SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case"

Transkript

1 SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden alınan pols suç ver tabanı kullanılarak lojstk regresyon model tahmn edlmeye çalışılmaktadır yılları arasını kapsayan suç ver tabanı 3 alt büroya ayrıldıktan sonra büroların ve pols merkezlernn performans değerlendrmeler yapılmaktadır. Ver tabanın tümü kullanılarak değşkenlere lşkn elde edlen frekanslar le ver tabanı alt bürolara ayrıldıktan sonra her br büroya at değşkenlern frekansları belrlenmştr. Daha sonra ver tabanının tümü çn elde edlen frekanslar ve her br büro çn elde edlen frekanslar, parametreler tahmn edlen lojstk regresyon modelnde yerne yazılmıştır. Böylece k grup arasında belrl özellklere sahp breylern suç şleme olasılıklarının farklılığı ortaya konmaya çalışılmıştır. Anahtar Kelmeler: Suç, Lojstk Regresyon, Sınıflandırma, Uyumun İylğ, Hosmer- Lemeshow Test. I Abstract n ths study, a logstc regresson model s tred to be estmated by usng polce crme database obtaned from Bursa Polce Headquarters. After the database coverng the years between s dvded nto 3 sub-offces, an evaluaton of performance n offces and polce head offces s carred out. Both the frequences related to varables by usng the whole database and the frequences of varables belongng to each offce after the database was dvded nto sun-offces were determned. Later, the frequences obtaned for the whole database and the ones for each offce were wrtten n ther places n logstc regresson model the parameters of whch were estmated. Thus, the dfference between the possbltes of commttng a crme of ndvduals havng certan characterstcs n two groups s tred to be shown. Key Words: Crme, Logstc Regresson, Classfcaton, Goodness of Ft, Hosmer- Lemeshow Test. Grş * Araştırma Görevls, Uludağ Ünverstes İktsad ve İdar Blmler Fakültes, Ekonometr Bölümü,

2 .Amaç ve Kapsam Bu çalışmada, Bursa Emnyet Müdürlüğünden alınan ve tarhler arasını kapsayan ver tabanı kullanılarak suçların lojstk regresyon model yardımıyla tahmn yapılmaya çalışılmaktadır. Bursa Emnyet müdürlüğünden alınan ver kütüğü dönemlernde yakalanan breylern sorguları sonucunda oluşturulmuştur. BEMTAP-2000 (Bursa Emnyet Müdürlüğü Teknolojk Adaptasyon Projes) ver tabanından alınan bu ver kütüğü 7930 gözlem değernden oluşmaktadır. Ver tabanı ncelendğnde breyn şledğ suç türüne bağlı olarak sorgulandığı ve brey sorgulayan büroların kayıtlarının ayrı ayrı grldğ görülmektedr. Bu nedenle analz aşamasında çalışmanın amacına bağlı olarak her br büro çn tek tek lojstk regresyon analz yapılacak ve tahmn sonuçları karşılaştırılacaktır. Lojstk model parametrelernn tahmn çn kullanılan bağımlı değşken çn brey lglenlen büroya at suç şlemşse, büroya bağlı suç şlememşse 0 değer verlmektedr. BEMTAP ver tabanında sıfır değerler çok fazla olduğundan yorumların daha anlamlı olması çn referans kategors her br değşkenn son kategorler olarak kullanılmıştır. Bu nedenle yorum aşamasında tüm değşkenlern lk kategorler yorumlanmayacaktır. Lojstk regresyon model tahmnnde modelde yerne yazılacak değşken kategorler tüm büroların frekans ve hstogramları yardımıyla belrlenmştr. Buna göre, pols merkez Çarşı (2), olay saat (0), cnsyet erkek (), yaş 26, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) değerlerne ulaşılmıştır. Model tahmnlernn uyum ylğ değerlendrmeler Hosmer-Lemeshow test yardımıyla oluşturulmaktadır. 2.Teork Çerçeve İk veya daha fazla değer alan kukla değşkenler bağımlı değşken olarak regresyon modelnde yer alablrler (Gürş ve Çağlayan, 2000:653). Bu tür modellerde bağımlı değşken evet-hayır gb k değer alır ve k karardan br verlr. Dolayısıyla verlen özel kararın nedenn açıklamak çn bağımlı değşken k durumlu olan kl seçm modeller kullanılır (Judge, Hll ve Grffths, 988:783). Bununla beraber, bağımlı değşkenn k seçenekl olduğu durumda doğrusal regresyon model bazı dezavantajları nedenyle uygulanmamaktadır (Akın, 2002a:5). Lojstk regresyon; bağımlı değşkenn kategork, kl, üçlü ve çoklu kategorlerde gözlendğ durumlarda açıklayıcı değşkenlerle neden sonuç lşksn belrlemede yararlanılan br yöntemdr (Özdamar, 999:475). Dğer br anlamda lojstk regresyon analznde bağımsız değşkenlern, bağımlı değşken üzerne etkler, bağımlı değşkenn k düzeynden herhang brne karşı dğernn olma olasılığından yararlanarak belrlenmeye çalışılır (Arabacı, 2002:8). Lojstk regresyon modelnde bağımlı değşkenn kl değerler alması nedenyle hata termn dağılımı artık normal br dağılım göstermeyecektr. Hata termn dağılımı kl değer alan bnomal 2

3 dağılımına sahp olacaktır (Hosmer ve Lemeshow, 2000:7). Lojstk regresyon modelnde kümülatf lojstk olasılık fonksyonları kullanılır (Özmen, 996:4). Lojstk dağılım fonksyonu probt model çn normal dağılım fonksyonu smetrktr (Johnston ve Dnardo, 997:49). Probt model çn normal dağılım ve lojstk dağılım arasındak temel fark lojstk fonksyonun kümülatf normal fonksyona göre kuyruk uç bölgelernn daha kalın olmasıdır (İşyar, 994:268). Bunun dışında lojstk model ve probt model formülasyonları benzerlk gösterecektr. Çünkü her ks de kümülatf normal fonksyon formuna benzerlk gösterdkler ve lojstk modeln hesaplama kolaylığı nedenyle çok sık olarak probt modeln yerne kullanılmaktadır (Pndyck ve Rubnfeld, 98:287). P = F(Z) = F( β () + β 2 X ) P = E(Y = / X ) = Z = β + β2x (2) + e Z Bu durumda Z le + arasında değştğnde P, 0 le arasında değşecek ve aralarında doğrusal olmayan br lşk olacaktır (Gujarat, 999:554). Br olayın olma olasılığının ( P ), olmama olasılığına ( P ) bölümü bahs oranını (odds rato) vermektedr ve aşağıdak gb ölçülmektedr (Agrest, 2002:44). Z P + e Ω = = P Z + e (3) Z = e Bu oran negatf olmayan br değer olmalıdır. Bahs oranı, nsb rsk le yakın lgldr (Powers ve Xe, 2000:5). Şöyle k, eğer lglenlen durumun olma olasılığı düşük se bahs oranı nsb rske yakın sonuç verr. Eğer bahs oranı olursa, lojstk değer 0 a eşt olacaktır. Bahs oranı den büyük değer aldığında lojstk değer yavaşça artar. Aks durumda bahs oranı den küçük olduğunda se lojstk değer hızla azalır. Sonuç olarak modelde gerekl düzenlemeler yapıldığında lojstk denklem aşağıdak bçmde oluşturulablr. 3

4 L P = In = Z P (4) = β + β X 2 Burada, L, lojtler temsl etmektedr. Lojstk regresyon modelnn özellkler aşağıdak bçmde özetleneblr (Akın, 2002b:60). P 0 dan e gderken yan, Z dan + a doğru gderken lojt Z dan + a gder. Olasılıklar se 0 le aralığında bulunmasına rağmen lojtler sınırlı değldr. Lojtler, X değşkenlernde doğrusal olmasına rağmen olasılıkları doğrusal değldr. Bu durumda olasılıkların X lerle doğrusal olarak artmaktadır. Lojstk regresyon model le tahmn edlen değşken parametreler β, X dek br brm değşmenn Z dek değşmesn ölçer. Kesme termnn anlamı yoktur. Bu özellklere ek olarak lojstk regresyon modelnn varsayımları kısaca aşağıdak bçmde verleblr. Y (0,) =,2,..., n P = + e Z, Y2, Y3,..., Yn Y değerler statstksel olarak bağımsızdır. Açıklayıcı değşkenler brbrlernden bağımsızdır. Yukarıdak açıklamalar ışığında lojstk regresyon model tahmn edlmes, açıklayıcı değşkenlern sayısında artış olduğunda da şleyş sürec gelştrlerek uygulanablmektedr. Lojstk regresyon model tahmn edldkten sonra, tahmn edlen modeln nasıl br uyum gösterdğn belrlemek çn br çok test kullanılmaktadır. Ancak çalışmada, Hosmer-Lemeshow uyumun ylğ test le tahmn edlen modeln sınıflandırma oranı kullanılacaktır. 4

5 Lojstk regresyon model tahmn edldkten sonra tahmn edlen modeln uyumunun ylğ, bağımlı değşken çn kurulan modeln ne kadar etkn olduğunu göstermektedr. Br modeln uyum ylğ aşağıdak şeklde tanımlanablmektedr. Bağımlı değşken( Y ) le tahmn edlen küçük olması, Ŷ arasındak uzaklığın Her br ( Y, Ŷ ) kls çn lşknn, modeln hata yapısından bağımsız ve sstematk olmayışı uyumun ylğn göstermektedr. Hosmer-Lemeshow test sürecnde hesaplanan olasılık değerler grubu oluşturulmaktadır. Hosmer-Lemeshow testnde teork frekansların 5 den büyük olması sağlanmaya çalışılmaktadır. Böylece serbestlk derecesnn düşmes 2 sağlanır ve o serbestlk derecesnde χ dağılımına uygun güvenlr br ölçüt oluşturulur. Test sürecnde tahmn edlen değerler gruplandırılmaktadır. Testn güvenlrlğ çn gözlenen ve beklenen frekanslar tablosundan 5 den büyük değer olması gerekmektedr. Ayrıca grupların sayısı 6 dan az olmamalıdır (Arabacı, 2002:33). Ĉ = g ı 2 (O k n k Pk ) ı k= n k Pk ( Pk ) (5) Burada, ı n k, k-nc gruptak brlkte hareket etme sayısı, n ı k ve O =, dır. P k ortalama tahmn edlen olasılıklar ve P k y j j= dır. Hesaplanan test statstğ Ĉ, (g-2) serbestlk derecesnde yaklaşır. O k gözlenen frekans m Pˆ k = n j j ı k 2 χ dağılımına Hosmer-Lemeshow testnn yanında tahmn edlen modeln uyumunun ylğ ölçütü sınıflandırma tablolarıdır. Sınıflandırma tablosunda, bağımlık değşkenn gerçek ve tahmn edlen değer çaprazlanmaktadır. Eğer tahmn edlen değer 0.5 aşarsa, aks halde sıfır grubuna atanma yapılacaktır. Sınıflandırma tablosunda bazı olumsuz yönler olmasına karşın yne de uyumun ylğn göstermede uygun br araçtır. Çünkü sınıflandırma tablosu 5

6 oluşturulurken 0.5 olarak alınan kesm değernde yapılan küçük değşklkler sınıflandırma oranını büyük ölçüde değştrmektedr. 3.Model Parametrelernn Tahmn Lojstk regresyon modelnn parametreler tahmn edlrken kullanılacak değşkenler aşağıdak şeklde tanımlanmaktadır. Bağımlı değşken çn brey suç şledkten sonra sorgusu lglenlen büro tarafından yapılmış se, dğer tüm bürolar tarafında yapılmış se 0 değernn verldğn daha önce söylemştk. Açıklayıcı değşkenler se; POLMER suçu şleyen brey yakalayan pols merkezn, OLAYSAAT şlenen suçun hang saatler arasında olduğunu, CINSIYET suçu şleyen breyn cnsyetn, YAS suçu şleyen breyn yaşını, DOGYER suçu şleyen breyn doğduğu bölgey, OGRENİM suçu şleyen breyn eğtm durumu, MESLEK suçu şleyen breyn ş veya mesleğn göstermektedr. Bu değşkenlern kategorler le lgl detaylı blg EK- de gösterlmektedr. Emnyet müdürlüğünden alına ver tabanını 3 tane alt büroya ayrılmıştır. Bu bürolar; Ağır Suçlar Bürosu, Ahlak Bürosu, Bölücü Terör Bürosu, Büro Suçları Bürosu, Çocuk Bürosu, Genel Suçlar Bürosu, Hırsızlık Bürosu, Kaçakçılık Bürosu, Kayıp Şahıslar Bürosu, Mal Suçlar Bürosu, Narkotk Bürosu, Organze Suçlar Bürosu, Yankesclk ve Dolandırıcılık Bürosudur. Analz aşamasında tüm bürolar çn lojstk regresyon modelnn parametreler tahmn edlmştr. Ancak burada sadece öneml olduğu düşünülen sonuçlar verlmştr. Analzn son aşamasında se her br büro çn tahmn edlen lojstk regresyon modeller kullanılarak pols merkez Çarşı (2), olaysaat (0), cnsyet erkek (), yaş 26, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) olan breyn şledğ suçun hang büronun lg alanına grdğn lojstk regresyon olasılıkları kullanılarak özetlenmeye çalışılmaktadır. 3..Ağır Suçlar Bürosu Brey adam öldürme, darp etme, kasten yaralama gb suçları şledğnde ağır suçlar bürosunda sorgulaması yapılmaktadır. Bu nedenle emnyet müdürlüğünden alınan ver tabanında 7930 gözlemlk ver tabanının 5380 adednn ağır suçlar bürosuna at olduğu görülmektedr. Ağır suçlar bürosu çn yapılacak lojstk regresyon analznde bağımlı değşken büro değşken olacağı çn yapılacak kategor tanımlamasında breyn şledğ suç ağır suç se, dğer bürolar se 0 değer verlecektr. Açıklayıcı değşken olarak kullanılacak kategork ve sürekl değşkenler yukarıda 6

7 belrtldğ üzere pols merkez, olay saat, cnsyet, yaş, doğum yer bölges, öğrenm durumu ve meslek değşkenlerdr. 3.2.Adımsal Değşken Seçm İlk olarak bağımlı değşken (BURO) le öneml olduğu düşünülen değşkenler aşamalı olarak modele dahl edlerek değşkenlern modele yaptıkları katkılar test edlmştr. Modele değşken eklendğnde. her eklenen değşken modele katkıda bulunmaktadır. Zra yapılacak breysel t-test statstğ veya parametrelern marjnal anlamlılık düzeyler her eklenen değşkenn anlamlı olduğunu göstermektedr. Tablo adımsal değşken seçm sonucunda tahmn edlen lojstk regresyon model parametrelernn tahmnn göstermektedr. Kesme term çn bulunan -.24 katsayısı statstksel olarak anlamlı olmasına karşın parametre yorumunun yapılması oldukça güçtür. Bu nedenle lojstk regresyonda çoğu zaman kesme term yorumlanmamaktadır. Kısm eğm katsayılarından br olan pols merkez değşkennn katsayıları her br kategor çn hesaplanmış olup Tablo de gösterlmektedr. Pols merkez değşkennn her br kategorsne lşkn elde edlen sonuçlardan Polmer3 (Çekrge) ve Polmer0 (Küçük Sanay) merkezler dışındak tüm kategorler (merkezler) % anlamlılık düzeynde anlamlı bulunmuştur. Pols merkez değşken çn hesaplanan bahs oranlarının çoğunluğu brden büyük değerldr. Tablo : Ağır Suçlar Bürosu İçn Lojstk Regresyon Tahmn Değşkenler Parametre Standart Hata Serbestlk Dereces Olasılık Değer Bahs Oranı Bahs Oranı %95 Güven Aralığı Alt Sınır Üst Sınır Kesme POLMER POLMER() POLMER(2) POLMER(3) POLMER(4) POLMER(5) POLMER(6) POLMER(7) POLMER(8) POLMER(9) POLMER(0) POLMER() POLMER(2) POLMER(3) POLMER(4) POLMER(5) POLMER(6) POLMER(7) POLMER(8)

8 POLMER(9) POLMER(20) POLMER(2) OLAYSAAT OLAYSAAT() OLAYSAAT(2) OLAYSAAT(3) OLAYSAAT(4) CINSIYET() YAS DOGYER DOGYER() DOGYER(2) DOGYER(3) DOGYER(4) DOGYER(5) DOGYER(6) DOGYER(7) DOGYER(8) OGRENIM OGRENIM() OGRENIM(2) OGRENIM(3) OGRENIM(4) OGRENIM(5) OGRENIM(6) OGRENIM(7) MESLEK MESLEK() MESLEK(2) MESLEK(3) MESLEK(4) MESLEK(5) MESLEK(6) MESLEK(7) MESLEK(8) MESLEK(9) MESLEK(0) Yan pols merkeznn ağır suç şleme olasılığı üzernde etkl olduğu bulunmuştur. Dğer br anlamda ağır suç şleyen brey tutuklayan pols merkez önemldr. Bu yüksek br rsk faktörüdür. Çünkü değşkenn parametres statstksel olarak anlamlı çıkmıştır. Örneğn kesme termne terk edlen (referans kategor) pols merkez kategors Yıldırım pols merkezdr. Buna göre Polmer2 (Yavuz Selm) tarafından yakalanan breyn Polmer22 (Yıldırım) pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığını yaklaşık % 26 oranında daha fazladır. Çünkü Polmer2 çn hesaplanan bahs oranı 2.58 olarak hesaplanmıştır ve değşkenn katsayısı anlamlı olarak bulunmuştur. Pols Merkez çn katsayıların referans kategorsndek br artış olarak tahmn edlmştr. Marjnal anlamlılık düzey (probablty) parametrenn % düzeynde anlamlı olduğunu göstermektedr. Ş. Şerafettn Yılmaz pols 8

9 merkez tarafından yakalanan breyn Yavuz Selm pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 42 oranında daha fazladır. Santral Garaj pols merkez tarafından yakalanan breyn Ş. Şerafettn Yılmaz pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 86 oranında daha fazladır. S. Türkoğlu pols merkez tarafından yakalanan breyn Santral Garaj pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 44 oranında daha fazladır. Organze Sanay pols merkez tarafından yakalanan breyn S. Türkoğlu pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 76 oranında daha azdır. Çünkü parametre değer negatf olarak tahmn edlmş ve % düzeynde anlamlıdır. Nlüfer pols merkez tarafından yakalanan breyn Organze Sanay pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 57 oranında daha fazladır. N. Pamr pols merkez tarafından yakalanan breyn Nlüfer pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 64 oranında daha fazladır. Muradye pols merkez tarafından yakalanan breyn N. Pamr pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 53 oranında daha fazladır. Muammer Sencer pols merkez tarafından yakalanan breyn Muradye pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 25 oranında daha fazladır. Mernos pols merkez tarafından yakalanan breyn Muammer Sencer pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 64 oranında daha fazladır. Kültürpark pols merkez tarafından yakalanan breyn Mernos pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 299 oranında daha fazladır. Küçük Sanay pols merkez tarafından yakalanan breyn Kültürpark pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 0 oranında daha fazladır. Ancak değşken anlamsız olduğundan yüksek br rsk değer olmayacaktır. İhsanye pols merkez tarafından yakalanan breyn Küçük Sanay pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 37 oranında daha fazladır. 9

10 Işıklar pols merkez tarafından yakalanan breyn İhsanye pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 39 oranında daha fazladır. Ertuğrul Gaz pols merkez tarafından yakalanan breyn Işıklar pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 52 oranında daha fazladır. Emr Sultan pols merkez tarafından yakalanan breyn Ertuğrul Gaz pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 40 oranında daha fazladır. Emek pols merkez tarafından yakalanan breyn Emr Sultan pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 47 oranında daha fazladır. Duaçınar M. Canbaz pols merkez tarafından yakalanan breyn Emek pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 24 oranında daha fazladır. Çekrge pols merkez tarafından yakalanan breyn Duaçınar M. Canbaz pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 00 oranında daha fazladır. Ancak değşken anlamsız olduğundan yüksek br rsk değer olmayacaktır. Çarşı pols merkez tarafından yakalanan breyn Çekrge pols merkeznde yakalanan breye göre ağır suçu şlemş olma olasılığı yaklaşık % 39 oranında daha fazladır. Olay Saat değşken çn referans kategors saatler arasında şlenen suçlar kategorsdr arası şlenen suçların ağır suç olma olasılığı arasında şlenen suçların ağır suç olma olasılığına göre % 78 daha düşüktür. Çünkü parametre değer negatf tahmn edlmekle beraber % düzeynde anlamlıdır. Benzer bçmde saatler arasında şlenen suçların ağır suç olma olasılığı aralığında şlenen suçların ağır suç olma olasılığına göre % 95 daha düşüktür. Bu kategor çn hesaplanan parametre 0.05 anlamlılık düzeynde anlamlı olduğundan rsk faktörü olarak dkkate alınablr saatler arasında şlenen suçların aralığında şlenen suçlara göre ağır suç olma olasılığı % 43 daha düşüktür. Cnsyet değşken çn hesaplanan değer 0.27 olmakla beraber % düzeynde anlamlıdır. Hesaplanan bahs oranı.3 parametre değernn anlamlı olması nedenyle cnsyetn öneml br rsk faktörü olduğunu göstermektedr. Buna göre erkek breyn ağır suç şleme olasılığı kadınların ağır suç şleme olasılığına göre % 3 daha fazladır. Yaş değşken çn hesaplanan parametre olarak bulunmuştur. Bu değer çn hesaplanan marjnal anlamlılık düzey (prob.) parametrenn % düzeynde anlamlı olduğunu göstermektedr. Hesaplanan bahs oranı se.005 0

11 parametre değer anlamlı olduğundan yaş değşken öneml br rsk faktörüdür. Suç şleyen breyn yaşı arttığında şledğ suçun ağır suç olma olasılığı yaklaşık % 00 kat artmaktadır. Doğum yer değşken suçu şleyen breyn doğduğu bölgey göstermektedr. Referans kategors ağır suçu şleyen breyn göçmen veya yurt dışı doğumlu olma olasılığını göstermektedr. Buna göre, Marmara bölges doğumlu breyn ağır suç şleme olasılığı göçmen (yurt dışı) doğumlu breyn ağır suç şleme olasılığına göre % 28 kat daha fazladır. Karadenz bölges doğumlu breyn ağır suç şleme olasılığı Marmara bölges doğumlu breye göre ağır suçu şlemş olma olasılığından yaklaşık % 272 oranında daha fazladır. İç Anadolu bölges doğumlu breyn ağır suç şleme olasılığı Karadenz bölges doğumlu breye göre ağır suçu şlemş olma olasılığından yaklaşık % 33 oranında daha fazladır. Güney Doğu Anadolu bölges doğumlu breyn ağır suç şleme olasılığı İç Anadolu bölges doğumlu breye göre ağır suçu şlemş olma olasılığından yaklaşık % 94 oranında daha fazladır. Ege bölges doğumlu breyn ağır suç şleme olasılığı Güney Doğu Anadolu bölges doğumlu breye göre ağır suçu şlemş olma olasılığından yaklaşık % 58 oranında daha fazladır. Doğu Anadolu bölges doğumlu breyn ağır suç şleme olasılığı Ege bölges doğumlu breye göre ağır suçu şlemş olma olasılığı yaklaşık % 77 oranında daha fazladır. Akdenz bölges doğumlu breyn ağır suç şleme olasılığı Doğu Anadolu bölges doğumlu breye göre ağır suçu şlemş olma olasılığından yaklaşık % 50 oranında daha düşüktür. Öğrenm değşken suçu şleyen breyn eğtm durumunu göstermektedr. Lojstk regresyon model tahmn edlrken referans kategors Ünverste mezunu kategors alınmıştır. Buna göre, meslek yüksek okulu mezunu breyn ağır suç şleme olasılığı ünverste mezununun ağır suç şleme olasılığından % 69 kat fazladır. Lse mezunu breyn ağır suç şleme olasılığı meslek yüksek okulu mezununun ağır suç şleme olasılığından % 227 kat fazladır. Ortaokul mezunu breyn ağır suç şleme olasılığı lse mezununun ağır suç şleme olasılığından % 25 kat fazladır. İlkokul mezunu breyn ağır suç şleme olasılığı ortaokul mezununun ağır suç şleme olasılığından % 35 kat fazladır. Okur yazar breyn ağır suç şleme olasılığı lkokul mezununun ağır suç şleme olasılığından % 06 kat fazladır. Ancak bu kategor çn parametre anlamlı değldr bu nedenle rsk faktörü değldr. Okur yazar olmayan breyn ağır suç şleme olasılığı Okur yazar breyn ağır suç şleme olasılığından % 28 kat fazladır. Meslek değşken 0 kategorden oluşmaktadır. Suçu şleyen breyn emekl olması referans kategory göstermektedr. Yönetc breyn ağır suç şleme olasılığı emekl breyn ağır suç şleme olasılığına göre % 27 kat daha azdır. Esnaf ve sanatkar breyn ağır suç şleme olasılığı yönetc breyn ağır suç şleme olasılığına göre % 70 kat daha azdır. Serbest mesleğe sahp breyn ağır suç şleme olasılığı esnaf ve sanatkar breyn ağır suç şleme olasılığına göre % 68 kat daha azdır. Kamu personel breyn ağır suç şleme olasılığı

12 serbest mesleğe sahp breyn ağır suç şleme olasılığına göre % 24 kat daha fazladır. Ancak bu kategor çn hesaplanmış parametre değer 0.0 çn anlamsız ken 0.05 düzey çn anlamlıdır. İşçnn ağır suç şleme olasılığı kamu personel breyn ağır suç şleme olasılığına göre % 88 kat daha azdır. Ancak parametre değer 0.05 düzeynde anlamsız olduğundan rsk faktörü değldr. Ev hanımının ağır suç şleme olasılığı şçnn ağır suç şleme olasılığına göre % 03 kat daha fazladır. Ancak parametre değer 0.05 düzeynde anlamsız olduğundan rsk faktörü değldr. Çftçnn ağır suç şleme olasılığı ev hanımının ağır suç şleme olasılığına göre % 86 kat daha düşüktür. Ancak parametre değer 0.05 düzeynde anlamsız olduğundan rsk faktörü değldr. Öğrencnn ağır suç şleme olasılığı çftçnn ağır suç şleme olasılığına göre % 45 kat daha düşüktür. İşsz breyn ağır suç şleme olasılığı öğrencnn ağır suç şleme olasılığına göre % 39 kat daha düşüktür. Ağır suçlar bürosu çn tahmn edlen lojstk regresyon model, modele dahl edlen açıklayıcı değşkenler açısından y sonuçlar vermektedr. Açıklayıcı değşkenlern tamamı çn hesaplanan bahs oranları sonucunda tüm değşkenlern öneml rsk faktörler oldukları (her ne kadar toplam altı kategor anlamsız olsa da genel olarak değşkenler anlamlıdır) sonucuna varılmıştır. Ancak modeln uyumunun ylğ testler yapılmalıdır. 4.Ağır Suçlar Bürosu İçn Uyum İylğ Testler Gözlenen ve beklenen frekans tablosu kullanılarak Hosmer-Lemeshow test le test sürecnde hesaplanan olasılık değerler grubu oluşturulmaktadır. Tablo 2: Hosmer-Lemeshow Test K-kare 2 ( c ) Serbestlk Dereces Olasılık Değer Hesaplanan Hosmer-Lemeshow statstğ değer 8 serbestlk derecesnde marjnal anlamlılık düzeynn (olasılık değernn) bulunması olasılıkların uyumlu olduğunu göstermektedr. Kurulan lojstk regresyon modelnn doğru sınıflandırma yapılıp yapılmadığını göstermek çn sınıflandırma tablosu kullanılmaktadır. 2

13 Tablo 3: Sınıflandırma Tablosu (Kesm Değer 0.50) Tahmn Edlen BURO 0 Doğru Sınıflandırma Yüzdes Gözlenen BURO Genel Yüzde 65.2 Sınıflandırma tablosuna göre, şlenen suçun ağır suç bürosuna at olmaması % 72.9 ken şlenen suçun ağır suç olması % 55 olarak bulunmuştur. Genel olarak kurulan modeln sınıflandırması % 65.2 dr. Bu sonuç modeln uyumunun ylğnn başarısını göstermektedr. Daha önce yapılan denemeler sonucunda tüm değşkenler modele dahl edldğnde ble % 67 ye çıktığı görülmüştür. Ancak bu durumda model kullanışsız br durum almaktadır. Lojstk model parametrelernn tahmnnde kullanılan açıklayıcı değşkenlern frekansı en yüksek çıkan kategorler değerler frekans ve hstogramlar yardımıyla elde edlerek ağır suçlar bürosu çn tahmn edlen modelde yerne yazılması, belrlenen referans değerler özellğne sahp breyn ağır suç şleme olasılığını verecektr. Lojstk regresyon model tahmnnde kullanılan açıklayıcı değşkenlern kategorler çn referans kategor sonuncu seçenek olduğundan; pols merkez Çarşı (2), olaysaat (0), cnsyet erkek (), yaş 26, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) değerler yerne yazılırsa aşağıdak değerlere ulaşılır. Z Z = (26) = 0.36 P = + e Z = + e 0.36 = =

14 Bu sonuca göre Marmara bölges doğumlu, 26 yaşında, erkek, okur yazar olmayan ve şsz breyn şledğ suç saatler arasında ve çarşı pols merkez tarafından tutuklanmış se bu brey yaklaşık % 47 olasılıkla ağır suç kategorsne gren br suç şlemştr. Sonuç ve Değerlendrme Dğer tüm bürolar çn lojstk regresyon model benzer bçmde tahmn edlerek uyumun ylğ testler yapılmıştır. Tahmn şlem sırasında bürolar arasında karşılaştırma yapablmek amacıyla her büro çn kurulan lojstk modelne aynı değşkenler dahl edlmştr. Kurulan lojstk model tahmn sonuçlarında gözlem sayısı yüksek olan bürolar değşkenlern anlamlılığı açısından y sonuçlar verrken, gözlem sayısı az olan bürolar çn tahmn sonuçları çok y sonuç vermemştr. Ancak tüm bürolar çn modeln doğru sınıflandırma oranı yüksek bulunmuştur. Doğru sınıflandırma tabloları ncelendğnde en düşük doğru sınıflandırma oranının ağır suçlar bürosunda (% 65) olduğu görülmüştür. Dğer bürolar çn elde edlen doğru sınıflandırma oranları se daha yüksek bulunmuştur. Emnyet müdürlüğünden alınan tüm ver kütüğünde yukarıda belrtlen değşkenler çn frekans ve hstogramlar çzldkten sonra her br değşken çn alt kategor değerlern frekansı en yüksek olanlar belrlenmştr. Buna göre, pols merkez Çarşı (2), olaysaat (0), cnsyet erkek (), yaş 26, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) olanlar en yüksek frekansa sahptr. Her lojstk regresyon model tahmn edldkten sonra bu değerler lojstk regresyon modelnde yerne yazılarak bu özellklere sahp breyn lgl büronun kategorsne gren suç şleme olasılığı belrlenmştr. Bulanan sonuca göre, yukarıdak özellkler taşıyan brey; ağır suçlar bürosunun lg alanına gren suç şleme olasılığı %47 dr. Dğer bürolara lşkn tahmn sonuçları Tablo 4 te sunulmaktadır. 4

15 Tablo 4: Tüm vertabanı çn Lojstk Regresyon Tahmn Sonuçları Büro Kesme Polme r OlaySaa t Cnsyet Yaş DoğYer Öğren m Meslek Ağır Suçlar Ahlak Bölücü Terör Büro Suçları Çocuk Genel Suçlar Hırsızlık Kaçakçılık Kayıp Şahıs Mal Suçlar Narkotk Org. Suçlar Yankesclk P Ahlak Suçları (Kumar, fuhuş, zna, tombala oynatmak gb suçlar) bürosunun kategorsne gren suç şleme olasılığı yaklaşık % 6 dır. Bölücü Terör Suçları (Propaganda türü eylemler, örgütlere yardım ve yataklık, yasak yayın bulundurma, rtca faalyetler gb suçlar) bürosunun kategorsne gren suç şleme olasılığı yaklaşık % 0 dır. Büro Suçları (Evrakta sahteclk, sahte para basma, görev kötüye kullanma gb suçlar) bürosunun kategorsne gren suç şleme olasılığı yaklaşık % 0 dır. Çocuk bürosu (kayıp şahıs olması, hırsızlık suçlarına karışma, laç le zehrlenme, yankesclk gb suçlar) suçları kategorsne gren suç şleme olasılığı yaklaşık % 0 dır. Genel Suçlar (Şahsa karşı tasnf dışı suçlar, mala karşı tasnf dışı suçlar, düşme sonucu yaralanma, emnyet sustmal gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı yaklaşık % 2 dır. Hırsızlık (Evden hırsızlık, şyernden hırsızlık, otodan hırsızlık gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı yaklaşık % 29 dır. Kaçakçılık (Gümrük kaçakçılığı, kültür ve tabat varlıkları kaçakçılığı gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı % 0 dır. Kayıp Şahıslar (Kayıp şahıs gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı % 0 dır. Mal Suçlar (Dolandırıcılık, sahteclk, markalar kanununa muhalefet, çek kanununa muhalefet, pyasaya sahte para basmak, naylon fatura gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı % 0 dır. Narkotk Suçlar (Teşekkül halnde uyuşturucu 5

16 kaçakçılığı, hnt kenevr ekclğ, esrar maddes bulundurma satma ve çme, uyuşturucu amaçlı hap kullanma gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı yaklaşık % 0 dır. Organze Suçlar (Cürüm şlemek amacıyla teşekkül oluşturmak, zorla çek senet mzalatmak, haraç kesmek gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı % 0 dır. Yankesclk ve Dolandırıcılık (Yankesclk ve dolandırıcılık suretyle hırsızlık, dolandırıcılık, kapkaç le hırsızlık gb suçlar) bürosu suçları kategorsne gren suç şleme olasılığı yaklaşık % 3 dür. Tüm bürolara at lojstk regresyon tahmn sonuçları karşılaştırıldığında yukarıdak özellklere sahp breyn şledğ suç yaklaşık % 47 olasılıkla ağır suçlar bürosunun lg alanına gren suç şleyecektr. Benzer br analz her br büro farklı alt örneklemlere ayrıldığında da yapılablr. BEMTAP ver tabanı sstemnden alınan verler alt örneklemlere ayrıldığında her br büro çn frekanslar çzldğnde farklı sonuçlara ulaşılmıştır. Buna göre sadece ağır suçlar bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çarşı (2), olaysaat (0), cnsyet erkek (), yaş 26, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek serbest meslek (8) değerler yerne yazılırsa Tablo 5 tek sonuçlara ulaşılacaktır. Tablo 5: Alt Örneklem çn Lojstk Regresyon Tahmn Sonuçları Büro Kesme Polmer OlaySaat Cnsyet Yaş DoğYer Öğren m Meslek Ağır Suçlar Ahlak Bölücü Terör Büro Suçları Çocuk Genel Suçlar Hırsızlık Kaçakçılık Kayıp Şahıs Mal Suçlar Narkotk Org. Suçlar Yankesclk P Bu sonuca göre Marmara bölges doğumlu, 26 yaşında, erkek, okur yazar olmayan ve serbest mesleğe sahp breyn şledğ suç saatler arasında se çarşı pols merkez tarafından tutuklanmış se bu brey % 60 olasılıkla ağır suç kategorsne gren br suç şlemştr. O halde her k modeln parametrelernn tahmn çn kullanılan kategorler meslek değşken dışında aynı olmasına rağmen aynı özellklere sahp şsz breyn ağır suç şleme 6

17 olasılığı serbest meslek sahb breyn ağır suç şleme olasılığından braz fazladır. Sadece ahlak suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Ş. Şerafettn Yılmaz (20), olaysaat (0), cnsyet erkek (), yaş 43, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek serbest meslek (8) değerlerne ulaşılır. Tablo 5 tek sonuçlara göre Marmara bölges doğumlu, 43 yaşında, erkek, okur yazar değl ve serbest mesleğe sahp breyn şledğ suç saatler arasında se Ş. Şerafettn Yılmaz pols merkez tarafından tutuklanmış se bu brey % 42 olasılıkla ahlak suçu kategorsne gren br suç şlemştr. Sadece bölücü terör suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çekrge (3), olaysaat (0), cnsyet erkek (), yaş 32, doğum yer Doğu Anadolu Bölges (3), öğrenm durumu Ünverste Mezunu (0), meslek şsz (2) değerlerne ulaşılır. Tablo 5 tek sonuçlara göre Doğu Anadolu Bölges doğumlu, 32 yaşında, erkek, Ünverste Mezunu ve şsz breyn şledğ suç saatler arasında se Çekrge pols merkez tarafından tutuklanmış se bu brey % 67 olasılıkla bölücü terör suçu kategorsne gren br suç şlemştr. Sadece büro suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Muammer Sencer (3), olaysaat (3), cnsyet erkek (), yaş 35, doğum yer Marmara bölges (8), öğrenm durumu lkokul mezunu (4), meslek şsz (2) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 35 yaşında, erkek, lkokul mezunu ve şsz (boşta gezer) breyn şledğ suç saatler arasında se Muammer Sencer pols merkez tarafından tutuklanmış se bu brey % olasılıkla büro suçu kategorsne gren br suç şlemştr. Sadece çocuk bürosu suçlarına at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çarşı (2), olaysaat (4), cnsyet erkek (), yaş 8, doğum yer Marmara bölges (8), öğrenm durumu lkokul mezunu (4), şsz (2) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 8 yaşında, erkek, lkokul mezunu ve şsz (boşta gezer) breyn şledğ suç saatler arasında se Çarşı pols merkez tarafından tutuklanmış se bu brey % 2 olasılıkla çocuk bürosu suçu kategorsne gren br suç şlemştr. Genel suçlar bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çarşı (2), olaysaat (4), cnsyet erkek (), yaş 34, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 34 yaşında, erkek, okur yazar olmayan ve şsz breyn şledğ suç saatler arasında se çarşı pols merkez tarafından tutuklanmış se bu brey % 9 olasılıkla genel suç kategorsne gren br suç şlemştr. 7

18 Hırsızlık suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çarşı (2), olaysaat (2), cnsyet erkek (), yaş 23, doğum yer Marmara bölges (8), öğrenm durumu okur yazar değl (2), meslek şsz (2) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 23 yaşında, erkek, okur yazar olmayan ve şsz breyn şledğ suç saatler arasında se çarşı pols merkez tarafından tutuklanmış se bu brey % 65 olasılıkla hırsızlık suçu kategorsne gren br suç şlemştr. Kaçakçılık suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çekrge (3), olaysaat (2), cnsyet erkek (), yaş 38, doğum yer Doğu Anadolu bölges (3), öğrenm durumu okur yazar değl (2), meslek serbest meslek (8) değerlerne ulaşılır. Bu sonuca göre Doğu Anadolu bölges doğumlu, 38 yaşında, erkek, okur yazar olmayan ve serbest mesleğe sahp breyn şledğ suç saatler arasında se çekrge pols merkez tarafından tutuklanmış se bu brey yaklaşık % 4 olasılıkla kaçakçılık suçu kategorsne gren br suç şlemştr. Kayıp şahıslar bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Işıklar (8), olaysaat (4), cnsyet kadın (0), yaş 8, doğum yer Doğu Anadolu bölges (3), öğrenm durumu lkokul mezunu (4), meslek ev hanımı (5) değerlerne ulaşılır. Bu sonuca göre Doğu Anadolu bölges doğumlu, 8 yaşında, kadın, lkokul mezunu ve ev hanımı ve saatler arasında olay olmuş ışıklar pols merkezne hbar edlmş se bu brey yaklaşık % 62 olasılıkla kayıp şahıslar kategorsne gren br suç şlemştr. Mal suçlar bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Muammer Sencer (3), olay saat (2), cnsyet erkek (), yaş 39, doğum yer Marmara Bölges (8), öğrenm durumu lkokul mezunu (4), meslek Serbest meslek (8) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 39 yaşında, erkek, lkokul mezunu ve serbest mesleğe sahp ve saatler arasında olay olmuş Muammer Sencer pols merkezne hbar edlmş se bu brey yaklaşık % olasılıkla mal suç kategorsne gren br suç şlemştr. Narkotk suçları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Muammer Sencer (3), olay saat (2), cnsyet erkek (), yaş 28, doğum yer Doğu Anadolu bölges (2), öğrenm durumu okur yazar (2), meslek serbest meslek (8) değerlerne ulaşılır. Bu sonuca göre Doğu Anadolu bölges doğumlu, 28 yaşında, erkek, okur yazar ve serbest mesleğe sahp breyn şledğ suç saatler arasında se Muammer Sencer pols merkez tarafından tutuklanmış se bu brey % 2 olasılıkla narkotk suçu kategorsne gren br suç şlemştr. Organze suçlar bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez 0 (), olay saat (4), cnsyet erkek (), yaş 36, doğum yer Marmara bölges (8), öğrenm durumu okur yazar (3), 8

19 meslek serbest meslek (8) değerlerne ulaşılır. Bu sonuca göre Marmara bölges doğumlu, 36 yaşında, erkek, okur yazar ve serbest mesleğe sahp breyn şledğ suç saatler arasında se bu brey % 0.3 olasılıkla organze suç kategorsne gren br suç şlemştr. Yankesclk veya dolandırıcılık suçluları bürosuna at ver grubu çn frekanslar ve hstogramlar çzldğnde, pols merkez Çarşı (2), olaysaat (4), cnsyet erkek (), yaş 28, doğum yer Akdenz bölges (2), öğrenm durumu okur yazar değl (2), meslek şsz (2) değerlerne ulaşılır. Bu sonuca göre Akdenz bölges doğumlu, 28 yaşında, erkek, okur yazar olmayan ve şsz breyn şledğ suç saatler arasında se çarşı pols merkez tarafından tutuklanmış se bu brey % 92 olasılıkla yankesclk veya dolandırıcılık suçu kategorsne gren br suç şlemştr. Kaynakça Agrest, Alan, (2002), Categorcal Data Analyss, New Jersey: John Wley and Sons Inc. Akın, Fehamet, (2002a), Kategork Data Analz, Bursa: Ekn Ktabev (2002b), Ekonometr, Bursa: Ekn Ktabev. Arabacı, Özer, (2002), Lojstk Regresyon Analz ve Br Uygulama Denemes, Uludağ Ünverstes Basılmamış Yüksek Lsans Tez, Sosyal Blmler Ensttüsü, Bursa. BURSA Emnyet Müdürlüğü, (2002), Bursa. Gujarat, Damodar N.,(999), Temel Ekonometr, Çev. Ümt Şenesen, Gülay. G. Şenesen, İstanbul:Lteratür Yayıncılık. Gürş, Selahattn ve Çağlayan, Ebru, (2000), Ekonometr, İstanbul: DER Yayınları. Hosmer, Davd W. and Lemeshow, Stanley, (2000), Appled Logstc Regresson, New York: John Wley and Sons. İşyar, Yüksel, (994), Ekonometrk Modeller, Bursa: Uludağ Ünverstes Güçlendrme Vakfı Yayını No:92. Johnston, Jack and Dnardo, John, (997), Econometrc Methods, New York: McGraw-Hll Companes. Özdamar, Kazım, (999), Paket Programlarla İstatstksel Ver Analz-, Eskşehr: Kaan Ktabev. Özmen, Şule, (996), Doğrusal Olasılık, Logt, Probt Modeller ve Br Uygulama, İstanbul: Marmara Ünverstes Yayınları. 9

20 Pndyck, Robert S. and Rubnfeld, Danel L., (98), Ecocometrc Models and Economc Forecasts, New York: MacGraw-Hll Companes. Power, Danel A. and Xe, Yu, (2000), Statstcal Methods for Cateorcal Data Analyss, San Dego: Academc Press. 20

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES Konut Sahplğnn Belrleycler: Hanehalkı Resler Üzerne Br Uygulama Halm TATLI 1 Özet İnsanların barınma htyacını sağlayan konut, temel htyaçlar arasında yer almaktadır. Konut sahb olmayan ve krada oturan

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME Ġstanbul Ünverstes Ġktsat Fakültes Malye AraĢtırma Merkez Konferansları 46. Ser / Yıl 2004 Prof. Dr. Salh Turhan'a Armağan TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*)

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*) Gazosmanpaşa Ünverstes Zraat Fakültes Dergs Journal of Agrcultural Faculty of Gazosmanpasa Unversty http://zraatderg.gop.edu.tr/ Araştırma Makales/Research Artcle JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Üniversite Öğrencilerinin Kredi Kartı Sahipliğini Belirleyen Faktörler

Üniversite Öğrencilerinin Kredi Kartı Sahipliğini Belirleyen Faktörler Ünverste Öğrenclernn Kred Kartı Sahplğn Belrleyen Faktörler H. Dlara KESKİN Yrd. Doç. Dr., Karadenz Teknk Ünverstes, İİBF İşletme Bölümü dlarakeskn@yahoo.com Emrah KOPARAN Öğr. Gör., Amasya Ünverstes Merzfon

Detaylı

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER Akdenz İ.İ.B.F. Dergs (21) 2011, 17-45 ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER PREVALENCE AND SOCIOECONOMICS DETERMINANTS OF ADULTS OBESITY IN ANTALYA Arş. Gör. F.

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Sıfır Ağırlıklı Sayma ile Elde Edilen Veriler İçin Çok Seviyeli ZIP Regresyon * Multilevel ZIP Regression for Zero-Inflated Count Data

Sıfır Ağırlıklı Sayma ile Elde Edilen Veriler İçin Çok Seviyeli ZIP Regresyon * Multilevel ZIP Regression for Zero-Inflated Count Data Yüzüncü Yıl Ünverstes Fen Blmler Ensttüsü Dergs/ Journal of The Insttute of Natural & Appled Scences 18 (1-):01-08, 013 Araştırma Makales/Research Artcle Sıfır Ağırlıklı Sayma le Elde Edlen Verler İçn

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Akıllı Telefon Seçiminin Belirleyicileri: Üniversite Öğrencileri Üzerine Bir Uygulama

Akıllı Telefon Seçiminin Belirleyicileri: Üniversite Öğrencileri Üzerine Bir Uygulama The PDF verson of an unedted manuscrpt has been peer revewed and accepted for publcaton. Based upon the publcaton rules of the journal, the manuscrpt has been formatted, but not fnalzed yet. Before fnal

Detaylı

ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR

ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR RüĢtü YAYAR * Süleyman Serdar KARACA ** Ahmet TURKUT ***

Detaylı

Türkiye den Yurt Dışına Beyin Göçü: Ampirik Bir Uygulama

Türkiye den Yurt Dışına Beyin Göçü: Ampirik Bir Uygulama ERC Workng Paper n Economc 04/02 January 2004 Türkye den Yurt Dışına Beyn Göçü: Amprk Br Uygulama Aysıt Tansel İktsat Bölümü Orta Doğu Teknk Ünverstes atansel@metu.edu.tr Nl Demet Güngör İktsat Bölümü

Detaylı

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ Yrd. Doç. Dr. Murat ATAN - Araş. Gör. Gaye KARPAT ÇATALBAŞ 2 ÖZET Bu çalışma, Türk bankacılık sstem çnde faalyet gösteren tcar bankaların

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

Sansürlenmiş ve Kesikli Regresyon Modelleri

Sansürlenmiş ve Kesikli Regresyon Modelleri TOBİT MODEL 1 Sansürlenmş ve Keskl Regresyon Modeller Sınırlı bağımlı değşkenler: sansürlenmş (censored) ve keskl (truncated) regresyon modeller şeklnde k gruba ayrılır. 2 Sansürlenmş ve Keskl Regresyon

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

Bitkisel Ürün Sigortası Yaptırma İsteğinin Belirlenmesi: Tokat İli Örneği

Bitkisel Ürün Sigortası Yaptırma İsteğinin Belirlenmesi: Tokat İli Örneği Atatürk Ünv. Zraat Fak. Derg., 42 (2): 153-157, 2011 J. of Agrcultural Faculty of Atatürk Unv., 42 (2): 153-157, 2011 ISSN : 1300-9036 Araştırma Makales/Research Artcle Btksel Ürün Sgortası Yaptırma İsteğnn

Detaylı

LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS

LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 8 Sayı: 16 Güz 2009/2 s. 47-59 LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS KESTİRİMİNİN İNCELENMESİ Cengz AKTAŞ *, Orkun ERKUŞ ** Gelş: 12.10.2009 Kabul:

Detaylı

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195 C.Ü. İktsad ve İdar Blmler Dergs, Clt 13, Sayı 1, 2012 195 TÜRKİYE DE TİCARİ BANKACILIK SEKTÖRÜNDE REKABET DÜZEYİNİN BELİRLENMESİ (2002-2009) Abdulvahap ÖZCAN * Özet Türkye nn yaşadığı 2000 ve 2001 krzler

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225 Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 25, Sayı:, 20 225 FİNANSAL ANALİZDE KULLANILAN ORANLAR VE HİSSE SENEDİ GETİRİLERİ ARASINDAKİ İLİŞKİ: EKONOMİK KRİZ DÖNEMLERİ İÇİN İMKB İMALAT SANAYİ

Detaylı

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz *

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz * Busness and Economcs Research Journal Volume. umber. 0 pp. 65-84 ISS: 309-448 www.berjournal.com Hsse Sened Fyatları ve Fyat/Kazanç Oranı Đlşks: Panel Verlerle Sektörel Br Analz * Mehmet argelecekenler

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 4 Sayı: Ocak 04 ss. 9-9 BIST da Demr, Çelk Metal Ana Sanay Sektöründe Faalyet Gösteren İşletmelern Fnansal Performans Analz: VZA Süper Etknlk ve TOPSIS Uygulaması

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

TÜRKİYE DE EĞİTİM ÇAĞINDAKİ KIZ VE ERKEKLERİN EĞİTİMLERİNİN SÜRDÜRÜLEBİLİRLİĞİ ÖZET

TÜRKİYE DE EĞİTİM ÇAĞINDAKİ KIZ VE ERKEKLERİN EĞİTİMLERİNİN SÜRDÜRÜLEBİLİRLİĞİ ÖZET TÜRKİYE DE EĞİTİM ÇAĞINDAKİ KIZ VE ERKEKLERİN EĞİTİMLERİNİN SÜRDÜRÜLEBİLİRLİĞİ Hamd EMEÇ M.Vedat PAZARLIOĞLU 2 Özlem KİREN 3 Şenay ÜÇDOĞRUK 4 ÖZET Türkye de eğtm le lgl sorunların çözülmesnde çeştl araştırmalar

Detaylı

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama Anadolu Ünverses Sosyal Blmler Dergs Anadolu Unversy Journal of Socal Scences Kar Payı Polkası ve Yaşam Döngüsü Teors: İMKB İmalat Sektöründe Amprk Br Uygulama Dvdend Payout Polcy and Lfe Cycle Theory:

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

Türkiye deki Đşsizlik Oranının Bulanık Doğrusal Regresyon Analiziyle Tahmini

Türkiye deki Đşsizlik Oranının Bulanık Doğrusal Regresyon Analiziyle Tahmini İstatstkçler Dergs: İstatstk & Aktüerya Journal of Statstcans: Statstcs and Actuaral Scences IDIA 8, 5, -6 Gelş/Receved:6.4.5, Kabul/Accepted: 3.6.5 www.statstkcler.org Türkye dek Đşszlk Oranının Bulanık

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna Anadolu Ünverstes Sosyal Blmler Dergs Anadolu Unversty Journal of Socal Scences Sermaye Yapısını Etkleyen Faktörler ve Fnansal Oranlar le Hsse Getrs Arasındak İlşknn ANFIS Yöntem le İncelenmes: İMKB de

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi Fnansal Rskten Korunma Muhasebesnde Etknlğn Ölçülmes Dr. Fahreddn OKUDAN * Fath Ünverstes, İİBF. Özet Bu makalenn amacı, etknlk test yöntemlernn ncelenmesdr. TMS 39, rskten korunma muhasebes uygulanablmes

Detaylı

Lojistik Regresyonlarda Değişken Seçimi

Lojistik Regresyonlarda Değişken Seçimi Çukurova Ünverstes Zraat Fakültes Dergs, 7 (2):05-4 Lostk Regresyonlarda Değşken Seçm Hasan ÖNDER () Zeynel CEBECİ (2) Özet Bu çalışmada, lostk regresyonlarda değşken seçm yöntemlernden ler doğru seçm,

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE ZAYIFLIK MODELLERİ FRAILTY MODELS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE ZAYIFLIK MODELLERİ FRAILTY MODELS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE ZAYIFLIK MODELLERİ FRAILTY MODELS IN SURVIVAL ANALYSIS DİREN YEĞEN DOÇ. DR. NİHAL ATA TUTKUN Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm ve Sınav Yönetmelğnn İstatstk Anablm

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Saı/No: 1 : 97-101 (006) ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ÖĞRENCİLERİN YAZ OKULU HAKKINDAKİ

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

i. ARASTiRMANiN AMACi GIRIs Yrd.Doç.Dr. Gönen DÜNDAR Yönetim, Yil 12, Sayi 39, Mayis - 2001,5.5-16

i. ARASTiRMANiN AMACi GIRIs Yrd.Doç.Dr. Gönen DÜNDAR Yönetim, Yil 12, Sayi 39, Mayis - 2001,5.5-16 Yönetm, Yl 12, Say 39, Mays - 2001,5.5-16 ISLETME EGITIMI ALAN ÖGRENCILERIN FINANS ALANINDA KARIYER YAPMA EGILIMLERINI ETKILEYEN FAKTÖRLERIN BELIRLENMESINE.... YONELIK BIR ARASTIRMA: tü. ISLETME FAKÜLTESI

Detaylı

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA l!l KEÇÖREN BELEDİYE BAŞKANLIGI KEÇöREN BELeDYES SA YI : M.06.6.KEç.O-31/2009KONU: Yetk Devr bo f.!200fd 6.1. BAŞKANLIK MAKAMINA Blndğ üzere O 1.01.2006 tarhnden tbaren tüm yerel yönetmlerde 31.12.2005

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri Süleyman Demrel Ünverstes, Fen Blmler Ensttüsü, 9-3,(5)- Mut Orman İşletmesnde Karaçam, Sedr ve Kızılçam Ağaç Türler İçn Dp Çap Göğüs Çapı İlşkler R.ÖZÇELİK 1 Süleyman Demrel Ünverstes Orman Fakültes Orman

Detaylı

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI 1 TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI Metehan TOLON Nuray GÜNERİ TOSUNOĞLU Özet Tüketc tatmn araştırmaları özelde pazarlama yönetclernn, genelde

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

SESSION 1B: Büyüme ve Gelişme 279

SESSION 1B: Büyüme ve Gelişme 279 SESSION 1B: Büyüme ve Gelşme 279 Türkye de Hanehalkı Tüketm Harcamaları: Pseudo Panel Ver le Talep Sstemnn Tahmn The Consumpton Expendture of Households n Turkey: Demand System Estmaton wth Pseudo Panel

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Pamukta Girdi Talebi: Menemen Örneği

Pamukta Girdi Talebi: Menemen Örneği Ege Ünv. Zraat Fak. Derg., 2002, 39 (3): 88-95 ISSN 1018-8851 Pamukta Grd Taleb: Menemen Örneğ Bülent MİRAN 1 Canan ABAY 2 Chat Günden 3 Summary Demand for Inputs n Cotton Producton: The Case of Menemen

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON Gökalp Kadr YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 011 Her hakkı saklıdır ÖZET Yüksek Lsans Tez BULANIK HEDONİK

Detaylı

COĞRAFYA DERSİ ÖĞRETİM PROGRAMINDA DOĞAL AFETLER 1 (The Natural Disasters in the Geography Teaching Curriculum)

COĞRAFYA DERSİ ÖĞRETİM PROGRAMINDA DOĞAL AFETLER 1 (The Natural Disasters in the Geography Teaching Curriculum) MARMARA COĞRAFYA DERGİSİ SAYI: 28, TEMMUZ - 2013, S. 276-303 İSTANBUL ISSN:1303-2429 E-ISSN 2147-7825 copyrght 2013 http://www.marmaracografya.com COĞRAFYA DERSİ ÖĞRETİM PROGRAMINDA DOĞAL AFETLER 1 (The

Detaylı

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ Yrd. Doç. Dr. Seda ŞENGÜL Çukurova Ünverstes İktsad Ve İdar Blmler Fakültes Ekonometr Bölümü Mart 2004 ANKARA YAYIN NO: 119 ISBN: 975-407-151-9

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

ÖZEL DERSHANELERIN ÜNlvERSITEYE GIRIşTE ÖGRENCI BAŞARısıNA ETKILERI

ÖZEL DERSHANELERIN ÜNlvERSITEYE GIRIşTE ÖGRENCI BAŞARısıNA ETKILERI Hacettepe Vnverstes Eğtm Fakültes Dergs 21 : 89-96 [2001J ÖZEL DERSHANELERIN ÜNlvERSITEYE GIRIşTE ÖGRENCI BAŞARısıNA ETKILERI EFFECT OF PRIVATE EDUCATIONAL INSTITUTIONS ON ACHIEVEMENT RELATED TO UNIVERSITY

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS EN KÜÇÜK KARELER, RİDGE REGRESYON VE ROBUST REGRESYON YÖNTEMLERİNDE ANALİZ SONUÇLARINA AYKIRI DEĞERLERİN ETKİLERİNİN BELİRLENMESİ ZOOTEKNİ ANABİLİM

Detaylı

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri) k ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA k ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr BAĞIMSIZ İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR HEDEFLER İÇİNDEKİLER TEMEL KAVRAMLAR İstatstğn Tanımı Anakütle ve Örnek Kavramları Tam Sayım ve Örnekleme Anakütle ve Örnek Hacm Parametre ve İstatstk Kavramları İSTATİSTİĞE GİRİŞ Doç.Dr.Suph Özçomak Bu

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131.

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131. Süleyman Demrel Ünverstes İktsad ve İdar Blmler Fakültes Y.008, C.3, S. s.-3. BİREYSEL EMEKLİLİK FONLARINDA FON YAPILARININ KARMA DENEMELER YÖNTEMİ İLE İNCELENMESİ EXAMINING THE STRUCTURE OF FUNDS BY MIXTURE

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ Yednc lusal Kmya Mühendslğ Kngres, 5-8 ylül 26, Anadlu Ünverstes, skşehr 6 OZ DRJAN ÜRİM SİSİNDKİ PÜSKÜRMLİ KRMA ÜNİSİND KSRJİ ANALİZİ GÜLSÜN BKAŞ*, FİRZ BALKAN ge Ünverstes Kmya Mühendslğ Bölümü, 351,

Detaylı

Kayseri deki Özel Hastanelerde Maliyet Etkinliğinin Veri Zarflama Metoduyla Ölçülmesi

Kayseri deki Özel Hastanelerde Maliyet Etkinliğinin Veri Zarflama Metoduyla Ölçülmesi Uluslararası Alanya İşletme Fakültes Dergs Internatonal Journal of Alanya Faulty of Busness Yıl:2014, C:6, S:2, s. 45-54 Year:2014, Vol:6, No:2, s. 45-54 Kayser dek Özel Hastanelerde Malyet Etknlğnn Ver

Detaylı

LOJİSTİK REGRESYON VE CART ANALİZİ TEKNİKLERİYLE SOSYAL GÜVENLİK KURUMU İLAÇ PROVİZYON SİSTEMİ VERİLERİ ÜZERİNDE BİR UYGULAMA. Zeynep Burcu KIRAN

LOJİSTİK REGRESYON VE CART ANALİZİ TEKNİKLERİYLE SOSYAL GÜVENLİK KURUMU İLAÇ PROVİZYON SİSTEMİ VERİLERİ ÜZERİNDE BİR UYGULAMA. Zeynep Burcu KIRAN LOJİSTİK REGRESYON VE CART ANALİZİ TEKNİKLERİYLE SOSYAL GÜVENLİK KURUMU İLAÇ PROVİZYON SİSTEMİ VERİLERİ ÜZERİNDE BİR UYGULAMA Zeynep Burcu KIRAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Anadolu Tarım Blm. Derg., 2009,24(2):98-102 Anadolu J. Agrc. Sc., 2009,24(2):98-102 Araştırma Research FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Soner ÇA KAYA* Aydın

Detaylı

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü BÖLÜM: Temel Eğtm T.C SINCAN KAYMAKAMllGI Ilçe Mll Eğtm Müdürlüğü SAYı : 34203882-821 ı 1-1 C _:J 1...110/2013 KONU : Kompozsyon Yarışması TÜM OKUL MÜDÜRLÜKLERNE SNCAN Ilg :Vallk Makamının 25.10.2013 tarh

Detaylı