Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören"

Transkript

1 Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

2 Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi, T örneklem büyüklüğü olmak üzere z t, t= 1, 2,, T biçiminde gösterilir. Buna göre ilk gözlemlenen veri Z 1 ; ikinci gözlemlenen veri Z 2 ; son gözlemlenen veri Z T ile ifade edilir. 2

3 Zaman içinde sürekli olarak kaydedilebilen verilere sahip serilere sürekli zaman serileri, sadece belli aralıklarda elde edilebilen verilere sahip serilere de kesikli zaman serileri adı verilmektedir. Elektrik sinyalleri, voltaj, ses titreșimleri gibi mühendislik alanlarına ait seriler sürekli zaman serileri iken; Faiz oranı, satıș hacmi, üretim miktarı gibi iktisadi seriler kesikli zaman serileridir. 3

4 Zaman Serileri Geçmiș dönemlerde verilerin göstermiș olduğu eğilimin, gelecekte de aynı șekilde gelișeceği kabul edilerek tahmin yapılmaktadır. Durağanlık kavramı 4

5 Zaman Serileri Durağan zaman serisi: Zaman serisinin ortalaması ve varyansı simetrik bir değișme göstermiyorsa veya seri periyodik dalgalanmalardan arınmıș ise 5

6 Farklı yapıdaki zaman serisi örnekleri 1. Ekonomik ve finansal zaman serileri: İktisadi verilerin önemli bir bölümü zaman serilerinden ibarettir. Örneğin, günlük hisse senedi fiyatları, yıllık ișsizlik oranları gibi dönemler itibariyle farklı alanlarda çok sayıda zaman serileri derlenir ve toplanır. 6

7 yıllarına ait istihdam oranı verileri :01 08:04 08:07 08:10 09:01 09:04 ISTIHDAM 7

8 2. Fiziksel zaman serileri: Zaman serileri fen bilimlerinde, özellikle meteorolojide, denizcilik bilimlerinde ve coğrafyada çok sık gözlenir. Fen bilimlerinde gözlemlerin kayıtları daha çok sürekli bir yapıdadır. Örneğin, bir laboratuvarda belirli bir sıcaklığın muhafaza edilmesi için nem oranı gibi bazı değișkenlerin sürekli ölçümleri birer zaman serisi olușturur. 8

9 1955:1-1960:12 yıllarına ait sıcaklık verileri SICAKLIK 9

10 3. İșletme zaman serileri: Değișik dönemlerde ișletmelerin satıș analizleri önemli yararlar sağlar. Bu tür veriler daha çok pazarlama verileri olarak bilinir. İșletme veya pazarlama verileri ileriye yönelik ișletme politikalarının belirlenmesinde ve satıș ön raporlarının hazırlanmasında etkin bir șekilde kullanılır. 10

11 1965:1-1970:12 yıllarına ait x firmasının soğutucu satış verileri SATIS 11

12 4. Demografik zaman serileri: Genellikle nüfus çalıșmalarında ortaya çıkan zaman serileridir. Örneğin, yıllık ortalama nüfus artıșı, yıllık ölüm ve doğum oranları bu sınıfa dahil edilebilir. Hükümetler orta ve uzun vadeli planlamalarında demografik verilerdeki değișmeleri dikkate alarak çeșitli ekonomik göstergeler için tahminlerde bulunabilir. 12

13 yıllarına ait evlenme oranı verileri EVLILIK 13

14 5. Süreç kontrol verileri: Süreç kontrolünde ele alınan bir problem, sürecin kalitesini gösteren bir ölçüm yardımıyla bir üretim sürecinin çalıșmalarındaki değișimlerin incelenmesi olarak alınabilir. Bu değișkenin ölçümleri belirlenen bir hedeften ne kadar ve hangi yönde sapma gösterdiğinin incelenmesi için zamana karșı bir grafik çizilir. Belirlenen bu hedeften sapmalar incelenerek gerekli düzeltmeler yapılmaya çalıșılır. Bu tür zaman serisi problemlerinin çözümü istatistiksel kalite kontrol teknikleri adı altında ele alınır. 14

15 Süreç kontrol grafiği 15

16 6. İkili süreç verileri: Bu tür verilerde gölemler 0 veya 1 gibi yalnızca iki değerden birini alır. Bu özelliğinden dolayı bu veriler ikili süreç olarak adlandırılır. İkili süreç verilerinde, örneğin herhangi bir elektronik cihazın açma/kapama düğmesinin açık veya kapalı olma durumuna göre bir ölçeklendirme yapılır. 16

17 İkili süreç grafiği 17

18 7. Nokta süreç verileri: Zaman serilerinin farklı bir türü de belirli bir dönem içerisinde rassal olarak ortaya çıkan bir olaylar dizisi biçiminde olușur. Örneğin havayolu ulașımında bir yolcu uçağının bir yıllık bir dönem içerisinde arızalandığı ve bakım/onarıma alındığı aylar bir nokta süreç olarak gösterilebilir. Nokta süreç grafiği 18

19 Zaman Serisi Bileșenleri Trend (T) Konjonktürel Değișimler (K) Mevsimlik Değișimler (M) Düzensiz Değișimler (D) 19

20 Zaman Serisi Bileșenleri Y t =T t +M t +K t +D t Y t: t dönemindeki gözlem değeri T t: Trendin t dönemindeki etkisi M t: Mevsimlik değișmelerin t dönemindeki etkisi K t : Konjonktürel değișmelerin t dönemindeki etkisi D t : Düzensiz değișmelerin t dönemindeki etkisi 20

21 Zaman Serisi Bileșenleri Aylık zaman serilerinde: Y t =T t.m t.k t.d t Yıllık zaman serilerinde: Y t =T t.k t.d t 21

22 10 Zaman Serisi Bileșenleri -Trend Zaman serilerindeki büyümenin ya da düșüșün altında yatan, belirli bir yönde gösterdiği ilerlemedir. Trend, iki șekilde ifade edilebilir: Doğrusal Trend Doğrusal Olmayan Trend Doğrusal Trend 10 Doğrusal Olmayan Trend

23 Zaman Serisi Bileșenleri Konjonktürel Değișimler Uzun bir zaman periyodunda olușan ekonomide büyüme ve daralma dönemlerinde yașanan iniș çıkıșlara bağlı olarak olușan dalgalanmalardır. Büyük çaplı ekonomik değișimler sırasında olușmaktadır. Devirli olan değișmelerdir. 23

24 24

25 Zaman Serisi Bileșenleri Mevsimlik Değișimler Düzenli olarak tekrarlanan değișimlerdir. 25

26 Zaman Serisi Bileșenleri Düzensiz Değișimler Rastlantısal olarak meydana gelen, sistematik değișim göstermeyen ve önceden tahmin edilmeleri çok zor olan değișmelerdir. Deprem, sel vb 26

27 Zaman Serisi Analizi Belirli zaman aralıklarında gözlenen bir olay hakkında, gözlenen serinin yapısını veren stokastik süreci modellemeyi ve zaman serisi bileșenlerinden hangilerinin etkili olduğunun belirlenmesini sağlayan ve zaman serisi değișkenlerinin gelecekteki değerlerinin doğru bir șekilde tahmininin yapılmasını sağlayan metot. 27

28 Zaman Serisi Tahmin Yöntemleri 28

29 Basit Grafik Yöntemi Zaman serisi, gözlem sayısı itibari ile iki eșit kısma ayrılır. Seri, çift sayılı ise eșit olarak, tek sayılı ise tam ortada kalan eleman alınmadan iki eșit kısma ayrılır. Ayrılan her kısmın aritmetik ortalaması hesaplanır ve ortalama değerleri grafiğe ișlendikten sonra araları bir doğru ile birleștirilerek bir doğru elde edilir. 29

30 Basit Grafik Yöntemi Sakıncaları: Trendin doğrusal olduğunu kabul etmektedir. Serinin her iki kısmında konjonktürel dalgalanmaların etkisinin aynı olduğu varsayılmaktadır. 30

31 Örnek Yıllar Üretim (10000 Adet)

32 Ortalama Yöntemleri Basit Ortalama Yöntemi Trend, konjonktürel, mevsimsel değișmelerin olmadığı ve az sayıdaki veriler için uygulanabilmekte ve geçmiș dönemlere ilișkin hesaplanan aritmetik ortalama hesabına dayanmaktadır. 32

33 Hareketli Ortalamalar Yöntemi Verilerdeki konjonktürel ve mevsimlik değișmelerin incelenmesi yoluyla değișimlerin veri üzerindeki etkisinin belirlenmesinden kullanılan bir yöntemdir. Zaman serisinin trendi doğrusal olmalı. 33

34 Hareketli Ortalamalar Yöntemi Zaman içinde durağan yapıya sahip ortamlara uygundur. n dönemlik hareketli ortalama; yalnızca en son n adet geçmiș dönem verisinin ortalamasını hesaplar ve bunu bir sonraki dönemin tahmini olarak kullanır. Hareketli Ortalama = (1/n) Σ(önceki n dönemin değeri) 34

35 Örnek Bir hava üssünde son sekiz ayda kaydedilen aylık motor arızaları sırasıyla 200, 250, 175, 186, 225, 285, 305, 190 olarak kaydedilmiştir. Bu verilere göre: 4-5. aylar için 3 aylık, 7-8. aylar için 6 aylık hareketli ortalamaları hesaplayınız. 35

36 Örnek 4. ay için 3 aylık hareketli ortalama F 4 = (1/3)( ) = ay için 3 aylık hareketli ortalama F 5 = (1/3)( ) = ay için 6 aylık hareketli ortalama F 7 = (1/6)( ) = ay için 6 aylık hareketli ortalama F 8 = (1/6)( ) =

37 Ağırlıklı Hareketli Ortalama Yöntemi Geçmiș verilerin daha az önemli olduğu durumlarda, ağırlıkları 0-1 arasında toplamı 1 olacak șekilde, ağırlıkların deneyime bağlı olarak belirlendiği, en yakın veriye en büyük ağırlığın verilmesi ile hesaplanan değerdir. 37

38 Örnek Aylar y i Aralık 3 Ocak 5 Șubat 4 Mart 7 Nisan 11 38

39 39

40 Çift Hareketli Ortalama Seçilen veriler birinci veya ikinci dereceden polinom șeklinde trende sahipse basit ve ağırlıklı ortalama yöntemlerini kullanmak doğru olmaz. t b t r e n d e ğ i l i m i t a = 2 F F n F t i i = 1 F t = n a t r e n d s a b i t i t t t 2 b = F F n 1 F = a + b m 1 t ( t t ) 1 t + m t t 1 40

41 Örnek Aylar Kira Getirisi Eylül 554 Ekim 600 Kasım 610 Aralık 605 Ocak 615 Șubat 617 Mart 620 Nisan 618 Mayıs

42 Üstel Düzeltme Yöntemleri Geçmiș dönem verilerine eșit değil farklı ağırlıkların verildiği yöntemler. Üstel terimi, verilen ağırlıkların veriler eskidikçe, üstel șekilde azalması anlamını tașımaktadır. 42

43 Basit Üstel Düzeltme Yöntemi F t = αdt 1 + ( 1 α ) Ft 1 = Ft 1 α et 1 Talep) Yeni Tahmin = Geçen Dönemin Tahmini - α(geçen Dönemin Tahmin Hatası) Tahmin Hatası = (Talep Tahmini Gerçek 0 α 1 (Genelde 0.05 ile 0.50 arası) α Üstel düzeltme sabitidir ve α nın yüksek olması güncel verilere daha fazla ağırlık verildiği anlamına gelir. 43

44 Örnek Yıl Tașınan Yük Miktarı Ton- Km (Milyon)

45 Brown un Tek Parametreli Üstel Düzeltme Yöntemi Trendi olan ve mevsim etkisi tașımayan zaman serileri için geliștirilmiștir. F = α y + (1 α) F 1 1 t t t 1 F = α F + (1 α) F t t t 1 a = F + ( F F ) t t t t α b F F 1 α F = a + b m 1 2 t = ( t t ) t + m t t 45

46 Örnek Aylar Aylık Doğum Sayısı 46

47 Holt un ikili düzeltme yöntemi Farklı düzeltme sabitleri kullanılabilir. Mevsimselliğin gözlenmediği durumlarda kullanılır. F = α y + (1 α ) F 1 t t t 1 F = α F + (1 α ) F t t t 1 47

48 Holt un Çift Parametreli Doğrusal Üstel Düzeltme Yöntemi Basit üstel düzeltme yöntemi durağan ortama uygundur. eğilim değișimlerini yeteri kadar iyi izleyemez. Eğilim İçeren Tahmin = serinin değeri (S t )+eğilimin değeri (G t ) S t =αd t + (1- α)(s t-1 +G t-1 ) G t =β(s t -S t-1 ) + (1- β)g t-1 F t = S t + G t S t : t anındaki ortalama G t : t anındaki eğim β α: Eğimde kararlılık daha önemlidir. 0 α 1 ve 0 β 1 48

49 Örnek Bir hava üssünde son sekiz ayda kaydedilen aylık Motor arızaları sırasıyla 200, 250, 175, 186, 225, 285, 305, 190 olarak kaydedilmiștir. Bu verilere göre: S 0 = 200 ve G 0 =10 olarak alınır ve α= β =0.1 olarak kabul edilirse: S 1 =(0.1)(200)+(0.9)(200+10) = G 1 = (0.1)( )+(0.9)(10) = 9.9 S 2 =(0.1)(250)+(0.9)( ) = G 2 = (0.1)( )+(0.9)(9.9) = 10.2 S 3 =(0.1)(175)+(0.9)( ) = G 3 = (0.1)( )+(0.9)(10.2) =

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Tahminleme Yöntemleri

Tahminleme Yöntemleri PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2)

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Tahmin Yöntemleri Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Mevsimsel etkenin tahmininde kullanılan diğer bir yöntem de N dönemlik hareketli ortalamaların alınmasıdır. Burada N değeri aynı

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci Hareketli Ortalama Süreci:MA(q) Hareketli Ortalama sürecini yapısını ortaya koymak için önce hisse senedi

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal İşgücü Talebinin Tahmininde Sayısal ve Sayısal Yrd. Doç. Dr. Rıza DEMİR İstanbul Üniversitesi İşletme Fakültesi İnsan Kaynakları Planlaması ve Seçimi Dersi 2017 Talep Tahmin i İnsan kaynakları talebi veya

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

TÜRKİYE EKONOMİSİ NDE GÜNCEL EĞİLİMLER VE GENEL GÖRÜNÜM

TÜRKİYE EKONOMİSİ NDE GÜNCEL EĞİLİMLER VE GENEL GÖRÜNÜM TÜRKİYE EKONOMİSİ NDE GÜNCEL EĞİLİMLER VE GENEL GÖRÜNÜM 8 Eylül 216 Sunum Akışı I. İktisadi Faaliyet II. Dış Denge III. Enflasyon IV. Parasal ve Finansal Koşullar V. Genel Görünüm 2 İKTİSADİ FAALİYET 3

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı 15 Mayıs 2014 SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ Esra DOĞAN, Misafir Araştırmacı Mehmet Furkan KARACA, Yardımcı Araştırmacı Hanehalkı İşgücü Anketinde Yeni Düzenlemeler Avrupa Birliğine tam uyum

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015)

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) Hane Halkı İşgücü İstatistikleri 2014 te Türkiye de toplam işsizlik %10,1, tarım dışı işsizlik ise %12 olarak gerçekleşti. Genç nüfusta ise işsizlik

Detaylı

FİNANSAL YÖNETİM. Finansal Planlama Nedir?

FİNANSAL YÖNETİM. Finansal Planlama Nedir? FİNANSAL YÖNETİM FİNANSAL PLANLAMA Yrd.Doç.Dr. Serkan ÇANKAYA Finansal analiz işletmenin geçmişe dönük verilerine dayanmaktaydı ancak finansal planlama ise geleceğe yönelik hareket biçimini belirlemeyi

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi

Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi HAZIRLAYAN.0. Prof. Dr. Mustafa DELİCAN İnsan Kaynakları Araştırma Merkezi Doç. Dr. Levent ŞAHİN - İnsan Kaynakları Araştırma Merkezi

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

Fon Bülteni Ekim Önce Sen

Fon Bülteni Ekim Önce Sen Fon Bülteni Ekim 216 Önce Sen Fon Bülteni Ekim 216 NN Hayat ve Emeklilik Fonları Sektör Karşılaştırmaları Yüksek Getiri! Son 1 Yıl - 3/9/21-3/9/216 2 2 1 1-11,6 13,74 9,7 12,3 14,74 12,44 8,72 9,7 9,3

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Güncel Ekonomik Yorum

Güncel Ekonomik Yorum TEMMUZ 16 Güncel Ekonomik Yorum Finansal piyasalarda bir önceki ay başbakanlıkta meydana gelen değişikliğin etkilerini atlatmak üzereyken İngiltere nin AB den ayrılması, yurtiçi ve yurtdışında meydana

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ SONUÇLARI DURUM TESPİT ANKETİ MESLEK KOMİTELERİ Temmuz 15 Ekonomik Araştırmalar Şubesi 1 1 1 s 8 6 97,6 SANAYİ GELİŞİM ENDEKSİ 66,3 81,4 18, 15,2 SANAYİ GELİŞİM ENDEKSİ (SGE) (Üretim, İç Satışlar, İhracat,

Detaylı

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Aralık

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Aralık SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv İnşaat Kasım İtibarıyla 2013 Otomobil Satışları 2012 nin Üzerine Çıktı Konut Fiyat Artışında Hızlanma Var İnşaat Sektörü İstihdamında Düşüş Devam Ediyor Turizm

Detaylı

İşgücü Piyasası Görünümü: Nisan 2015

İşgücü Piyasası Görünümü: Nisan 2015 İşgücü Piyasası Görünümü: Nisan 2015 15 Nisan 2015 MEVSİM ETKİLERİNDEN ARINDIRILMIŞ İŞSİZLİK DÜŞTÜ Seyfettin Gürsel * Gökçe Uysal ve Mine Durmaz Yönetici Özeti Mevsim etkilerinden arındırılmış işgücü verilerine

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

FONLAR GETİRİ KIYASLAMASI FONLAR GETİRİ KIYASLAMASI

FONLAR GETİRİ KIYASLAMASI FONLAR GETİRİ KIYASLAMASI OCAK 15 Güncel Ekonomik Veriler Büyüme Oranı(Yıllık) 4,00% Cari Açık/GSYİH 6,61% İşsizlik oranı(yıllık) 10,10% Enflasyon(TÜFE/Yıllık) 8,17% GSMH(milyar USD) 819,9 Kişi Başı Milli Gelir (USD) 10.800 Güncel

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ SONUÇLARI DURUM TESPİT ANKETİ MESLEK KOMİTELERİ Nisan 15 Ekonomik Araştırmalar Şubesi 14 1 1 8 6 4 SANAYİ GELİŞİM ENDEKSİ 19,5 117,2 115,5 97,6 66,3 SANAYİ GELİŞİM ENDEKSİ (SGE) (Üretim, İç Satışlar, İhracat,

Detaylı

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri)

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) R t : t dönemlik basit getiri P t : t dönemdeki fiyat P t-1 : t dönemden önceki fiyat Örneğin, THYAO hisse senedinin

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR (1) Türkiye İstatistik Kurumu, işgücü piyasasının temel veri kaynağını oluşturan hanehalkı işgücü araştırmasını1988 yılından beri,

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

Güncel BES Verileri. Toplam Fon Büyüklüğü (milyar TL) 49,04. Faizsiz Fon Büyüklüğü (milyar TL) 2,29. Katılım Emeklilik Fon Büyüklüğü (milyon TL)

Güncel BES Verileri. Toplam Fon Büyüklüğü (milyar TL) 49,04. Faizsiz Fon Büyüklüğü (milyar TL) 2,29. Katılım Emeklilik Fon Büyüklüğü (milyon TL) ŞUBAT 16 Güncel Ekonomik Yorum Yılın ilk ayında Türkiye ekonomi gündemi büyük ekonomilerdeki (ABD- Çin-AB) gelişmelerin yakın takipçisi olmuş, olumlu olumsuz her gelişme ise yurt içi piyasalarda karşılığını

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

İŞGÜCÜ PİYASALARINDA MEVSİMLİK ETKİLER AZALIYOR

İŞGÜCÜ PİYASALARINDA MEVSİMLİK ETKİLER AZALIYOR ÖZET İŞGÜCÜ PİYASALARINDA MEVSİMLİK ETKİLER AZALIYOR 17.04.014 Ekim Kasım Aralık Ayları. HAZIRLAYAN Prof. Dr. Halis Yunus ERSÖZ İktisat Fakültesi Dekanı Prof. Dr. Mustafa DELİCAN İnsan Kaynakları Araştırma

Detaylı

TARIM DIŞI İŞSİZLİK ARTIŞTA (Temmuz Ağustos - Eylül)

TARIM DIŞI İŞSİZLİK ARTIŞTA (Temmuz Ağustos - Eylül) TARIM DIŞI İŞSİZLİK ARTIŞTA (Temmuz Ağustos - Eylül) HAZIRLAYAN 18.02.2014 Prof. Dr. Halis Yunus ERSÖZ Prof. Dr. Mustafa DELİCAN Doç. Dr. Levent ŞAHİN ÖZET Türkiye genelinde Eylül ayında geçen yılın aynı

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Ekonomi Bülteni. 9 Mayıs 2016, Sayı: 19. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı

Ekonomi Bülteni. 9 Mayıs 2016, Sayı: 19. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomi Bülteni, Sayı: 19 Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomik Araştırma ve Strateji Dr. Saruhan Özel Ezgi Gülbaş Orhan Kaya İnci Şengül 1 DenizBank

Detaylı

Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam Değeri 877.247,49 Fonun Yatırım Amacı, Stratejisi ve Riskleri

Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam Değeri 877.247,49 Fonun Yatırım Amacı, Stratejisi ve Riskleri A. TANITICI BİLGİLER PORTFÖY BİLGİLERİ YATIRIM VE YÖNETİME İLİŞKİN BİLGİLER Halka Arz Tarihi 07/11/2008 Portföy Yöneticileri 31.03.2010 tarihi itibariyle Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam

Detaylı

HALK HAYAT VE EMEKLİLİK A.Ş. BÜYÜME AMAÇLI HİSSE SENEDİ EMEKLİLİK YATIRIM FONU A. TANITICI BİLGİLER

HALK HAYAT VE EMEKLİLİK A.Ş. BÜYÜME AMAÇLI HİSSE SENEDİ EMEKLİLİK YATIRIM FONU A. TANITICI BİLGİLER A. TANITICI BİLGİLER Portföy Bilgileri Halka Arz Tarihi 13.06.2012 2 Temmuz 2012 tarihi itibariyle (*) Fon Toplam Değeri 2.155.647 Yatırım Ve Yönetime İlişkin Bilgiler Portföy Yöneticileri Murat Zaman,

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

21 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

21 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi Ekim 05 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-00 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz İndikatör

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

FONLAR GETİRİ KIYASLAMASI

FONLAR GETİRİ KIYASLAMASI ŞUBAT 15 FON BÜLTENİ Güncel Ekonomik Veriler Büyüme Oranı(Yıllık) Cari Açık/GSYİH 6,61% İşsizlik oranı(yıllık) 10,10% Enflasyon(TÜFE/Yıllık) 7,24% GSMH(milyar USD) 819,9 Kişi Başı Milli Gelir (USD) 10.800

Detaylı

18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

7. Orta Vadeli Öngörüler

7. Orta Vadeli Öngörüler 7. Orta Vadeli Öngörüler Bu bölümde tahminlere temel oluşturan varsayımlar özetlenmekte, bu çerçevede üretilen orta vadeli enflasyon ve çıktı açığı tahminleri ile para politikası görünümü önümüzdeki üç

Detaylı

Ekonomi Bülteni. 08 Haziran 2015, Sayı: 14. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı

Ekonomi Bülteni. 08 Haziran 2015, Sayı: 14. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomi Bülteni, Sayı: 14 Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomik Araştırma ve Strateji Dr. Saruhan Özel Ezgi Gülbaş Orhan Kaya Çağlar Kuzlukluoğlu 1

Detaylı

MAKROEKONOMİ - 2. HAFTA

MAKROEKONOMİ - 2. HAFTA MAKROEKONOMİ - 2. HAFTA Ekonomik Faaliyetlerin Döngüsü Mal ve Hizmetler C HANEHALKLARI Tüketim Harcamaları Faktör Ödemeleri B A FİRMALAR Üretim Faktörleri GSYH ÖLÇME YÖNTEMLERI Üretim Yöntemi: Firmaların

Detaylı

Ekonomi Bülteni. 13 Şubat 2017, Sayı: 7. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı

Ekonomi Bülteni. 13 Şubat 2017, Sayı: 7. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomi Bülteni, Sayı: 7 Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomik Araştırma ve Strateji Dr. Saruhan Özel Ezgi Gülbaş Orhan Kaya Deniz Bayram 1 DenizBank

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

Yarın, umduğunuz gibi. Ekonomide Son Durum. Fon Bülteni ŞUBAT 2013 GSYH. Milli Gelir İşsizlik /$ Milyon TL*

Yarın, umduğunuz gibi. Ekonomide Son Durum. Fon Bülteni ŞUBAT 2013 GSYH. Milli Gelir İşsizlik /$ Milyon TL* Fon Bülteni ŞUBAT Yarın, umduğunuz gibi "Güven, saygı, kalite ve şeffaflık" ilkeleriyle yürüyen Aegon, Amerika, Avrupa ve Asya da faaliyet gösteren şirketleri ve binden fazla çalışanı ile hayat sigortası,

Detaylı

3/16/2017 UYGULAMALAR YAĞIŞ

3/16/2017 UYGULAMALAR YAĞIŞ UYGULAMALAR YAĞIŞ 1 PLÜVYOGRAF KAYITLARININ DEĞERLENDİRİLMESİ Plüvyograflı bir yağış istasyonunda 12 Mart 1993 günü kaydedilen, 6 saat süreli yağışın plüvyograf kaydı (toplam yağış eğrisi) şekilde gösterilmiştir.

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

BAKANLAR KURULU SUNUMU

BAKANLAR KURULU SUNUMU BAKANLAR KURULU SUNUMU Murat Çetinkaya Başkan 12 Aralık 2016 Ankara Sunum Planı Küresel Gelişmeler İktisadi Faaliyet Dış Denge Parasal ve Finansal Koşullar Enflasyon 2 Genel Değerlendirme Yılın üçüncü

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI 2012 - LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI Genel Yetenek 1) Türkçe %50 2) Matematik %50 a) Sözcük bilgisi %5 a) Sayılarla işlem yapma %10 b) Dil bilgisi %10 b) Matematiksel ilişkilerden yararlanma

Detaylı

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde 1 16-31 Temmuz 2012 SAYI: 41 MÜSİAD Araştırmalar ve Yayın Komisyonu İşsizlikte Belirgin Düşüş 2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı