OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ"

Transkript

1 OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

2 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde; damper (sönümleyici), sürtünme, kütle ve yaydır. Dönme hareketinde ise dönel sönümleyici, eylemsizlik momenti ve yaydır. F(t)... B : Sönümleme katsayısı (N.s/m) F : Kuvvet (N) V : Hız (m/s) b) Dönel Sönümleyici : dθ (t) M(t)=B.. B : Sönümleme katsayısı (N.s/m) T, M : Moment (N) w: Açısal Hız (rad/s) 2

3 Mekanik Elemanların Matematiksel Modeli 2) İdeal Kütle ve Eylemsizlik : a) Öteleme Kütlesi : F(t). F(s).. b) Döner Kütle : J. T(t). T(s).. G= 3 a) Ötelemeli Yay : F(t).. df(t)... 3

4 3 b) Burulma Yayı : Mekanik Elemanların Matematiksel Modeli T(t).θ.θ dt(t)... Ödev 1 : Verilen sistemin transfer fonksiyonunu bulunuz? K x s 1 Ödev 2 : Ucunda J atalet momentli disk olan ve bir ucu sabitlenmiş şekildeki sistem, uygulanan M momenti ile bükülmektedir. Disk dönme sürtünme katsayısı B olan bir ortamda hareket ettiğine göre sistemin transfer fonksiyonu nedir? 4 θ s 1

5 Mekanik Elemanların Matematiksel Modeli Örnek 1: Verilen sistemin transfer fonksiyonunu bulunuz? 5

6 Enerji Depolamayan veya Harcamayan İdeal Sistem Elemanları 1) Transformatörler :.. İ ü ü ü N : Sarım sayısı ü : Dönüştürme oranı ü>1 : Gerilim Düşürücü ü<1 : Gerilim Yükseltici 2) Dişli Kutusu (Redüktör) :.. İ 1 ü ü N : Diş sayısı ü : Dönüştürme oranı ü>1 : Hız Düşürücü ü<1 : Hız Yükseltici 6

7 İşlemsel Kuvvetlendiriciler PID denetleyicilerin analog devrelerle gerçeklenmesinde özellikle kazanç, integral ve türev alma işlemleri için işlemsel kuvvetlendiriciler kullanılırlar. Bu sebeple işlemsek kuvvetlendiricilerinde transfer fonksiyonları belirlenmelidir. 1) Kuvvetlendirici (Kazanç) : 7

8 2) Kuvvetlendiricili Karşılaştırma Devresi : İşlemsel Kuvvetlendiriciler 8

9 3) Türev alıcı Devre: İşlemsel Kuvvetlendiriciler 4) İntegral alıcı Devre: 9

10 İşlemsel Kuvvetlendiriciler Örnek 2: Verilen sistemin transfer fonksiyonunu bulunuz? 10

11 Durum Değişkenleri Modeli Sistemin dinamiğini tanımlamak için durum değişkenleri veya durum uzay modelleri de kullanılabilir. Durum değişkenlerine bağlı denklemler kullanılarak verilen bir giriş için durum değişkenleri cinsinden sistemin çıkışı tanımlanabilir. n. dereceden bir sitem dinamiğinin modellenebilmesi için n adet değişken ve n adet durum denklemi gereklidir. Genel olarak durum denklemleri ; X t u t A B C D 11

12 Özellikleri : Durum Değişkenleri Modeli Durum denklemleri bilgisayarda sayısal olarak çözülebilir. Durum denklemleri çok girişli ve çok çıkışlı sistemlerde doğrudan kolaylıkla uygulanabilir. En uygun denetleyici tasarım yöntemleri genellikle durum değişkenleri modeline dayanır. NOT 1: Durum değişkenleri tekniği çoğunlukla çağdaş denetim yöntemleri olarak, buna karşılık transfer fonksiyonu tekniği de klasik yöntemler olarak bilinir. NOT 2: Tek giriş ve tek çıkışlı sistemlerde durum değişkeni yöntemi yerine transfer fonksiyonu yöntemini kullanmak daha uygundur. Transfer fonksiyonu ve Durum denklemleri arası geçiş : G(s)= C.. 12

13 Tanımlamalar : Sistemlerin Geçici ve Kalıcı Durum Davranışları Analizi 1) Gecikme Zamanı (tg) : Çıkışın, referans değerin yarısına ulaşana kadar geçen süredir. 1. derece sistemler için tg, zaman sabitine ( ) eşittir. 2) Yükselme Zamanı (ty), (tr) : Çıkışın, referansın %10 90, %5 95 veya %0 100 değerine ulaşana kadar geçen süredir. Genelde aşırı sönümlü (1. derece) sistemlerde %0 100, titreşimlisistemlerde %10 90 alınır. 3) Tepe Zamanı (tt), (tp) : Cevabınreferansı aşarak ilk tepe yaptığı zamandır. 4) Maksimum Aşım (Mp): Cevabın referansdeğeri en çok aştığı miktardır. Eğer nihai değere ulaşamayıpkalıcı durumhatası oluşuyorsayüzdeolarakverilir. %Mp=% ) Oturma Zamanı (to), (ts) : Cevap eğrisindeki titreşimlerin %5 veya %2 ye düştüğü süredir. 1. derece sistemlerde oturma zamanı yükselme zamanına eşittir. Not: Tüm değerler aynı anda küçük tutulamaz, bazıları birbirlerine göre ters etkilidirler. Örneğin Mp küçültülürken aynı anda to küçültülemez. 13

14 Tanımlamalar : Sistemlerin Geçici ve Kalıcı Durum Davranışları Analizi 6) Kalıcı Durum Hatası: Kalıcı durum başarımı genellikle basamak, rampa veya ivme giriş sinyaline göre gösterdiği kalıcı durumhatasına göre belirlenir. Verilen bir sistemin bir tipte giriş sinyalinde küçük bir hata verirken diğer bir girişte hata gösterebilir. Bu açık çevrim transfer fonksiyonuna bağlıdır. Kalıcı duruma sıfır veya en küçük hata ile ulaşmalıdır. Kapalı çevrim kontrol sistemi oluşturularak kalıcı durum hatası açık çevrimegöre daha küçük hatalar oluşturulabilir. 14

15 15 Sistemlerin Geçici ve Kalıcı Durum Davranışları Analizi

16 Transfer Fonksiyonlarına Eklenen Kutup ve Sıfırların Etkisi Her ne kadar bir sistemin kararlılığında sistemin kutupları 1. derecede etkili olsa da transfer fonksiyonunun sıfırları da önem taşır. Bu sebeple istenilen bir sistem cevabı için genellikle transfer fonksiyonuna bazı kutup ve sıfırların ilave edilmesi veya istenmeyen kutup ve sıfırların silinmesi gerekebilir. 1) İleri besleme yoluna kutup ilavesi : G(s)= 1 =1 için inceleyelim. G(s)= T(s)= T(s)= 16

17 Transfer Fonksiyonlarına Eklenen Kutup ve Sıfırların Etkisi İleri yol transfer fonksiyonuna ilave edilen kutupların genellikle kapalı çevrim sisteminde aşımı arttırdığı gözlenir. İlave edilen kutup sistem band genişliğini azaltır. İlave edilen kutup yükselme zamanını arttırır. 17 Ödev 3: 1, =0.25 için ve Tp=0,1,2 ve 5 değerleri için MATLAB da inceleyiniz.

18 Transfer Fonksiyonlarına Eklenen Kutup ve Sıfırların Etkisi 2) Kapalı çevrim transfer fonksiyonuna kutup ilavesi : T(s)= = 1 =0.5 için inceleyelim. T(s)= Tp arttıkça, yükselme zamanı ve aşımazalır. Aşım açısından bakılırsa kapalı çevrim transfer fonksiyonuna ilave edilen kutuplar açık çevrim e ilave edilene göre ters etki gösterir. 18

19 Transfer Fonksiyonlarına Eklenen Kutup ve Sıfırların Etkisi 3) İleri besleme yoluna sıfır ilavesi : G(s)= T(s)= = Açık çevrim sistemine bir sıfır ilavesinin sistemin kararlılığına etkisi vardır. Her ne kadar karakteristik denklemin kökleri sönüm ve kararlılığı belirlese de sistem davranışını etkileyen sıfırlarda dikkate alınmalıdır. 19

20 Transfer Fonksiyonlarına Eklenen Kutup ve Sıfırların Etkisi 4) Kapalı çevrim transfer fonksiyonuna sıfır ilavesi : T(s)= = 1 =1 için inceleyelim. T(s)= = Kapalı çevrim transfer fonksiyonuna bir sıfır ilave edilmesi yükselme zamanının azalması ve aşımınartmasına sebep olur. 20

21 Baskın Transfer Fonksiyon Kutupları Geçici durum cevabını çok etkileyen kutuplar belirlenerek bunlara baskın kutuplar denir. Yüksek mertebeden olan sistemleri kontrol edebilmek için yaklaşık olaraktemsileden düşük mertebenden sistemlere dönüştürülür. Bilindiği üzere imajiner eksene yakın kutuplar yavaş zayıflayan, uzaklar hızlı azalan cevaba sahiptir. Baskın ile baskın olmayan kutuplar arasındaki D mesafesi net değildir. Sistem ve beklenen cevap ile ilgili olarak değişir. Uygulamada bir kutbun gerçek kısmı, bir baskın kutbun gerçek kısmının 5 10 katı ise baskınolmadığı kabul edilir. Kutup yerleştirme tekniklerinde =0.707 doğrusu üzerinde baskın kutupların olduğu düşünülür. 21

22 Örnek 3: T(s)= = Baskın Transfer Fonksiyon Kutupları Baskın kutuplar : ( 1+j) ve ( 1 j) Baskın kutupların reel kısmı : 1 Diğer kutup : 10 ve değeri baskın kutbun 10 katı Dolayısıyla sistemin geçici hali için ; T(s)= = sadeleştirilmiş denklem kullanılabilir. Önemsiz kutupların sürekli hal davranışında yok edilmesi : Baskın olmayan kutuplar geçici hal davranışında yukarıda yok edilmişti. Ancak kararlı durum davranışı korunmalıdır. Bu sebeple T(s) formülü yeniden düzenlenmelidir. T(s)= = Bu düzenleme yapılmaz ise sadeleştirme yanlış olur. 22 Baskın kutup

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören H04 Mekatronik Sistemler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04 Aktüatörler ve ölçme

Detaylı

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

PROSES KONTROL DENEY FÖYÜ

PROSES KONTROL DENEY FÖYÜ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA TEORİSİ, SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI LABORATUARI PROSES KONTROL DENEY FÖYÜ 2016 GÜZ 1 PROSES KONTROL SİSTEMİ

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım II PD Denetleyici ve Faz İlerletici Dengeleyici 1 Ardarda (Kaskat) bağlantı kullanılarak geri beslemeli sistemin geçici rejim cevabının iyileştirilmesi

Detaylı

OTOMATİK KONTROL 18.10.2015

OTOMATİK KONTROL 18.10.2015 18.10.2015 OTOMATİK KONTROL Giriş, Motivasyon, Tarihi gelişim - Tanım ve kavramlar, Lineer Sistemler, Geri Besleme Kavramı, Sistem Modellenmesi, Transfer Fonksiyonları - Durum Değişkenleri Modelleri Elektriksel

Detaylı

PID SÜREKLİ KONTROL ORGANI:

PID SÜREKLİ KONTROL ORGANI: PID SÜREKLİ KONTROL ORGANI: Kontrol edilen değişken sürekli bir şekilde ölçüldükten sonra bir referans değer ile karşılaştırılır. Oluşacak en küçük bir hata durumunda hata sinyalini değerlendirdikten sonra,

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları Contents Doğrusal sistemler için kontrol tasarım yaklaşımları DC motor modelinin matematiksel temelleri DC motor modelinin durum uzayı olarak gerçeklenmesi Kontrolcü tasarımı ve değerlendirilmesi Oransal

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SÜREÇ KONTROL Süreç Kontrol Süreç kontrolle ilişkili işlemler her zaman doğada var olmuştur. Doğal süreç kontrolünü yaşayan bir

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım IV Geribesleme Üzerinden Denetim ve Fiziksel Gerçekleme Prof.Dr.Galip Cansever 2 3 Denetleyiciyi veya dengeleyiciyi geribesleme hattı üzerine

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

Algılayıcılar (Sensors)

Algılayıcılar (Sensors) Algılayıcılar (Sensors) Sayısal işlem ve ölçmeler sadece elektriksel büyüklüklerle yapılmaktadır. Genelde teknik ve fiziksel büyüklükler (sıcaklık, ağırlık kuvveti ve basınç gibi) elektrik dalından olmayan

Detaylı

Elektrik Devre Lab

Elektrik Devre Lab 2010-2011 Elektrik Devre Lab. 2 09.03.2011 Elektronik sistemlerde işlenecek sinyallerin hemen hepsi düşük genlikli, yani zayıf sinyallerdir. Elektronik sistemlerin pek çoğunda da yeterli derecede yükseltilmiş

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme.

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme. PROGRAMIN ADI DERSĐN ADI DERSĐN ĐŞLENECEĞĐ YARIYIL HAFTALIK DERS SAATĐ DERSĐN SÜRESĐ ENDÜSTRĐYEL OTOMASYON SÜREÇ KONTROL 2. Yıl III. Yarıyıl 4 (Teori: 3, Uygulama: 1, Kredi:4) 56 Saat AMAÇLAR 1. Endüstride

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

SAYISAL KONTROL 2 PROJESİ

SAYISAL KONTROL 2 PROJESİ SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ Makine Elemanları 2 DİŞLİ ÇARKLAR I: GİRİŞ 1 Bu bölümden elde edilecek kazanımlar Güç Ve Hareket İletim Elemanları Basit Dişli Dizileri Redüktörler Ve Vites Kutuları : Sınıflandırma Ve Kavramlar Silindirik

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü 1 OTOMATİK KONTROL DERS NOTLARI DERLEYEN: Doç. Dr. Hüseyin BULGURCU BAU MMF Makine Müh. Bölümü Kasım 2014 2 BÖLÜM-1 OTOMATİK KONTROLE GİRİŞ Kontrol Mühendisliği Kontrol Mühendisliği hedef odaklı sistemlerin

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

7. Hareketli (Analog) Ölçü Aletleri

7. Hareketli (Analog) Ölçü Aletleri 7. Hareketli (Analog) Ölçü Aletleri Hareketli ölçü aletleri genellikle; 1. Sabit bir bobin 2. Dönebilen çok küçük bir parçadan oluşur. Dönebilen parçanın etkisi statik sürtünme (M ss ) şeklindedir. Bunun

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

İşlemsel Yükselteçler

İşlemsel Yükselteçler İşlemsel Yükselteçler Bölüm 5. 5.1. Giriş İşlemsel yükselteçler aktif devre elemanlarıdır. Devrede gerilin kontrollü gerilim kaynağı gibi çalışırlar. İşlemsel yükselteçler sinyalleri toplama, çıkarma,

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

BÖLÜM 9 Kök-yer Eğrisiyle Tasarım

BÖLÜM 9 Kök-yer Eğrisiyle Tasarım BÖLÜM 9 Kök-yer Eğrisiyle Tasarım GİRİŞ Kök-yer eğrisi bize grafik olarak sistemin geçici hal cevabı ve kararlılığı ile ilgili bilgi verir. Sistemin geçici hal cevabı ve kararlılığı ile ilgili bilgi almak

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

KONTROL ORGANI VE SİSTEMLERİ:

KONTROL ORGANI VE SİSTEMLERİ: KONTROL ORGANI VE SİSTEMLERİ: Open and Closed Loop Control(Açık ve kapalı Çevrim) KONTROL SİSTEMLERİ : 1) Açık çevrim Kontrol sistemleri 2) Kapalı Çevrim Kontrol Sistemleri Kontrol Sistemlerin kullanılması

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü Denetim Sistemleri Laboratuvarı Deney Föyü Öğr.Gör.Cenk GEZEGİN Arş.Gör.Birsen BOYLU AYVAZ DENEY 3-RAPOR PİD DENETİM Öğrencinin

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 5 1.3 TAŞITLARIN SINIFLANDIRILMASI... 8 1.4 TAŞITA ETKİYEN KUVVETLER... 9 1.5 TAŞIT

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

Elektrik - Elektronik Fakültesi

Elektrik - Elektronik Fakültesi . Elektrik - Elektronik Fakültesi KON314 Kontrol Sistem Tasar m Ödev #1 Birol Çapa-4645 Doç. Dr. Mehmet Turan Söylemez 23.3.29 1 1.a.Amaç Transfer fonksiyonu ( n 1 ve n üzerine konulan bir kontrolör ile

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

MEKANİK TİTREŞİMLER. Doç. Dr. Mehmet İTİK

MEKANİK TİTREŞİMLER. Doç. Dr. Mehmet İTİK MEKANİK TİTREŞİMLER Doç. Dr. Mehmet İTİK Mekanik Titreşimler Ders Planı Ders İçeriği: Titreşim ile ilgili temel kavramlar Mekanik sistemlerin serbest ve zorlanmış titreşimleri. Çok serbestlik dereceli

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 11 1.3 TAŞITLARIN SINIFLANDIRILMASI... 14 1.4 TAŞITA ETKİYEN KUVVETLER... 15 1.5

Detaylı

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ 1. AMAÇ: Endüstride kullanılan direnç, kapasite ve indüktans tipi konum (yerdeğiştirme) algılama transdüserlerinin temel ilkelerini açıklayıp kapalı döngü denetim

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ BÖLÜM 2 ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ 2.1.OTOMATİK KONTROL SİSTEMLERİNE GİRİŞ Otomatik kontrol sistemleri, günün teknolojik gelişmesine paralel olarak üzerinde en çok çalışılan bir konu olmuştur.

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

AKTÜATÖRLER Elektromekanik Aktüatörler

AKTÜATÖRLER Elektromekanik Aktüatörler AKTÜATÖRLER Bir sitemi kontrol için, elektriksel, termal yada hidrolik, pnömatik gibi mekanik büyüklükleri harekete dönüştüren elemanlardır. Elektromekanik aktüatörler, Hidromekanik aktüatörler ve pnömatik

Detaylı

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2 ELEKTRİK DEVRE TEMELLERİ 06.05.2015 ÖDEV-2 1. Aşağıdaki şekilde verilen devrenin; a) a-b uçlarının solunda kalan kısmının Thevenin eşdeğerini bulunuz. b) Bu eşdeğerden faydalanarak R L =4 luk yük direncinde

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Sistemin İşlevsel Kalitesi Kapalı Çevrim Kontrol Sistemin İşlevsel

Detaylı

KST Lab. Manyetik Top Askı Sistemi Deney Föyü

KST Lab. Manyetik Top Askı Sistemi Deney Föyü KST Lab. Manyetik Top Askı Sistemi Deney Föyü. Deney Düzeneği Manyetik Top Askı sistemi kontrol alanındaki popüler uygulamalardan biridir. Buradaki amaç metal bir kürenin manyetik alan etkisi ile havada

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı