TĐCARĐ MATEMATĐK Bileşik Faiz

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz"

Transkript

1 TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV ( i = %40 = 0,4 alıacak = (+ 0,4) = =? IIYol: = 0 000,744 = YTL Gelecek değer faktörü tablosuu kullaarak çözüm yapalım: = PV GDF ( i, ) = PV GDF (% 40,) GDF(%40,) ü değeri tabloda buluur Döem Oraı Gelecek Değer Faktörü Tablosu %0 %40 %50,7440 GDF(%40,) =,7440 dır = 0000,7440 = 54,880 YTL buluur Örek 57: YTL 4 aylık faizledirme devreleri ile 8 yıl faizde kalıyor Đlk yıl içi yıllık faiz oraı %48, soraki 4 yıl içi yıllık faiz oraı %60 ve so yıl içide yıllık faiz oraı %7 dir Bua göre paraı 8 yıl soraki Baliğii bulu? 79

2 TĐCARĐ MATEMATĐK - 5 Bileşik PV = YTL 0,48 = = 6 i = = ,60 = = i = = 0, 0 4 0,7 = = 6 i = = 0, 4 4 Öreğe dikkat edilirse faiz oraları yıllık, faizledirme devre sayıları aylık olarak verilmişti Ou içi öce üç durum içi (ilk yıl, 4 yıl, so yıl) ayrı ayrı döem sayıları ve döemlik faiz oraları hesapladı Şimdi bileşik hesabıa geçebiliriz; Đlk yıl içi; = PV ( + = (+ 0,6) 6 = (,6 ) = ,46 = YTL 6 4 yıl içi; PV = 97440YTL = PV (+ = (+ 0,) = (,) = ,96 = ,04YTL 80

3 TĐCARĐ MATEMATĐK - 5 Bileşik So yıl içi; PV = ,04YTL = PV (+ = ,04 (+ 0,4) = ,04 (,4) = ,04, = 57997,7YTLbuluur Bileşik faiz hesabıa göre işlem yaptığımızda dikkat ederseiz ilk iki yılı souda değer 4 yıllık ikici döem hesabıda aapara olarak işlem gördü, ayı şekilde 6 yıl souda elde edile Baliğ so iki yılı bileşik faiz hesabıda aapara olarak alıdı Örek 57: 9 ay sora 7496,5 YTL elde edebilmek içi aylık %8 faiz oraı ile bileşik faize kaç YTL yatırılmalıdır? IYol: = 7496,5 YTL PV= ( + i=%8 = 0,08 alıacak = 9 PV 7496,5 = PV (,08) 9 = 7496,5,999 PV =? PV = 750YTL II:Yol: Şimdiki değer faktörü tablosu kullaılarak çözüm yapılır PV = ŞDF( i, ) PV = (%8,9) ŞDF(%8,9)' u 8

4 TĐCARĐ MATEMATĐK - 5 Bileşik değeri tabloda buluur Oraı Şimdiki Değer Faktörü Tablosu % %5 %8 Döem 9 0,5005 ŞDF (% 8,9) = 0,500 PV = 7496,5 0,5005 PV 750YTLbuluur Örek 574: Peşi fiyatı YTL ola bir ev 0 ay vadeli yıllık %60 faiz oraıyla ve her ay faizledirmeyle YTL ye alıabilecektir Bua göre ev peşi mi yoksa vadeli mi alımalıdır? IYol: Burada öce 0 ay soraki YTL i yıllık %60 faiz oraı ile bugükü değerii bulmalıyız, daha sora iki durum arasıda bir kıyaslama yapabiliriz Dikkat edilirse YTL paraı gelecekteki değeridir = YTL i = % 60 : i= %5= 0,5 PV = ( + = 0 PV = (+ 0,05) PV =? PV = PV (,05) 0 = , 8

5 TĐCARĐ MATEMATĐK - 5 Bileşik PV = 694, YTL buluur Yapıla işlemler soucuda YTL i (yıllık %60 faiz oraı ile 0 ay sorak bugükü değeri 694, YTL buludu O halde; 694, YTL < olduğuda ev vadeli alımalıdır IIYol: Şimdiki değer faktörü tablosuu kullaalım; PV= ŞDFi (, ) PV= ŞDF(%5,0) (%5,0)' ŞDF u değeri tabloda buluur Döem 0 Oraı Şimdiki Değer Faktörü Tablosu % % %5 0,8 ŞDF PV (% 5,0 ) = = ,8 0,8 ' dir PV 69 4,YTLbuluur Ayı şekilde 694, YTL < YTL olduğuda ev vadeli alımalıdır Not 55: Çözüm YTL i yıllık %60 faiz oraı üzeride 0 ay soraki değeri hesaplaarak da yapılabilirdi O şekilde bir çözüm yapıldığıda gelecek değer faktörü tablosu kullaılacaktı ve yapıla işlemler soucuda YTL i yıllık %60 faiz oraı üzeride 0 ay soraki değeri 05 YTL 8

6 TĐCARĐ MATEMATĐK - 5 Bileşik buluurdu Yie ayı şekilde 05 YTL > YTL olduğuda tercih vadeli alımda yaa olurdu Örek 575: Bugü bakaya bileşik faizde yatırıla 00 YTL i 0 ay souda bakada 986,7 YTL olarak çekilmesi içi uygulaacak ola aylık faiz oraı e olmalıdır? IYol: = 986,7 YTL PV = 00 YTL i =? = PV ( + 986,7= 00 (+ (+ 0 = 986, = 0 (+i ) 0 = 806 ( +i ) = ( +i ) =,0999 i =,0999 i 0,0 yai % buluur IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır; = GDFi (, ) 986,7= 00 GDFi (,0) GDFi (,0) = 986,7 00 GDFi (,0) =,806 Şimdi tabloda 0 ayı buluduğu satır üzeride,806 değeri araır 84

7 TĐCARĐ MATEMATĐK - 5 Bileşik Oraı Gelecek Değer Faktörü Tablosu % % % Döem 0,806 Tabloda i = % olarak buluur Örek 576: Şu ada bakaya bileşik faizde yatırıla 000 YTL i aylık %9faiz oraı üzeride yatırıldığı süre souda 9805,6 YTL olması içi bakaya kaç aylığıa yatırılması gerekir? IYol: = 9805,6 YTL PV = 000 YTL i = %9 = 0,09 alıacak =? = PV ( ,6 = 000 (+ 0,09) 85

8 TĐCARĐ MATEMATĐK - 5 Bileşik (,09) = 9805,6 000 (,09) = 0658 = 0658,09 ay IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır; = PV GDF( i, ) 9805,6= 000 GDF(%9, ) GDF(%9, ) = 9805,6 000 GDF(%9, ) =,0658 Şimdi tabloda %9 faiz oraıı buluduğu sütu üzeride,0658 değeri araır Oraı Gelecek Değer Faktörü Tablosu % % % %9 Döem,0658 Burada = ay olarak buluur Örek 577: 0000 YTL i yıllık %5 faiz oraı üzeride yılda getireceği bileşik faiz tutarıı hesaplayıız? 86

9 TĐCARĐ MATEMATĐK - 5 Bileşik IYol: PV = 0000 YTL F = PV [ ( + ] i = %5 = 0,5 alıacak = F = 0000 [ (+ 0,5) ] F =? F = 0000 [,565 ] F = ,565 IIYol: Gelecek değer faktörü kullaılarak çözüm yapılır; = PV GDF( i, ) = PV GDF(%5,) GDF(%5,) i değerii tabloda bulalım f = 565YTL Döem Oraı Gelecek Değer Faktörü Tablosu %0 %0 %5 565 GDF(%5,)=,565 buluur = 0 000,565 = 565 Bizde F yai faiz istediğie göre; F = PV F= F 5 65 YTL = buluur 87

10 TĐCARĐ MATEMATĐK - 5 Bileşik Örek 578: 8000 YTL sii aylık %4 faiz oraı üzeride 0 ay vadeli faize yatıra kişii 0 ay souda elie kaç YTL geçer? Çöüzm: IYol: PV = 8000 YTL = PV ( + 0 i = %4 = 0,04 alıacak = (+ 0,04) 0 = 0 = 8000 (,04) =? IIYol: Gelecek değer faktörü tablosu kullaılır = PV GDF( i, ) = PV GDF(%4,0) GDF(%4,0) i değerii tabloda bulalım; = = 9 48YTL Döem 0 Oraı Gelecek Değer Faktörü Tablosu % % % %4,9 GDF(%4,0) =,9 buluur = 8 000,9 = 9 48YTL buluur Örek 579: 000 YTL sii %0 faiz oraı üzeride 6 yıllığıa bileşik faize yatıra kişii elie 6 yıl sora kaç YTL geçer? IYol: 88

11 TĐCARĐ MATEMATĐK - 5 Bileşik = PV (+ PV = 000 YTL 6 = 000 (+ 0,) i = %0 = 0, alıacak = 6 = 000 (,) 6 =? IIYol: Gelecek değer faktörü tablosu kullaılır; = PV GDF( i, ) = PV GDF(%0,6) GDF(%0,6) i değerii tabloda bulalım = 000 4,87 = 067YTLbuluur Döem 6 Oraı Gelecek Değer Faktörü Tablosu %0 %0 %0 4,868 GDF(%0,6) = 4,868 buluur = 000 4,868 = 067YTLbuluur Örek 570: Bir memur emekli ikramiyesii ay, aylık %5 faiz oraı üzeride bileşik faize yatırıyor Memuru elie ay sora YTL geçtiğie göre memuru emekli ikramiyesi kaç YTL dir? 89

12 TĐCARĐ MATEMATĐK - 5 Bileşik IYol: = YTL i = %5 = 0,05 alıacak PV = ( (+ 0,05) = PV = PV =? PV = (,05) PV = 60000,7859 IIYol: Şimdiki değer faktörü tablosu kullaılır PV = ŞDF( i, ) PV = ŞDF(%5,) ŞDF(%5,) i değeri tabloda buluur PV = 57,0YTL Döem Oraı Şimdiki Değer Faktörü Tablosu % % %5 0,5894 ŞDF(%5,)=0,5894 buluur 90

13 TĐCARĐ MATEMATĐK - 5 Bileşik PV PV PV = ŞDF (%5,) = ,5894 = 57,0YTLbuluur Örek 57: Bir miktar para yıllık %40 faiz oraı üzeride bileşik faiz işlemi gördüğüde 4 yıl sora faizi ile birlikte YTL oluyor Bua göre bakada işlem göre aapara kaç YTL dir? IYol: = YTL i = %40 = 0,4 alıacak PV = ( (+ 0,4) = 4 PV = (,4) PV =? PV = 4 PV PV = 90000,846 = 47,74YTL IIYol: Şimdiki değer faktörü tablosu kullaılarak çözüm yapılır PV = ŞDFi (, ) PV = ŞDF(%40,4) ŞDF(%40,4) ü değeri tabloda buluur Şimdiki Değer Faktörü Tablosu 9

14 TĐCARĐ MATEMATĐK - 5 Bileşik Döem 4 Oraı %0 %0 %0 %40 0,60 ŞDF(%40,4) = 0,60 buluur PV= ŞDF(%40,4) PV = ,60 PV = 47,74YTLbuluur Örek 57: 7000 YTL sii yıllığıa yıllık %45 bileşik faiz oraıyla bakaya yatıra kişii yılda elde edeceği faiz getirisii hesaplayı? IYol: PV = 7000 YTL F = PV [ ( + ] i = %45 = 0,45 alıacak = F = 7000 [ (+ 0,45) ] F =? F = 7000 [,0486 ] = 7000,0486 F = 55,YTLbuluur IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDF( i, ) = PV GDF(%45,) GDF(%45,) değerii tabloda bulalım Gelecek Değer Faktörü Tablosu 9

15 TĐCARĐ MATEMATĐK - 5 Bileşik Döem Oraı %0 %45,0486 GDF(%45,) =,0486 buluur = PV (%45, = 7000,0486 = 8,YTL Bizde F yai faiz istediğie göre; F = PV F = 8, 7000YTL F = 55,YTLbuluur Örek 57: Bir bakaya yıllığıa bileşik faize yatırıla 7000 YTL yılda kez faizlediriliyor ve yıllık faiz oraı da %45 olduğua göre yılı souda paraı değeri e olur? IYol: Paraı yılda kez faizledirilmesi 4 aylık faizledirme devresii söz kousu olduğuu gösterir PV=7000 YTL = = 4 0,45 i= = 0,5 =? = PV ( + = (+ 0,5) = 7000 (,5) = 7000,509 = 0646, YTL IIYol: 9

16 TĐCARĐ MATEMATĐK - 5 Bileşik Gelecek değer faktörü tablosu kullaılarak çözüm yapılır; = PV GDF( i, ) = PV GDF(%5,) GDF(%5,) ü değeri tabloda buluur Döem Oraı Gelecek Değer Faktörü Tablosu %0 % % % %4 %5,509 GDF(%5,) =,509 buluur = 7000,509 = 0646, YTL buluur Örek 574: Bay X 8000 YTL sii %6 faiz oraı üzeride ayda bir faizledirerek yıllığıa bakaya yatırıyor Bua göre yılı souda Bay X i elie geçe toplam para e kadar olur? IYol: PV = 8000 YTL 94

17 TĐCARĐ MATEMATĐK - 5 Bileşik = = 6 0,6 i = i= 0,06 6 =? Dikkat edilirse para ayda bir faizledirildiğide yılda yai ayda 6 tae ay olduğu içi faizledirme döem sayısı 6 buludu Ayı şekilde yıllık faiz oraı %6 olduğua göre bu değer faizledirme döem sayısıa bölüerek döemlik faiz oraı %6 buluur = PV (+ = 8000 (+ 0,06) = 8000 (,06) = 8000,485 = 978YTLbuluur 6 6 IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDF( i, ) = PV GDF(%6,6) GDF(%6,6) ı değeri tabloda buluur Döem Oraı Gelecek Değer Faktörü Tablosu % % % %6 95

18 TĐCARĐ MATEMATĐK - 5 Bileşik 6,485 GDF(%6,6) =,485 buluur = 8000,485 = 978YTLbuluur Örek 575: Baya Y 000 YTL sii yıllık 40 faiz oraı üzeride 6 ayda bir faizledirerek 4 yıllığıa bileşik faize yatırıyor Bua göre 4 yılı souda Baya Y i elie geçe toplam para e kadar olur? IYol: PV = 000 YTL 4 = = 8 6 0,40 i= = 0,0 PV =? Para 6 ada bir faizledirildiğide yıldaki faizledirme döem sayısı dir Acak para 4 yıl faizde kalacağıda dolayı = 8 olur Döemlik faiz oraı da yıllık faiz oraı ola %40 ı ye bölümesiyle %0 olarak buluur = PV (+ = 000 (+ 0,) = 000 (,) = 000 4,998 = 5588YTLbuluur 8 8 IIYol: 96

19 TĐCARĐ MATEMATĐK - 5 Bileşik Gelecek değer faktörü tablosu kullaılarak çözüm yapılır; = PV GDF( i, ) = PV GDF(%0,8) GDF(%0,8) i değeri tabloda buluur Döem 8 Oraı Gelecek Değer Faktörü Tablosu %0 %5 %0 4,998 GDF(%0,8) = 4,998 buluur = 000 4,998 = 5588YTLbuluur Örek 576: Bir şirket YTL sii her ayda bir faizledirmek üzere yıllık %64 faiz oraı üzeride yıllığıa bakaya yatırıyor Bua göre yılı souda şirketi elie geçecek ola toplam para e kadardır? IYol: PV = YTL = = 8 0,64 i = i= 0,6 4 =? ayda bir faizledirme olduğu içi yıldaki döem sayısı ' de 4 olarak buluur Para bakada yıl kalacağı içi bu değer ile çarpılarak faizledirme 97

20 TĐCARĐ MATEMATĐK - 5 Bileşik döem sayısı 8 olarak buluur Döemlik faiz yıldaki döem sayısı ola 4 e bölüerek %6 olarak buluur = PV (+ = (+ 0,6) = (,6) = ,784 = 60YTLbuluur 8 8 IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDF( i, ) = PV GDF(%6,8) GDF(6,8) i değeri tabloda buluur 98

21 TĐCARĐ MATEMATĐK - 5 Bileşik 99

22 TĐCARĐ MATEMATĐK - 5 Bileşik Döem 8 Oraı Gelecek Değer Faktörü Tablosu % % %0%6,784 GDF(%6,8) =,784 buluur = ,784 = 60YTLbuluur Örek 577: Baya N 4500 YTL sii yıllık %45 faiz oraı üzeride 4 ayda bir faizledirerek yıllığıa bir bakaya yatırıyor Bua göre yılı souda Baya N i elie geçe toplam para e kadar olur? IYol: PV = 4500 YTL = = 9 4 0,45 i= i= 0,5 =? ' de 4 4 ayda bir faizledirme olduğu içi yıldaki faizledirme döem sayısı olarak buluur Para bakada yıl kalacağı içi faizledirme döem sayısı de 9 olarak buluur Döemlik faiz oraı da yıllık faiz oraıı yıldaki döem sayısı ola e bölümüde %5 buluur 00

23 TĐCARĐ MATEMATĐK - 5 Bileşik = PV (+ = 4500 (+ 0,5) = 4500 (,5) = 4500,579 = 580,YTLbuluur 9 9 IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDF( i, ) = PV GDF(%5,9) GDF(%5,9) u değeri tabloda buluur Döem 9 Oraı Gelecek Değer Faktörü Tablosu %5 %0 %5,579 GDF(%5,9) =,579 buluur = 4500,579 = 580,YTLbuluur Örek 578: Bir mevduat sahibi 500 YTL lik mevduatıı 4 yıl vadeli mekul kıymete yatırmıştır Mekul kıymeti faizi ödemeleri 6 ayda bir olduğua göre yıllık %0 faiz oraıda yatırımı 4 yılı soudaki değeri e olur? 0

24 TĐCARĐ MATEMATĐK - 5 Bileşik IYol: PV = 5000 YTL = i = 4 6 0,0 =? = 8 = 0,5 Mekul kıymeti faizi ödemeleri 6 ayda bir yapıldığıa göre yıldaki döem sayısı ' da 6 buluur mevduat bakada 4 yıl kalacağıda dolayı bu değer 4 ile çarpılarak faiz ödeme döem sayısı 8 buluur Döemlik faiz oraı da yıllık faiz oraıı yıldaki döem sayısı ola ye bölümü ile %5 buluur = PV (+ = 5000 (+ 0,5) = 5000 (,5) = 5000,059 = 45885YTLbuluur 8 8 IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDF ( i, ) = PV GDF (% 5,8) GDF(%5,8) i değeri tabloda buluur 0

25 TĐCARĐ MATEMATĐK - 5 Bileşik Döem 8 Oraı Gelecek Değer Faktörü Tablosu %5 %0 %5,0590 GDF(%5,8) =,0590 = 5000,0590 = 45885YTLbuluur Örek 579: Bir tasarruf sahibi yıl vadeli mekul kıymet alıyor Mekul kıymet üzeride faiz ödemeleri yıllık yapılıyor oraı yıllık %50 olduğua göre yılı souda tasarruf sahibii elie 800 YTL geçmesi içi başlagıçta mekul kıymete yatırdığı para kaç YTL olmalıdır? IYol: = 8000 YTL i = %50 = 0,50 alıacak PV = ( (+ 0,5) =? PV = PV =? PV = 8000 (,5) PV PV = 70,7YTL = 8000,75 0

26 TĐCARĐ MATEMATĐK - 5 Bileşik IIYol: Şimdiki değer faktörü tablosu kullaılarak çözüm yapılır; PV = ŞDF( i, ) PV = ŞDF(%50,) ŞDF(%50,) ü değeri tabloda buluur Döem Oraı Şimdiki Değer Faktörü Tablosu %0 %0 %50 0,960 ŞDF(%50,) = 0,960 buluur PV = ŞDF(%50,) PV = ,960 PV = 70,7YTLbuluur Örek 570: Bir işçi emeklisi emekli ikramiyesi ola 4000 YTL ye tahvil alıyor Yıllık %6 faiz oraı üzeride 4 ayda bir yıl boyuca tahvil faiz kazaıyor Bua göre yılı souda emeklii elie geçe toplam para kaç YTL olur? IYol: PV = 4000 YTL 04

27 TĐCARĐ MATEMATĐK - 5 Bileşik = = 9 4 0,6 i= i= 0, =? 4 ayda bir faizledirme olduğu içi yıldaki döem sayısı ' de olarak buluur Para yıl işlem göreceğide dolayı bu değer ile çarpılarak faizledirme döem sayısı 9 buluur Döemlik faiz oraı da yıllık faiz oraıı yıldaki döem sayısı ola e bölümü ile % buluur 4' = PV (+ = 4000 (+ 0,) = 4000 (,) = 4000,77 = 6 466YTLbuluur 9 9 IIYol: Gelecek değer faktörü tablosu kullaılarak çözüm yapılır = PV GDFi (, ) = PV GDF(%,9) GDF(%,9) u değeri tabloda buluur Döem 9 Oraı Gelecek Değer Faktörü Tablosu % %0 %,77 05

28 TĐCARĐ MATEMATĐK - 5 Bileşik GDF(%,9) =,77 buluur = 4000,77 = 6466YTLbuluur Örek 57: 5000 YTL yıllık %49 faiz oraıyla yıl sürekli bileşik faizde değerledirilirse yılı souda kaç YTL elde edilir? PV = 5000 YTL i = PV e i = %49 = 0,49 alıacak 0,49 = 5000 e =?, 47 = 5000 e =? = 0870,88 YTL buluur Örek 57: Yıllık %70 oraıyla 4 ay sürekli bileşik faizle değerledirile bir miktar paraı 6000 YTL ye ulaşması içi başlagıçtaki miktarı kaç YTL olmalıdır? = 6000 YTL i = %70 = 0,70 alıacak PV = i e 4 = = 0, 6000 = e PV 0,70 0, PV =? 6000 PV = 0, e PV = 07700,57 YTL Bu örekte faiz oraı yıllık verildiği içi süreyi de yılda 4 ay yerie 4 = 0, yıl yazdık Örek 57: 6 aylık mevduatı faiz oraı %40 olduğua göre 6 aylık mevduata verile yıllık efektif faiz oraıı belirleyiiz? 06

29 TĐCARĐ MATEMATĐK - 5 Bileşik E FO Yil Döem Say = Yil Nom Oraı + YilDöemSay %40 E FO= + E FO= (+ 0,) E FO =,44 EF O= 0,44 yai %44 olarak buluur Örek 574: Bir bakaı değişik vadelerdeki mevduatlara uyguladığı faiz oraları aşağıda verilmiştir Bu verile faiz oralarıda herhagi bir değişiklik olmayacağı varsayımı altıda, hagi vade ile yatırım yapmak daha kârlı olur? Vade Oraı ay %0 ay %6 6 ay %4 yıl %48 Verile farklı vadelerdeki faiz oralarıı efektif faiz oraları hesaplaır Belirtile vadeleri hagisii efektif faiz oraı daha fazla ise o daha kârlıdır ay içi: ay içi: %0 EFO = + EFO = (+ 0,05) EFO =,45 EFO = 0,45yai%4,5buluur %6 EFO = + 4 EFO = (+ 0,09) 4 4 EFO =,4 EFO = 0,4yai%4,buluur 07

30 TĐCARĐ MATEMATĐK - 5 Bileşik 6 ay içi: yıl içi: %4 EFO = + EFO = (+ 0,) EFO =,464 EFO = 0,464yai%46,4buluur %48 EFO = + EFO = (+ 0,48) EFO =,48 EFO = 0,48yai%48buluur oralarıda herhagi bir değişiklik olmazsa yıl vadeli olarak yatırım yapılması daha kârlı olur Örek 575: ayda bir faizledirile bir miktar paraı yıl sora katıa çıkması içi uygulaacak ola döemlik ( aylık) faiz oraı % kaç olmalıdır? PV = X = PV ( + i = X 4 X = X (+ ) X X 4 4 = 4 = (+ = (+ i =? = (+,6= (+ i= 0,6yai i = %,6 olarak buluur 58CEVAPLI SORULAR: Soru 58: 00 YTL yıllık % faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? Cevap: 65, YTL 08

31 TĐCARĐ MATEMATĐK - 5 Bileşik Soru 58: 5000 YTL aylık faizledirme devreleri ile 0 yıl faizde kalıyor Đlk 5 yıl içi faiz oraı %50, soraki yıl içi %60 ve so yıl içi de %80 ise bu paraı 0 yıl soraki baliğii bulu? Cevap: 6886,5 YTL Soru 58: 0 ay sora 000 YTL elde edebilmek içi aylık %6 faiz oraı ile bileşik faize kaç YTL yatırılmalıdır? Cevap: 6460,68YTL Soru 584: Peşi fiyatı YTL ola bir arabaya 0 ay vadeli yıllık %6 faiz oraıyla ve her ay faizledirmeyle 7000 YTL ye alıabilecektir Bua göre araba peşi mi yoksa vadeli alımalıdır? Cevap: Vadeli alımalıdır ( YTL) Soru 585: Bugü bakaya bileşik faizde yatırıla 7000 YTL i 4 ay sora bakada 859, YTL olarak çekilmesi içi uygulaacak ola aylık faiz oraı e olmalıdır? Cevap: %5 Soru 586: Şu ada bileşik faizde yatırıla 6000 YTL i aylık%5 faiz oraı üzeride yatırıldığı süre souda 4560 YTL olması içi bakaya kaç aylığıa yatırılması gerekir? Cevap: 7 ay Soru 587: 000 YTL i yıllık %0 faiz oraı üzeride yılda getireceği bileşik faiz tutarıı hesaplayıız? Cevap: 64 YTL Soru 588: 0000 YTL sii aylık % faiz oraı üzeride 5 ay vadeli bileşik faize yatıra kişii 5 ay souda elie geçe toplam para e kadardır? Cevap: 78 YTL Soru 589: YTL sii yıllık %50 faiz oraı üzeride yıllığıa bileşik faize yatıra kişii elie yıl sora kaç YTL geçer? Cevap: 5865 YTL 09

32 TĐCARĐ MATEMATĐK - 5 Bileşik Soru 580 Bir emekli, emeklilik ikramiyesii 8 ay, aylık %4 faiz oraı üzeride bileşik faize yatırıyor Emeklii elie 8 ay sora 5000 YTL geçtiğie göre emeklilik ikramiyesi e kadardır? Cevap: 7674,44 YTL Soru 58: Bir miktar para yıllık %60 faiz oraı üzeride bileşik faiz işlemi gördüğüde 5 yıl sora faizi ile birlikte YTL oluyor Bua göre bakada işlem göre aapara kaç YTL dir? Cevap: 5,44 YTL Soru 58: 9000 YTL sii 4 yıllığıa yıllık %5 bileşik faiz oraıyla bakaya yatıra kişii 4 yılda elde edeceği faiz getirisii hesaplayı? Cevap: 989,5 YTL Soru 58: bir bakaya yıllığıa bileşik faize yatırıla 9000 YTL yılda kez faizlediriliyor ve yıllık faiz oraı da %6 olduğua göre yılı souda paraı değeri e olur? Cevap: 696,6 YTL Soru 584: Bay Z YTL sii yıllık %54 faiz oraı üzeride ayda bir faizledirerek yıllığıa bakaya yatırıyor Bua göre yılı souda Bay Z i elie geçe toplam para e kadar olur? Cevap: 79,40 YTL Soru 585: Baya M YTL sii yıllık %0 faiz oraı üzeride 6 ayda bir faizledirerek 5 yıllığıa bileşik faize yatırıyor Bua göre 5 yılı ouda Baya M i elie geçe toplam para e kadar olur? Cevap: 476 YTL Soru 586: Bir firma 5000 YTL sii her 4 ayda bir faizledirmek üzere yıllık %48 faiz oraı üzeride yıllığıa bakaya yatırıyor Bua göre yılı souda firmaı elie geçe toplam para e olur? Cevap: 47570,6 YTL 0

33 TĐCARĐ MATEMATĐK - 5 Bileşik Soru 587: Bay K 00 YTL sii yıllık %60 faiz oraı üzeride ayda bir faizledirerek yıllığıa bir bakaya yatırıyor Bua göre yılı souda Bay K ı elie geçe toplam para e kadar olur? Cevap: 70,96 YTL Soru 588: Bir mevduat sahibi YTL lik mevduatıı 4 yıl vadeli mekul kıymete bağlıyor Mekul kıymeti faiz ödemeleri 6 ayda bir olduğua göre yıllık %45 faiz oraıda yatırımı 4 yılı soudaki değeri e olur? Cevap: ,8 YTL Soru 589: Bir tasarruf sahibi 5 yıl vadeli mekul kıymet alıyor Mekul kıymet üzeride faiz ödemeleri yıllık yapılıyor oraı %40 olduğua göre 5 yılı souda tasarruf sahibii elie 000 YTL geçmesi içi başlagıçta mekul kıymete yatıracağı para kaç YTL olmalıdır? Cevap: 045, YTL Soru 580: Bir tüccar biriktirdiği YTL ye tahvil alıyor Yıllık %6 faiz oraı üzeride ayda bir 4 yıl boyuca tahvil faiz kazaıyor Bua göre 4yılı souda tüccarı elie geçe para kaç YTL olur? Cevap: 9855,9 YTL Soru 58: 6000 YTL yıllık %7 faiz oraıyla yıl sürekli bileşik faizde değerledirilirse yılık souda kaç YTL elde edilir? Cevap: 54494, YTL Soru 58: Yıllık %80 faiz oraıyla 5 ay sürekli bileşik faizde değerledirile bir miktar paraı YTL ye ulaşması içi başlagıçtaki miktarı kaç YTL olmalıdır? Cevap: 54456,56 YTL Soru 58: 4 aylık mevduatı faiz oraı %4 olduğua göre 4 aylık mevduata verile yıllık efektif faiz oraı e olur? Cevap: %48,5

34 TĐCARĐ MATEMATĐK - 5 Bileşik Soru 584: Bir bakaı değişik vadelerdeki mevduata uyguladığı faiz oraları aşağıda verilmiştir Bu verile faiz oralarıda herhagi bir değişiklik olmayacağı varsayımı altıda hagi vade ile yatırım yapmak daha kârlı olur? Vade Oraı ay %60 ay %64 6 ay %68 yıl %7 Cevap: aylık (EFO = %8,06) Soru 585: 4 ayda bir faizledirile bir miktar paraı yıl sora katıa çıkması içi uygulaacak ola döemlik (4 aylık) faiz oraı % kaç olmalıdır? Cevap: %5,99

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

TĐCARĐ MMATEMATĐK - 5. Basit Faiz

TĐCARĐ MMATEMATĐK - 5. Basit Faiz 5.3.ÇÖZÜMLÜ ÖRNEKLER: TĐCARĐ MMATEMATĐK - 5. Basit Faiz Örnek 5.3.1:Bir adam 75.000 YTL sini yıllık %60 faiz oranı üzerinden 5 aylığına bir bankaya yatırıyor.vade sonunda adamın elde edeceği faiz tutarını

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

Tüm hakları SEGEM tarafına aittir. İzinsiz kopyalanamaz veya çoğaltılamaz.

Tüm hakları SEGEM tarafına aittir. İzinsiz kopyalanamaz veya çoğaltılamaz. FİNANSAL MATEMATİK SINAV SORULARI WEB SORU 1 Bir banka kredi kartı gecikmelerinde yıllık %14,5 faiz oranı ile aylık faizlendirme tahakkuk etmektedir. Bu tahakkukta bankanın yıllık etkin faiz oranı (%)

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Finans Matematiği Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Paranın Zaman Değeri Finansın temel prensibi Elimizde bugün bulunan 1000 YTL bundan bir yıl sonra elimize

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

FİNANSMAN MATEMATİĞİ

FİNANSMAN MATEMATİĞİ FİNANSMAN MATEMATİĞİ Serbest piyasa ekonomisinde, sermayeyi borç alan borç aldığı sermayenin kirasını (faizini) öder. Yatırımcı açısından faiz yatırdığı paranın geliridir. Başlangıçta yatırılan para ise

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 2..28 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017

FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017 FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017 SORU 1: Şu anda 25 yaşında olan bir sigortalı, 65 yaşına dek her üç yılın sonunda 4.000 TL büyüklüğünde ödemeler yapacağı özel bir yatırım fonu almayı planlamaktadır.

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013 BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI 1 Bireysel Emeklilik - Türkiye 30.06.2011 itibarı ile emeklilik fonlarının türe göre pazar payları Türe Göre Pazar Payı (%) Kamu İç Borçlanma (TL) Dengeli (Esnek

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

F dür ile çarpılırsa, 1 aylık faiz bulunur. 12. F formülünü kullanmak bir zorunluluk değildir. 100 Ancak formülle de sonuca gidilebilir.

F dür ile çarpılırsa, 1 aylık faiz bulunur. 12. F formülünü kullanmak bir zorunluluk değildir. 100 Ancak formülle de sonuca gidilebilir. FİZ PROBLEMLERİ Faiz problemleri; yüzde problemlerinin içinde ele alınabilirdi. ncak, ilkokuldan beri bu konu aşağıdaki formül eşliğinde ve ayrı bir konu olarak verilmektedir. F: lınan faiz miktarı, :

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

BÖLÜM 1 BASİT İÇ FAİZ

BÖLÜM 1 BASİT İÇ FAİZ BÖLÜM 1 BASİT İÇ FAİZ 1-) Ne kadar para 100 günde aylık %3 faiz oranından 200 TL faiz getirir? 2-) Yıllık %40 faiz üzerinden 9 ayda 500 TL faiz getiren anapara kaç TL dir? 3-) Bir anapara aylık yüzde kaç

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır.

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. Örnekler 1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. a) Buzdolabı 35 ay sonra alınacak olsa kaç liraya alınabilir? b) Buzdolabının bugünkü peşin

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009 http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 SORU - 1 31.12.2009 itibariyle, AIC Şirketi'nin çıkarılmış sermayesi 750.000.000 TL olup şirket sermayesini temsil eden

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINI ONU ANATII 5. ÜNİTE: DAGAAR ETİNİ e TEST ÇÖZÜERİ 31 5. Üite 1. ou Etkilik C i Çözümleri c. 1. Soruda e dalgalarıı hızı eşit erilmiş. Ayrıca şekil icelediğide m = 4 birim, m = 2 birimdir. Burada;

Detaylı

MÜHENDİSLİK EKONOMİSİ

MÜHENDİSLİK EKONOMİSİ MÜHEDİSLİK EKOOMİSİ Dkkat! Tablo sayfaları üzere lavete herhag br şey (formül, ot, vs.) yazılması halde KOPYA şlem uygulaacaktır. FORMÜLLER VE BİLEŞİK FAİZ TABLOLARI M KUTAİS İ H DEMİR SAKARYA ÜİVERSİTESİ

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Güncellenmiş Faiz Dersi

Güncellenmiş Faiz Dersi Güncellenmiş Faiz Dersi Faiz Nedir Nasıl Hesaplanır? Faiz Nedir? Piyasa açısından bakarsak faizi, tasarruf sahibinin, tasarrufunu, ihtiyacı olana belirli süre için kullandırmasının karşılığı olarak aldığı

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

YATIRIMLARINIZI DİLEDİĞİNİZ VADE SEÇENEKLERİYLE DEĞERLENDİREN GETİRİ VAKIFBANK'TA TALEP TOPLAMA 14-15-16 OCAK 2013

YATIRIMLARINIZI DİLEDİĞİNİZ VADE SEÇENEKLERİYLE DEĞERLENDİREN GETİRİ VAKIFBANK'TA TALEP TOPLAMA 14-15-16 OCAK 2013 YATIRIMLARINIZI DİLEDİĞİNİZ VADE SEÇENEKLERİYLE DEĞERLENDİREN GETİRİ VAKIFBANK'TA TALEP TOPLAMA 14-15-16 OCAK 2013 Yasal Uyarı Bu doküman Yatırımcıya bilgi vermek amacıyla hazırlanmış olup, kaynak olarak

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

PARANIN ZAMAN DEĞERİ. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Paranın Zaman Değeri

PARANIN ZAMAN DEĞERİ. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Paranın Zaman Değeri PARANIN ZAMAN DEĞERİ 1 Giriş İşlenecek ana başlıkları sıralarsak: Belirli bir faiz oranında bankaya yatırılan bir meblağın gelecekte alacağı değerin hesaplanması Gelecekteki nakit akışlarının bugünkü değerinin

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

evrende ilk defa karbon atomu çekirdekleri (6 proton ve 6 nötron) kayda değer miktarlarda oluşmaya başladı.

evrende ilk defa karbon atomu çekirdekleri (6 proton ve 6 nötron) kayda değer miktarlarda oluşmaya başladı. yaşamı elemetleri Çevremizdeki her şey, hayvalar, bitkiler, toprak, hava, cep telefoumuz, otomobilimiz, ezeeler, yıldızlar ve eliizde tuttuğuuz bu deri atom adı verile, maddei temel yapıtaşlarıda oluşmuştur.

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

1. Vize Sınavına Hazırlık Soruları. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Hazırlık Soruları

1. Vize Sınavına Hazırlık Soruları. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Hazırlık Soruları 1. Vize Sınavına Hazırlık Soruları Bahar, 2016-2017 1 1.Aylık $800 tutarında kredi ödemelerini önümüzdeki 30 yıl boyunca yapabileceğinizi düşünüyorsunuz. Nominal faiz oranı % 24 dür. Eğer toplam birikiminiz

Detaylı

GAZLAR. Hacim. A(g) B(g) C(g) V kap : 5 L V A = V B = V C = 5 L

GAZLAR. Hacim. A(g) B(g) C(g) V kap : 5 L V A = V B = V C = 5 L 1 GAZLAR Çevremizi dikkatli bir şekilde icelediğimiz zama birçok gazı var olduğuu görürüz. Öreği hava birçok gazı oluşturduğu homoje bir karışımdır. abiattaki yama olaylarıı sebebi yie atmosferde % 1 oraıda

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III GAZİ ÜNİVERSİTESİ MÜHENİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KM 482 Kimya Mühedisliği Laboratuarı III eey No : 2-a eeyi adı : Kesikli istilasyo eeyi amacı : a) Kolodaki basıç kaybıı belirlemek,

Detaylı

VAKIFBANK BANKA BONOLARINI HALKA ARZ EDİYOR TALEP TOPLAMA 13-14-15 MAYIS 2013

VAKIFBANK BANKA BONOLARINI HALKA ARZ EDİYOR TALEP TOPLAMA 13-14-15 MAYIS 2013 VAKIFBANK BANKA BONOLARINI HALKA ARZ EDİYOR TALEP TOPLAMA 13-14-15 MAYIS 2013 Yasal Uyarı Bu doküman Yatırımcıya bilgi vermek amacıyla hazırlanmış olup, kaynak olarak Vakıfbank tarafından kamuya açıklanan

Detaylı

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır Güeşe bakarsaız gölgeleri göremezsiiz KOMBİNASYON Adı : Soyadı : Zeka, Tecrübe ve Çalıskalık birlesirse tüm hedeflere ulasılır Mat Müh BAHTİYAR DAĞDELEN 05-799 9 5 KOMBİNASYON KOMBİNASYON r olmak üzere,

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Faiz, parası kullanılan kişi veya kurum için bir kazanç iken, parayı kullanan kişi veya kurum için bir masraftır.

Faiz, parası kullanılan kişi veya kurum için bir kazanç iken, parayı kullanan kişi veya kurum için bir masraftır. 1 FAİZ HESAPLARI: Başkalarına ilişkin bir paranın, belirli bir süre için, bir işte kullanılması karşılığında para sahibine verilen ücrete faiz tutarı veya kısaca faiz denir. Dolayısıyla faiz, kullanılan

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ 7 Ağustos 011 CUMARTESİ Resmî Gazete Sayı : 8038 TEBLİĞ Bilgi Tekolojileri ve ĠletiĢim Kurumuda: SABĠT TELEFON HĠZMETĠNE ĠLĠġKĠN HĠZMET KALĠTESĠ TEBLĠĞĠ BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayaak ve Taımlar Amaç

Detaylı