dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır."

Transkript

1 BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A) = m n dr. Br başka deyşle br olayın olasılığı, uygun sonuçların sayısının örnek uzaydak tüm sonuçların sayısına oranıdır. Daha önceden bahsedldğ gb, br deneyn bütün sonuçları o deneyn örnek uzayını meydana getrr ve örnek uzay S harf le gösterlr. Örnek uzayın altkümeler se, olay olarak tanımlanır. Br zarın atılışında örnek uzay: S={,, 3, 4, 5, } şeklndedr. Çft sayı gelmes br A olayı se A={, 4, } dır. Br deneyden elde edlen ve tek br sonuç veren olaylara bast olay denr. Maden para le tek atışta tura gelmes bast olaya örnek olarak verleblr. İk veya daha çok olayın brlkte veya brbr ardına gerçekleşmes le brleşk olay meydana gelr. Br para le k atış yapıldığında örnek uzay S { YY, YT, TY, TT} olur ve bu br bleşk olaydır. Aynı şeklde zarla yapılan atışta

2 S={ (,), (,),, (,)} olur. S kümes.=3 elemanlıdır ve bu da bleşk olaydır. Örnek 3... Br zarın br kere atılışı deneynde örnek uzay S = {,, 3, 4, 5, } ve her br örnek noktanın gerçekleşmes olasılığı dır. veya 5 n üste gelmes olayını A le gösterrsek; A = {,5} dr ve P(A) = 3 olur. Bu olasılık P( nn gelmes)+p(5 n gelmes)= 3 olarak da hesaplanır. A olayının ortaya çıkmama olasılığını (, 3, 4 veya nın üste gelmes) A' le gösterrsek; P(A' ) = -P(A)= veya 3 3 P( n gelmes)+ P(3 ün gelmes)+p(4 ün gelmes)+p( nın gelmes)= 3 olur. Örnek 3...,, 3, 4, 5 rakamlarının kullanılmasıyla rakamları tekrarsız olarak yazılan 3 basamaklı sayılardan br tanes seçlyor. Bu sayının Çft sayı olması olasılığı: n katı olması olasılığı: Tanım 3... Br deney n defa tekrarlandığında br A olayının görülme sayısı olayının relatf frekansı n A se, A

3 f A na n dır. Bu tanım olasılığın frekans tanımı olarak blnr. Örnek Hlel br paranın 000 kez atılmasında 570 kez tura elde edlyor. Buna göre bu paranın kez atılmasında tura gelmes olasılığı nedr? 570 f A 0, Tanım (Olasılık Aksyomları) Br E deney çn örnek uzay S olsun. S dek br A olayının P(A) olasılığı le lgl aşağıdak aksyomlar vardır. () PA ( ) 0 () PS ( ) A, A,..., A,... sonlu ya da sonsuz sayıda kşer kşer ayrık olaylar se (3) n P( A A... An...) P( A) dr. Özellkler () mkansız olay se, P( ) 0 dır. () A olayı A olayını tümleyen se P( A) P( A) dır. () A ve B herhang k olay se, P( A B) P( A) P( B) P( A B) Örnek kartlık br desteden rasgele br kart çeklyor. Bu kartın kl veya maça olması olasılığı nedr? İ={Seçlen kartın kl olması} M={Seçlen kartın maça olması} 3

4 İ M={Seçlen kartın kl veya maça olması} 4 3 P( İ M ) P( İ) P( M ) P( İ M ) Koşullu Olasılık Tanım 3... A ve B, S örnek uzayında k olay olsun. B verlmşken A olayının gerçekleşmes olasılığına koşullu olasılık denr ve P( A / B ) le gösterlr. P( A B) P( A / B), P( B) 0 PB ( ) olarak tanımlanır. Ayrıca P( A B) P( B / A), P( A) 0 PA ( ) dır. Buradan P( AB) P( A). P( B / A) veya P( AB) P( B). P( A/ B) yazılablr. Bu son k fade koşullu olasılık çn çarpma kurallarıdır. Örnek 3... Br okuldak.sınıf öğrenclernn %5 matematk dersnde, %5 fzk dersnde ve %0 u hem matematk hem fzk dersnde başarı göstermştr. Bu sınıftan 4

5 rastgele br öğrenc seçlyor. Seçlen öğrenc matematk dersnden başarılı se, fzk dersnden de başarılı olma olasılığı nedr? P(M) = 0,5 P(F) = 0,5 P(M F)=0,0 olarak verlyor. P( M F) 0,0 P( M / F) 0,40 PF ( ) 0,5 Tanım 3... (Örnek Uzayın Parçalanışı) Br S örnek uzayında aşağıdak koşulların sağlanması durumunda örnek uzayının br parçalanışı denr. B,..., Bk olaylarına S (a) B Bj, j ve, j k (b) PB ( ) 0, ve k (c) k B S Yan br E deney yapıldığında, B olaylarından br ve yalnız br gerçekleşecektr. Teorem 3... (Br Parçalanış Altında Olasılıklar) B, B,..., B k, br S örnek uzayının br parçalanışı se, P B P B P B k ( ) ( )... ( ) dr. Teorem 3... (Toplam Olasılık Formülü) B, B,..., B k lar, S örnek uzayının br parçalanışı olsun. A, S de br olay se, 5

6 k P( A) P( B) P( A / B) dr. Örnek tanes kusurlu 00 parçanın bulunduğu depodan adesz k parça alınsın. İknc seçlen parçanın kusurlu olması olasılığı nedr? A {. parça kusurludur} A {. parça kusursuzdur} B {. parça kusurludur} P B P A P B A P A P B A ' ' ( ) ( ) ( / ) ( ) ( / ) Bayes Teorem Teorem B, B,..., B k, br S örnek uzayının br parçalanışı olsun. A, PA ( ) 0 olacak şeklde S de br olay se,,..., k çn P( B / A) k P( A / B ) P( B ) j P( A / B ) P( B ) j j dr. Örnek Br fabrkada A ve B gb k tpte ambalajlanan şekerleme kutuları olsun. Üretmn %0 ı, A tpnde ve kalanı B tpndedr. A nın %70 tatlı, kalanı ekş ve B nn se %30 u tatlı, kalanı ekş olsun. Üretm sonunda br şekerleme seçlyor ve tatlı olduğu görülüyor. Bunun A tpndek ambalajda olması olasılığı nedr? B tpndek ambalajda olması olasılığı nedr?

7 P( AT) P( A) P( T / A) 0,0.0,70 7 P( A / T) P( T) P( A) P( T / A) P( B) P( T / B) 0,0.0,70 0,40.0,30 9 ve P( B / T) Bağımsız Olaylar Aynı anda oluşmayan A ve B gb k olay ele alınsın. Böyle olaylara ayrık olaylar denr. A ve B ayrık olaylar se, B nn oluşması A nın oluşmasını mkansız yapar. Yan P( A B) P( A B) P( A / B) 0 dır. Ayrıca A B olduğunda P( B / A) dr. B PB ( ) PA ( ) olayının oluşması bazı durumlarda A olayının oluşması le lgl blg verrken, bazı durumlarda blg vermemektedr. Eğer P( A/ B) P( A) se, A ve B olayları bağımsızdır denr. Yan k olaydan brnn elde edlmes dğern etklemyorsa, böyle olaylara bağımsız olaylar denr. Koşullu olasılık tanımından P( AB) P( B) P( A/ B) P( AB) P( A) P( B) elde edlr. Tanım P( AB) P( A) P( B) olmasıdır. A ve B olaylarının bağımsız olması çn gerek ve yeter koşul Teorem A ve B, PA ( ) 0 ve PB ( ) 0 olmak üzere bağımsız olaylarsa, A ve B kümelernn en az br ortak noktası vardır. Yan A B dr. Örnek Br zar k kez atılsın.. atışta çft sayı gelmes ve knc atışta 5 veya gelmes olasılığı nedr? Bu olaylar (her k atış) lşkszdr. Yan brnn oluşması dğern etklemez. 7

8 P( A B), 3 3 PA ( ) ve PB ( ) 3 olduğundan, P( A B) P( A / B) P( A) ve PB ( ) 3 P( B A) P( B / A) P( B) PA ( ) 3 olur. Teorem A ve B, br S örnek uzayında k bağımsız olay olsun. () A ve B; () A ve B ; () A ve B (v) A ve S (v) A ve olayları da bağımsızdır. Örnek %0 u kusurlu 00 adet parçanın bulunduğu depodan rasgele k parça çeklyor. Her ksnn de kusursuz olması olasılığı nedr? İadel durumda olaylar bağımsızdır ve olasılık 0,9.0,9 0,8 dr. İadesz durumda olaylar bağımlıdır ve olasılık 89 0,9. 99 dr. Tanım A, B, C gb üç olayın tam bağımsız olmasının gerek ve yeter koşulu () P( AB) P( A) P( B) () P( AC) P( A) P( C) () P( B C) P( B) P( C) 8

9 (v) P( A B C) P( A) P( B) P( C) koşullarının sağlanmasıdır. Örnek E ve F k ayrık olay, PE ( ) 0 ve PF ( ) 0 se E ve F nn bağımlı k olay olduğunu gösternz. E ve F ayrık olduğundan, P( E F) 0 dır. PE ( ) 0 ve PF ( ) 0 olduğundan P( E F) P( E) P( F) olur. Dolayısıyla E ve F bağımsız değldr. Uyarı. A, A,... A n olayları çn P( A A... An) P( A ) P( A )... P( An) olması daha az sayıdak olay çn benzer koşulun sağlanmasını gerektrmez. BÖLÜM 4 RASGELE DEĞİŞKENLER VE DAĞILIMLARI 4.. Rasgele Değşken Kavramı Tanım 4... Değer br deney sonucuyla belrlenen br değşkene veya br örnek uzay üzernde tanımlanmış gerçek değerl br fonksyona br rasgele değşken denr. Tanım 4... X br rasgele değşken olmak üzere X n alableceğ değerlern kümes sonlu ya da sayılablr sonsuz br küme se, X e br keskl rasgele değşken denr. X rasgele değşkennn alableceğ değerlern kümes br aralık ya da aralıkların brleşm şeklnde se, X e br sürekl rasgele değşken denr. Örneğn, keskl rasgele değşken olarak br aledek çocuk sayısı, br zarın gelnceye kadar atılması denemelernn sayısı, ve sürekl rasgele değşken olarak da, br bleşğn çndek alkol yüzdes, sınıftak öğrenclern boylarının sayısı örnekler verleblr. 9

10 4.. Keskl Rasgele Değşkenler Tanım 4... X keskl rasgele değşken ve bu rasgele değşkenn değer kümes R { X, X,...} olmak üzere P( X x ) f ( x ),,,... olsun. Bu durumda aşağıdak X koşulları sağlayan f : RX [0,] fonksyonuna X keskl rasgele değşkennn olasılık fonksyonu denr. () f( x ) 0,,,... () f( x ) X n olasılık fonksyonu verleblr. X x x x... f ( x) P( X x) f (x ) f (x )... tablosuyla Burada X keskl rasgele değşkennn değer kümes sonlu olduğunda n f( x ) yazılır. Örnek 4... İk paranın brlkte atılması deneynde X rasgele değşken turaların sayısı olsun. Bu deney çn S { YY, YT, TY, TT} ve R {0,,} X dr. Dolayısıyla olasılık fonksyonunun tablosu X x f ( x) P( X x) şeklnde olacaktır. 0

11 4.3. Sürekl Rasgele Değşkenler Tanım X sürekl rasgele değşken olsun ve genellğ bozmaksızın bu X rasgele değşkennn (, ) aralığında değerler aldığını varsayalım. Aşağıdak koşulları sağlayan f( x ) fonksyonuna X rasgele değşkennn olasılık yoğunluk fonksyonu denr. () f( x) 0, x () f ( x) dx Eğer x [ a, b] se, P( a x b) f ( x) dx dr. Öte yandan b a P( a x b) P( a x b) P( a x b) P( a x b) olduğuna dkkat etmek gerekr.ayrıca sürekl X rasgele değşkennn bell br X değern alması olasılığı sıfırdır. Örnek X rasgele değşken sürekl olsun. X n olasılık yoğunluk fonksyonu f x x x(0,) 0 x (0,) le verlyor. () x (0,) çn f( x) 0 dır. () () xdx x dr. 0 P( x ) xdx 4 0

12 (v) xdx 5 P( x ) P( x x ) 3 3 P( x ) xdx 3 3 dr Kümülatf (Brkml) Dağılım Fonksyonu Tanım X sürekl veya keskl rasgele değşken olsun. X n kümülatf (brkml) dağılım fonksyonu (ya da dağılım fonksyonu) Fx ( ) le gösterlr. Fx, ( ) X n x e eşt ya da daha küçük olması olasılığıdır. F( X ) P( X x) dr. () X keskl rasgele değşken se, F( x) P( X x) f ( x ) dr. x () X sürekl rasgele değşken se, F( x) P( X x) f ( t) dt dr. x x Örnek Br zar br kez atılıyor. X rasgele değşken üste gelen noktaların sayısı olsun. X rasgele değşkennn olasılık dağılımı X x f ( x) P( X x) Olasılık fonksyonu f( x), x,,3,4,5, Dağılım fonksyonu

13 F( X ) P( X x) 0, x, x, x 3 0, x 3, 3 x 4, x 4,, 4 x 5 5, 5 x, x olur. Teorem () F fonksyonu azalmayandır.( x x F( x ) F( x) dr.) () lm Fx ( ) 0 ve lm Fx ( ) dr. x x Örnek X keskl rasgele değşken çn 0, x, x 4 3 F( x), 4 x 5, x 0, x 0 olarak verlyor. 5 P( X ) P( X ) P( X ) F() F() 3 P( X 4) F(4) F(3) 3 3

14 X x f( x) f (4) F(4) F(3) 5 f () F() F(5) 5 f (0) F(0) F(9) Örnek X sürekl rasgele değşken çn x, 0 x f( x) 0, dğer yerlerde şeklnde verlyor. Bu durumda 0, x 0 F x sds x x 0, x dr. x ( ), 0 4

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

Sıklık Tabloları ve Tek Değişkenli Grafikler

Sıklık Tabloları ve Tek Değişkenli Grafikler Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp

Detaylı

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür. Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1 Dr. Mehmet AKSARAYLI OLASILIK Ders 3 / 1 1 0 Kesin İmkansız OLASILIK; Bir olayın gerçekleşme şansının sayısal değeridir. N adet denemede s adet başarı söz konusu ise, da başarının nisbi frekansı lim (s/n)

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

OLASILIK 1. TEST. B r torbada eş t büyüklükte 15 kırmızı, 19 sarı, 11 mav ve 14 yeş l top vardır. Hang renk topun çek lme olasılığı daha azdır?

OLASILIK 1. TEST. B r torbada eş t büyüklükte 15 kırmızı, 19 sarı, 11 mav ve 14 yeş l top vardır. Hang renk topun çek lme olasılığı daha azdır? . TEST B r torbada eş t büyüklükte kırmızı, sarı, mav ve yeş l top vardır. Hang renk topun çek lme olasılığı daha azdır? Sarı Mav 7 B r torbada eş t büyüklükte mav, 7 kırmızı top vardır. Torbadan en az

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ 1 Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda

Detaylı

Doğrusal Korelasyon ve Regresyon

Doğrusal Korelasyon ve Regresyon Doğrusal Korelasyon ve Regresyon En az k değşken arasındak lşknn ncelenmesne korelasyon denr. Kşlern boyları le ağırlıkları, gelr le gder, öğrenclern çalıştıkları süre le aldıkları not, tarlaya atılan

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

PARÇALI DOĞRUSAL REGRESYON

PARÇALI DOĞRUSAL REGRESYON HAFTA 4 PARÇALI DOĞRUSAL REGRESYO Gölge değşkenn br başka kullanımını açıklamak çn varsayımsal br şrketn satış temslclerne nasıl ödeme yaptığı ele alınsın. Satış prmleryle satış hacm Arasındak varsayımsal

Detaylı

Ders 6 OLASILIK KURAMI. Örnek Uzaylar, Örnek Noktalar ve Olaylar. Örnek Uzaylar, Örnek Noktalar ve Olaylar

Ders 6 OLASILIK KURAMI. Örnek Uzaylar, Örnek Noktalar ve Olaylar. Örnek Uzaylar, Örnek Noktalar ve Olaylar Ders 6 Olasılık Teorisi Permutasyonlar ve Kombinasyonlar OLASILIK KURAMI Geçtiğimiz 5 hafta boyunca serilerin temel özelliklerini gösteren grafiklerin neler olduğunu ve Serilerin temel özelliklerini anlamada

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır.

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır. KONU : DUAL MODELİN EKONOMİK YORUMU Br prmal-dual model lşks P : max Z cx D: mn Z bv AX b AV c X 0 V 0 bçmnde tanımlı olsun. Prmal modeln en y temel B ve buna lşkn fyat vektörü c B olsun. Z B B BB c X

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

BAYES KURAMI. Dr. Cahit Karakuş

BAYES KURAMI. Dr. Cahit Karakuş BAYES KURAMI Dr. Cahit Karakuş Deney, Olay, Sonuç Küme Klasik olasılık Bayes teoremi Permütasyon, Kombinasyon Rasgele Değişken; Sürekli olasılık dağılımı Kesikli - Süreksiz olasılık dağılımı Stokastik

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

Kosullu Olasılık & Bayes Teoremi

Kosullu Olasılık & Bayes Teoremi Kosullu Olasılık & Bayes Teoremi 0 {\} /\ Suhap SAHIN Olasılık Deneyi Olasılık problemlerinde gerçeklestirilen eylemler Zar atılması Para atılması Top Çekme Bir zar atıldıgında üst yüze çift gelme ihtimali

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

ZMY501 Mühendislikte İstatistik Yöntemler

ZMY501 Mühendislikte İstatistik Yöntemler ZMY501 Mühendislikte İstatistik Yöntemler Bölüm 4 Olasılık http://www1.gantep.edu.tr/~bingul/stat Gaziantep Üniversitesi Mühendislik Yönetimi Tezsiz Yüksek Lisans Programı Aralık 016 Sayfa 1 İçerik Küme

Detaylı

GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY) The Efficiency Of Groups And Semigroups *

GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY) The Efficiency Of Groups And Semigroups * GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY The Effcency Of Groups And Semgroups * Özer CAN Matematk Ana Blm Dalı Blal VATANSEVER Matematk Ana Blm Dalı ÖZET Bu çalışmada öncelkle gruplarda, yarıgruplarda,

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar

Detaylı

5.3. Tekne Yüzeylerinin Matematiksel Temsili

5.3. Tekne Yüzeylerinin Matematiksel Temsili 5.3. Tekne Yüzeylernn atematksel Temsl atematksel yüzey temslnde lk öneml çalışmalar Coons (53) tarafından gerçekleştrlmştr. Ferguson yüzeylernn gelştrlmş hal olan Coons yüzeylernde tüm sınır eğrler çn

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t :

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t : HAFTA 13 GÖLGE EĞİŞKENLERLE REGRESYON (UMMY VARIABLES) Gölge veya kukla (dummy) değşkenler denen ntel değşkenler, cnsyet, dn, ten reng gb hemen sayısallaştırılamayan ama açıklanan değşkenn davranışını

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

3.Ders Rasgele Değişkenler

3.Ders Rasgele Değişkenler 3.Ders Rasgele Değişkenler Tanım:,U, P bir olasılık uzayı ve X : R X olmak üzere, a R için, : X a U oluyorsa X fonksiyonuna bir rasgele değişken denir. a R için X, a : X a U özelliğine sahip bir X rasgele

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Sayfa 1. GİRİŞ TEMEL KAVRAMLAR... 2

Sayfa 1. GİRİŞ TEMEL KAVRAMLAR... 2 . ĠÇĠNDEKĠLER Sayfa. GİRİŞ.... TEMEL KAVRAMLAR.... Olasılık.... Rasgele Değşken..... Keskl Rasgele Değşken... 3.. Sürekl Rasgele Değşken... 4.3 Olasılık Fonksyonu... 4.3. Keskl Rasgele Değşkenn Olasılık

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Makine Öğrenmesi 10. hafta

Makine Öğrenmesi 10. hafta Makne Öğrenmes 0. hafta Lagrange Optmzasonu Destek Vektör Maknes (SVM) Karesel (Quadratc) Programlama Optmzason Blmsel term olarak dlmze geçmş olsa da bazen en leme termle karşılık bulur. Matematktek en

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: serdar@ehb.tu.edu.tr Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v 1. Temel Form: Brnc temel form geometrk olarak yüzeyn çnde blndğ zayına gtmeden yüzey üzernde ölçme yamamızı sağlar. (Eğrlern znlğ, teğet ektörlern açıları, bölgelern alanları gb) S üzerndek ç çarım, br

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

TEK BOYUTLU RASSAL DEĞİŞKENLER

TEK BOYUTLU RASSAL DEĞİŞKENLER TEK BOYUTLU RASSAL DEĞİŞKENLER Rassal değişken: S örnek uzayının her bir basit olayını yalnız bir gerçel değere dönüştüren fonksiyonuna rassal (tesadüfi) değişken denir. İki para birlikte atıldığında üste

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

Manyetizma Testlerinin Çözümleri. Test 1 in Çözümü

Manyetizma Testlerinin Çözümleri. Test 1 in Çözümü 4 Manyetzma Testlernn Çözümler 1 Test 1 n Çözümü 5. Mıknatısların brbrne uyguladığı kuvvet uzaklığın kares le ters orantılıdır. Buna göre, her br mıknatısa uygulanan kuvvet şekl üzernde gösterelm. 1. G

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve örnek verlernden hareket le frekans dağılışlarını sayısal olarak özetleyen

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER Blmn amaçlarından br yaşanılan doğa olaylarını tanımlamak ve olayları önceden tahmnlemektr. Bu amacı başarmanın yollarından br olaylar üzernde etkl olduğu

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin Doğru Önermeler, Yanlış Önermeler Al Nesn Bu yazıda 6 mantık sorusu sorup yanıtlayacağız. Brnc Blmece. Yargıç karar recek. Mahkeme tutanaklarından şu blgler çıkıyor: Eğer A suçsuzsa, hem B hem C suçlu.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Olasılık Föyü KAZANIMLAR

Olasılık Föyü KAZANIMLAR Olasılık Föyü KAZANIMLAR Bir olaya ait olası durumları belirler. Daha fazla, eşit, daha az olasılıklı olayları ayırt eder, örnek verir. Eşit şansa sahip olan olaylarda her bir çıktının olasılık değerinin

Detaylı

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir.

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. OLASILIK (İHTİMAL) TEORİSİ 1 DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. SONUÇ:Deneylerin tamamlanması ile elde edilen verilerdir.

Detaylı

5.1 Olasılık Tarihi Temel Olasılık Kavramları

5.1 Olasılık Tarihi Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Koşullu (Şartlı Olasılık 5.6. ayes Teorem 5.7. ağımsızlık: 5.8. Olasılık Foksyoları 5.8..

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir.

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. 04 8. SINIF MATEMATiK OLASILIK OLASILIK Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. Bir zarın atılması, bir torbadan top çekilmesi, bir paranın yazı veya

Detaylı

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150) PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}

Detaylı