı: Adı SoyadılTcaret Teblgat Adres Ünvanı Bağlı Olduğu Verg Dares Verg Numarası TC.Kmlk Numarası Telefon No Faks No E-Mal

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

i 01 Ekim 2008 tarihinde yurürlüğe.giren 5510 sayılı Sosyal Sigortalar ve Genel Sağlık

i 01 Ekim 2008 tarihinde yurürlüğe.giren 5510 sayılı Sosyal Sigortalar ve Genel Sağlık . '" ıo:."'. >.. ~. T.C. BAŞBAKANLIK Sosyal Yardımlaşma ve Dayanışma Genel Müdürlüğü Sayı, Konu :B.02.ı.SYD.0.08.300.5990/8237 :tılkemz Vatandaşı Olmayan ve Muhtaç Durumda Bulunan Yabancılara S\'D Vakınarından

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

ELEKTR K AKIMI BÖLÜM 19

ELEKTR K AKIMI BÖLÜM 19 EET II BÖÜ 9 ODE SOU DE SOUIN ÇÖZÜE ODE SOU DE SOUIN ÇÖZÜE. letken tel Teln kestnden geçen yük mktarı; q N elektron.q elektron T. - gra fğ nn eğ m y ve rr. T Bu na gö re;. ara lık ta, sa bt. ara lık ta,

Detaylı

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Fak YNAM stanbul Teknk Ünverstes stanbul Teknk Ünverstes ÖZET Trafk kazaları, ülkemz gündemn sürekl olarak gal eden konularıdan brdr. Üzernde çok

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

ç İ Ü Ü Ü» üç ü İ

ç İ Ü Ü Ü» üç ü İ İ Ç Ü üğü üğü ü İ ğ ü ç Ü ü ü Ü ü Ö ç Ü Ç ğ Ç ç ğ ç Ü Ü Ü ğ ü ç ğ ü ç ç Ü ç üğü ü ü ç ü ğ ü ğ ç ü ğ Ç ü ü ç ü ç Ç Ş ü ü Ö Ş Ö ğ Ç ğ Ç Ü Ç ğ Ç ğ Ü Ü ç İ Ü Ü Ü» üç ü İ ğ İ ğ ü ğ Ç ç ç ç ğ ğ ü ü ğ üü ü ü

Detaylı

Belirtilen kapasitede son kata aittir

Belirtilen kapasitede son kata aittir TE Sers Elektrkl Vnçler 00 kg le, ton aras kapastelerde Her türlü kald rma, çekme uygulamas çn, tona kadar standart modeller mevcuttur. Dayan kl l k ve büyük sar m kapastes le genfl br uygulama alan nda

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı