ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI"

Transkript

1 İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI Prof. Dr. Emin SARIPINAR Nazmiye GEÇEN Kader ŞAHİN Ersin YANMAZ Fatih ÇOPUR Tübitak Proje No:07T385

2 Ön Bilgi Kanser vücut hücrelerinin kontrolsüz bir şekilde üremeleri ile meydana gelen bir hastalıktır. Kanser tedavisinde kullanılan yöntemlerden biri kanser hücrelerini öldürmek üzere ilaçlar kullanılmasıdır.. Bu çalışmada kullanılan triazin türevlerinin yumurtalık, göğüs ve akciğer kanserine karşı etkili bir madde olduğu keşfedilmiştir.

3 İlaç Tasarımı İlaç geliştirme aşamaları.

4 Bilgisayar Destekli İlaç Tasarımı Ligand-temelli, Eğer ilacın vücut içinde etkileştiği hedef protein yapısı bilinmiyorsa, SAR ve QSAR yöntemleri kullanılır Yapı-temelli tasarımda Hedef protein yapısı biliniyorsa Moleküler dinamik, simulasyon (zamana karşı konformasyon analizi) ve Docking (proteinligand kilitlenmesi) yöntemleri kullanılmaktadır.

5 EMRE İlaç Tasarım Sistemi

6 Çalışma Yöntemi EC-GA metodunda izlenilen çalışma yöntemi gösterilmiştir.

7 Adım. Triaminotriazin bileşik serisi seçilmiştir. Spartan paket programı ile çizimleri ve semiempirik (pm3) hesaplamaları yapılmıştır. Top-çubuk ve uzay dolum modelleri gösterilmiştir. Triaminotriazin serisine ait 8. bileşiğin uzay görünümleri

8 Adım 2. Semiemprik hesaplamaları yapılan bileşiklerden elde edilen konformerlerin relatif enerjisi.5 kcal/mol olanlar ve sanal frekansı olan konformerler silinmiştir. Kalan konformerlerde üst üste çakıştırma işlemi (align) yapılmış ve birbirine benzer olan konformerler silinmiştir. Serideki bir bileşiğin konformerlerinin üst üste çakıştırılmış hali gösterilmiştir.

9 Adım 3. Spartan programında.txt dosyaları hazırlanmıştır. EMRE V.2.0 programında ECMC (elektron konformasyonel uygunluk matrisi)matrisleri hazırlanmıştır.

10 Adım 3. (ECMC Matrisi) k. Konformer 2. Bileşik : 3. Konformer 2. Konformer. Konformer. Bileşik a k. Konformer : 3. Konformer 2. Konformer. Konformer a k an2 a2 a a2 a3 a4 a 2 a a2 a3 a4 a22 a23 a24 a33 a34 an 2 n annk a24 a3n a2n a3n ann ann. a2n. a34 an N. bileşik..

11 Adım 3. (ECMC Matrisi) T8_ Bileşiğinin Muliken Yükleri Kullanılarak Oluşturulan ECMC Matrisi

12 Adım 3. (ECMC Matrisi) T8_49 Bileşiğinin Muliken Yükleri Kullanılarak Oluşturulan ECMC Matrisi

13 Adım 4. ECSP V.0 programında altmatris belirleme işlemi yapılmıştır.

14 Adım 4. N, C, N2, N4, N5 ve H33 atomları farmakofor grup olarak belirlenmiş ve matriste yer alan yük, bağ derecesi ve mesafeler gösterilmiştir.

15 Adım 5. Adım 5 te ise; seçilen bileşik serisinde aktivite hesaplamalarına geçildi. Moleküllerde aktiviteye etki eden gruplar, substituentlerin etkisine göre araştırıldı. Bunun için hem sterik engelleri hem de aktiviteyi azaltan (APS) veya aktiviteyi artıran (AG) grupları ortaya çıkarmak için APS ve AG değerlerini kantitatif olarak karakterize eden ve S ile gösterilen bir parametre dikkate alınmıştır. ani(j), n inci bileşiğin i inci konformerindeki APS veya AG nin j inci tür özelliğini N temsil eden topolojik,elektronik,geometrik,fizikokimyasal parametrelerdir. S ni = κ j a (j) ni N seçilen parametrelerin sayısıdır. j= kj (kappa) toplu analiz sonucundan hesaplanan sabit bir sayıdır.

16 Adım 5. Emre V..0 programı ile değişkenler hazırlanır.

17 Hesaplamalarda Kullanılan Parametreler

18

19

20 Adım 5. (Değişkenler) N5-N-H33 atomlarının oluşturduğu farmakofor düzlemine O2 atomunun dik uzaklığı gösterilmiştir.

21 Adım 5. (Değişkenler) N5-N-H33 atomlarının oluşturduğu farmakofor düzlemi ile C4-N4 atomlarının oluşturduğu doğru arasındaki açı gösterilmiştir.

22 Adım 5. (Değişkenler) İki düzlem arası C-N2-N5-O torsion açısı ile C6-N-O2 Atomlar Arasındaki Açı örnek olarak verilmiştir.

23 Adım 6. Matlab 7.0 paket programında genetik algoritma (GA) optimizasyon tekniğini kullanılmıştır. Tüm konformerler hesaba katılarak aktivite hesaplanır. (bütün konformerler için) Literatürde tüm konformerler için aktivite hesaplaması yapamadıklarından dolayı sadece en düşük enerjili konformer dikkate alınmıştır. Bu çalışmada ise aktivite hesaplamaları için tüm konformerler hesaba katılmıştır. (tek bir konformer için) BERSUKER, I. B.,, Current Pharmaceutical Design, 9, , (2003)

24 Adım 6. Aşağıda aktivite formülünün açılımı gösterilmiştir.

25 Sayısal Optimizasyon Optimizasyon tekniği çok geniş kullanım alanlarına sahiptirler. "En İyileme" anlamına gelir ve herzaman için hedeflenen bir sonuçtur. Optimizasyonun hedefi özellikle en kısa sürede en iyi ve en uygun sonucu elde etmektir. Bir problemde belirli koşullar altında mümkün olan alternatifler içinden en iyisini seçmektir. Optimizasyon, bir fonksiyonu maksimize veya minimize ederek çözüme ulaşır.çözüm için izin verilen bir küme dahilindeki reel veya tamsayı değerlerini sistematik bir şekilde kullanır.

26 Adım 6. (Genetik Algoritma) Genetik algoritma geleneksel yöntemlerle çözümü zor veya imkansız olan problemlerin çözümünde kullanılmaktadır. Genetik algoritmalar doğadaki canlıların geçirdiği süreci örnek alır ve iyi nesillerin kendi yaşamlarını muhafaza edip kötü nesillerin yok olması prensibine dayanır. Genetik algoritmanın önemli özelliklerinden biride bir grup üzerinde çözüm araması ve bu sayede çok sayıda çözümün içinden en iyiyi seçmesidir. Algoritma populasyon diye tabir edilen bir çözüm seti ile başlatılır. Bir populasyondan alınan sonuçlar bir öncekinden daha iyi olacağı beklenen yeni bir populasyon oluşturmak için kullanılır. Yeni populasyon oluşturulması için seçilen çözümler uyumluluklarına göre seçilir. Çünkü uyumlu olanların daha iyi sonuçlar üretmesi olasıdır. Bu istenen çözüm sağlanıncaya kadar devam ettirilir. (An) lineer olmayan çok değişkenli bir fx fonksiyonu ve bilinmeyen sayısı eşit olmadığından aktivite denklemi sayısal optimizasyon tekniklerinden Liner olmayan en küçük kareler tekniği ile çözülmüştür. Uzayın geniş bir alanı taranarak aktivite denkleminde yer alan kappa (kj) değerleri bulunmuştur.

27 Genetik Algoritma Akış Şeması

28 Adım 6. (GA Aşamaları)

29 Adım bileşik için toplam parametre sayısı=bileşik sayısı x konformer sayısı x parametre sayısı (247 değişken indekslenir.) Seçilen kj adedine göre bireyler ile başlangıç populasyonu oluşturulur. Belirlenen kj değerleri sayısal optimizasyonunda yer alan lsqnonlin (liner olmayan en küçük karaler) yöntemine göre yeterli uygunluk değeri (fitness value)buluncaya kadar hesaplanır. Uygunluk fonksiyonu bağıl hata ile verilir. Çalışmalarımızda kj adedi ve populasyon sayısı değiştirilerek çeşitli denemeler yapılmış ve sonuçlar aşağıda verilmiştir. [ AD AT ] f = AD

30 Sonuç (Triaminotriazin Türevlerinin 9 Kappaya Göre Deneysel ve Hesaplanan Aktiviteleri

31 Sonuç 35 bileşik için R2 Grafiği

32 Sonuçlar 5 κ için triaminotriazin serisinin eğitim ve test setine ait aktivite, R2 ve standart hata değerleri

33 Triaminotrizain serisi için 5 parametre ile yapılan hesaplamada kullanılan parametreler

34 5 Parametre için eğitim setine ait R2 grafiği (25 bileşik için) 5 Parametre için test setine ait R2 grafiği (0 bileşik için)

35 Sonuçlar Grubumuz tarafından geliştirilen EMRE,ECSP ve ECMP programları QSAR çalışmalarında başarılı olmuştur. Ülkemize yeni yazılımlar kazandırılmıştır. Geliştirilen bu yazılımlarla aktivitesi bilinen yada bilinmeyen maddelerin aktiviteleri hesaplanabilmekte ve deney yapılmadan aktiviteleri önceden tespit edilebilmektedir.

36 Çalışmalarımıza destek veren Mustafa Yıldırım Emilbek Sultanov ve TÜBİTAK a teşekkür ederiz. Proje No=07T385

İlaç Tasarımında 4D-QSAR Elektron Konformasyonel-Genetik Algoritma (EC-GA) Metodu: Bilgisayar Destekli Emre Yazılımı ve Uygulamaları

İlaç Tasarımında 4D-QSAR Elektron Konformasyonel-Genetik Algoritma (EC-GA) Metodu: Bilgisayar Destekli Emre Yazılımı ve Uygulamaları İlaç Tasarımında 4D-QSAR Elektron Konformasyonel-Genetik Algoritma (EC-GA) Metodu: Bilgisayar Destekli Emre Yazılımı ve Uygulamaları Emin Sarıpınar a, Fatih Çopur b, Semiha Köprü a, Sevtap Çağlar a, Yakup

Detaylı

Ankara Üniversitesi Eczacılık Fakültesi Farmasötik Kimya Anabilim Dalı. Prof. Dr. Esin AKI

Ankara Üniversitesi Eczacılık Fakültesi Farmasötik Kimya Anabilim Dalı. Prof. Dr. Esin AKI -YALÇIN Ankara Üniversitesi Eczacılık Fakültesi Farmasötik Kimya Anabilim Dalı 5000 in üzerinde ilaç etken maddesi var. 20000 in üzerinde farmasötik ürün var. ABD de Yaşam süresinin uzaması 2010 Kadınlarda

Detaylı

Prof. Dr. Esin AKI E-Mail: esinaki@ankara.edu.tr. CADD 3D QSAR > 3D İlaç Tasarımının Uygulanma Yöntemleri

Prof. Dr. Esin AKI E-Mail: esinaki@ankara.edu.tr. CADD 3D QSAR > 3D İlaç Tasarımının Uygulanma Yöntemleri E-Mail: esinaki@ankara.edu.tr CADD 3D QSAR > 3D İlaç Tasarımının Uygulanma Yöntemleri MOLEKÜLER ELEKTROSTATİK POTANSİYEL (MEP) HESAPLAMALARI 2 Molekülün belli bir uzaklıkta iken etkileşmesinde ilk önemli

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3)

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3) Doktora Programı Ders İçerikleri: SHA 600 Seminer (0 2 0) Öğrencilerin ders aşamasında; tez danışmanı ve seminer dersi sorumlusu öğretim elemanının ortak görüşü ile tespit edilen bir konuyu hazırlayarak

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Handan Tanyıldızı 1, Nami Yeyin 2, Aslan Aygün 2, Mustafa Demir 2, Levent Kabasakal 2 1. İstanbul Üniversitesi, Fen Fakültesi, Nükleer Fizik ABD 2

Handan Tanyıldızı 1, Nami Yeyin 2, Aslan Aygün 2, Mustafa Demir 2, Levent Kabasakal 2 1. İstanbul Üniversitesi, Fen Fakültesi, Nükleer Fizik ABD 2 Yttrium-90 mikroküre tedavisinde radyasyon kaynaklı karaciğer hastalığı (RILD) analizi ve terapötik aktivite miktarı ile karaciğer fonksiyonu arasındaki ilişkinin incelenmesi Handan Tanyıldızı 1, Nami

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KİMYA Kimyasal Tepkimelerde Enerji(Entolpi) (3 Soru) Asit-Baz Çözeltilerin de Denge (4 Soru) Organik Kimya (12 Soru) BİYOLOJİ

KİMYA Kimyasal Tepkimelerde Enerji(Entolpi) (3 Soru) Asit-Baz Çözeltilerin de Denge (4 Soru) Organik Kimya (12 Soru) BİYOLOJİ KİMYA Gazlar (2 Soru) Kimyasal Tepkime Denklemleri(Denkleştirme, Basit Formül, Molekül Formülü) (2 Soru) Kimyasal Tepkimelerde Enerji(Entolpi) (3 Soru) Radyoaktiflik (1 Soru) Asit-Baz Çözeltilerin de Denge

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU Fatih Karaçam ve Taner Tımarcı Trakya Üniversitesi, MMF Makine Mühendisliği Bölümü 030 Edirne e-mail: tanert@trakya.edu.tr Bu çalışmada

Detaylı

DERSİN ADI DERSİN ÖĞRETİM ELEMANI SINAV TARİHİ VE SAATİ. Nicel Araştırma Yöntemleri Doç. Dr. Recep ÇAKIR :00

DERSİN ADI DERSİN ÖĞRETİM ELEMANI SINAV TARİHİ VE SAATİ. Nicel Araştırma Yöntemleri Doç. Dr. Recep ÇAKIR :00 AMASYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FEN BİLGİSİ EĞİTİMİ YÜKSEK LİSANS PROGRAMI ÖĞRENCİLERİNİN 2015-2016 ÖĞRETİM YILI GÜZ YARIYILI BÜTÜNLEME SINAV TAKVİMİ Nicel Araştırma Yöntemleri Doç. Dr. Recep

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

3.BÖLÜM: TERMODİNAMİĞİN I. YASASI

3.BÖLÜM: TERMODİNAMİĞİN I. YASASI 3.BÖLÜM: TERMODİNAMİĞİN I. YASASI S (k) + O SO + ısı Reaksiyon sonucunda sistemden ortama verilen ısı, sistemin iç enerjisinin bir kısmının ısı enerjisine dönüşmesi sonucunda ortaya çıkmıştır. Enerji sistemden

Detaylı

DERSİN ADI DERSİN ÖĞRETİM ELEMANI SINAV TARİHİ VE SAATİ. Nicel Araştırma Yöntemleri Yrd. Doç. Dr. Recep ÇAKIR 06.04.2015-14:00

DERSİN ADI DERSİN ÖĞRETİM ELEMANI SINAV TARİHİ VE SAATİ. Nicel Araştırma Yöntemleri Yrd. Doç. Dr. Recep ÇAKIR 06.04.2015-14:00 AMASYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FEN BİLGİSİ EĞİTİMİ YÜKSEK LİSANS PROGRAMI ÖĞRENCİLERİNİN 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARA SINAV TAKVİMİ Nicel Araştırma Yöntemleri Yrd. Doç. Dr. Recep

Detaylı

İlaç Temel Araştırma Merkezi (İTAM) Projesi Toplantısı Çevrimsel Araştırma ve Hedefe Yönelik Tedaviler 19 Eylül 2013 ALPER MAHREBEL

İlaç Temel Araştırma Merkezi (İTAM) Projesi Toplantısı Çevrimsel Araştırma ve Hedefe Yönelik Tedaviler 19 Eylül 2013 ALPER MAHREBEL İlaç Temel Araştırma Merkezi (İTAM) Projesi Toplantısı Çevrimsel Araştırma ve Hedefe Yönelik Tedaviler 19 Eylül 2013 ALPER MAHREBEL 2 Tarihçe Kuruluş yılı 1992 Almanya ve İsviçre den bitmiş ürün ithalatı

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

1).S.Ü. MÜH.-MİM. FAKÜLTESİ, MİMARLIK BÖLÜMÜ/KONYA mutosun@selcuk.edu.tr, mustosun@hotmail.com tel: 0542 644 83 19

1).S.Ü. MÜH.-MİM. FAKÜLTESİ, MİMARLIK BÖLÜMÜ/KONYA mutosun@selcuk.edu.tr, mustosun@hotmail.com tel: 0542 644 83 19 YAPILARDA ENERJİ TASARRUFUNA YÖNELİK ÇABALAR İÇİN BİR BİLGİSAYAR ANALİZ PROGRAM MODELİ Dr. Mustafa TOSUN 1 1).S.Ü. MÜH.-MİM. FAKÜLTESİ, MİMARLIK BÖLÜMÜ/KONYA mutosun@selcuk.edu.tr, mustosun@hotmail.com

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813

Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813 Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813 Organik moleküllerin üç boyutlu yapılarını ve özelliklerini inceleyen kimya dalına Stereokimya adı verilir. Aynı molekül formülüne sahip

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI Deneysel Verilerin Değerlendirilmesi Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR Prof. Dr. Murat ELİBOL FİNAL SINAVI Ödevi Hazırlayan: Özge AKBOĞA 91100019124 (Doktora) Güz,2012 İzmir 1

Detaylı

Önerilen süre dakika (30 puan) 2. 8 dakika (12 puan) 3. 8 dakika (20 puan) dakika (27 puan) 5. 8 dakika (11 puan) Toplam (100 puan) Ġsim

Önerilen süre dakika (30 puan) 2. 8 dakika (12 puan) 3. 8 dakika (20 puan) dakika (27 puan) 5. 8 dakika (11 puan) Toplam (100 puan) Ġsim İkinci Tek Saatlik Sınav 5.111 Ġsminizi aģağıya yazınız. Sınav sorularını sınav başladı komutunu duyuncaya kadar açmayınız. Sınavda notlarınız ve kitaplarınız kapalı olacaktır. 1. Problemlerin her bir

Detaylı

5.2.01-01 Yarı ömrü ve radyoaktif denge

5.2.01-01 Yarı ömrü ve radyoaktif denge Maddenin Fiziksel Yapısı Radyoaktivite Yarı ömrü ve radyoaktif denge Neler öğreneceksiniz Ana madde Yavru madde Bozunum hızı Ayrışma ya da bozunum sabiti Sayma hızı Yarı ömür Ayrışma ürünü Prensip: Bir

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Levent Gürel ve Özgür Ergül Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi, Ankara lgurel@bilkent.edu.tr

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

CIM - Computer Integrated Manufacturing

CIM - Computer Integrated Manufacturing CIM - Computer Integrated Manufacturing Ders 2 spectracad Engraver CAD? CAD (Computer Aided Design) Bilgisayar Destekli Tasarımkarmaşık çizimlerin bilgisayar kullanılarak kolay ve doğru olarak çizilmesidir.

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi.

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi. 5.111 Ders Özeti #14 Bugün için okuma: Bölüm 3.8 (3. Baskıda 3.9) Lewis Teorisinin Sınırları, Bölüm 3.9 (3. Baskıda 3.10) Molekül Orbitalleri, Bölüm 3.10 (3. Baskıda 3.11) Ġki Atomlu Moleküllerin Elektron

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama Öğr. Grv. M. Mustafa BAHŞI WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Bilgisayar ile Problem Çözüm Aşamaları Programlama Problem 1- Problemin

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

İlaçta Ar Ge Kamu Üniversite Sanayi İşbirliğinin Önemi. Prof. Dr. Sedef Kır Hacettepe Üniversitesi Eczacılık Fakültesi

İlaçta Ar Ge Kamu Üniversite Sanayi İşbirliğinin Önemi. Prof. Dr. Sedef Kır Hacettepe Üniversitesi Eczacılık Fakültesi İlaçta Ar Ge Kamu Üniversite Sanayi İşbirliğinin Önemi Prof. Dr. Sedef Kır Hacettepe Üniversitesi Eczacılık Fakültesi Hacettepe Üniversitesi Eczacılık Fakültesi Misyonumuz Evrensel bilim ve teknolojiyi

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ Karbonun önemi Hücrenin % 70-95ʼ i sudan ibaret olup, geri kalan kısmın çoğu karbon içeren bileşiklerdir. Canlılığı oluşturan organik bileşiklerde karbon atomuna

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

GPS AĞLARININ DUYARLIK ve GÜVENĐRLĐĞĐNĐN BAZ OPTĐMĐZASYONU ĐLE ĐRDELENMESĐ

GPS AĞLARININ DUYARLIK ve GÜVENĐRLĐĞĐNĐN BAZ OPTĐMĐZASYONU ĐLE ĐRDELENMESĐ GPS AĞLARININ DUYARLIK ve GÜVENĐRLĐĞĐNĐN BAZ OPTĐMĐZASYONU ĐLE ĐRDELENMESĐ Orhan KURT okurt@kocaeli.edu.tr 30 Nisan 2009 KOCAELĐ ÜNĐVERSĐTESĐ Jeodezi ve Fotogrametri Mühendisliği Bölümü Bölüm Đçi Seminer

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

TP SORUNLARININ ÇÖZÜMLERİ

TP SORUNLARININ ÇÖZÜMLERİ TP SORUNLARININ ÇÖZÜMLERİ (Bu notlar Doç.Dr. Şule Önsel tarafıdan hazırlanmıştır) TP problemlerinin çözümü için başlıca iki yaklaşım vardır. İlk geliştirilen yöntem kesme düzlemleri (cutting planes) olarak

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

DERS BİLGİ FORMU. IV Türkçe Zorunlu Ders. Haftalık. Ders. Okul Eğitimi Süresi. Saati

DERS BİLGİ FORMU. IV Türkçe Zorunlu Ders. Haftalık. Ders. Okul Eğitimi Süresi. Saati DERS BİLGİ FORMU DERSİN ADI SİSTEM ANALİZİ VE TASARIMI I BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ

Detaylı

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız?

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Lisansüstü Eğitiminizi Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Endüstri Mühendisliği Bölümü, 1990 yılında kurulmuş ve ilk mezunlarını 1994

Detaylı

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Finans Matematiği Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Paranın Zaman Değeri Finansın temel prensibi Elimizde bugün bulunan 1000 YTL bundan bir yıl sonra elimize

Detaylı

VĐZYOKONTROL. YAKMA SĐSTEMLERĐNĐN GÖRSELLEŞTĐRĐLMESĐ ve UZAKTAN ĐZLENMESĐ SĐSTEMĐ. Hazırlayan : Kubilay Yalçın Makina Mühendisi Ankara-2008

VĐZYOKONTROL. YAKMA SĐSTEMLERĐNĐN GÖRSELLEŞTĐRĐLMESĐ ve UZAKTAN ĐZLENMESĐ SĐSTEMĐ. Hazırlayan : Kubilay Yalçın Makina Mühendisi Ankara-2008 VĐZYOKONTROL YAKMA SĐSTEMLERĐNĐN GÖRSELLEŞTĐRĐLMESĐ ve UZAKTAN ĐZLENMESĐ SĐSTEMĐ Hazırlayan : Kubilay Yalçın Makina Mühendisi Ankara-2008 Doküman No : No : LT-080710 Doküman Kodu : L.VĐZYOKONTROL VĐZYOKONTROL

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Yapay Bağışık Sistemler ve Klonal Seçim Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Bağışık Sistemler Bağışıklık sistemi insan vücudunun hastalıklara karşı savunma mekanizmasını oluşturan

Detaylı