Frekans Analiz Yöntemleri I Bode Eğrileri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Frekans Analiz Yöntemleri I Bode Eğrileri"

Transkript

1 Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1

2 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer eğrilerinden öncedir. Frekan metodunun zaman tanım aralığındaki metodalara göre belirgin avantajları vardır: 1 Fizikel datalardan tranfer fonkiyonunun modellenmei Faz ilerletici kompanatör taarlarken kararlı hal hataının ve geçici cevap şartlarının karşılanmaı 3 Lineer olmayan itemlerin kararlılığının bulunmaında 4 Kök yer eğrii çizimindeki belirizliklere karşı

3 HP 35670A Dinamik Sinyal Analizörü fizikel itemden frekan Cevabı bilgilerini toplar.elde edilen bilgi analizde, taarımda veya Sitemin matematikel modelinin elde edilmeinde kullanılabilir. 3

4 Kararlı halde, lineer bir iteme inüoidal bir giriş uygulandığında item aynı frekanta bir inüoidal üretir. Bu çıkış cevabı giriş ile aynı frekanta olmaıyla beraber genlik ve faz açıı ile girişten farklılaşır. Bu farklılıklar frekanın fonkiyonudur. M Co t φ1 M φ İle göterilir. Sitemini inceleyelim 4

5 Sitemin girişi ft inüoidali ie kararlı hal çıkış fonkiyonu aynı frekanta olan xtdir. Giriş Çıkış 5

6 Kararlı hal çıkış inüoidali: M [ ] φ = M M φ φ 0 0 i i Dolayııyla itemin fonkiyonu: M M = 0 M i Sitemin fazı ie: φ = φ φ 0 i 6

7 Giriş Fonkiyonu: r t = ACo t BSint B r t = A B Co t tan 1 A M = A B tan 1 B φ = i i A A jb M i e j φ i 7

8 8 G B A C = Zorlanmış Çözüm ile Doğal Çözümü keirlere ayırma yöntemi ile elde edebiliriz. G j j B A C = 1 j K j K C =

9 9 φ φ φ φ j e M M j e M M c G i G i j G i j G i = Ter Lapla alındığında, G i G i t j t j G i e e M M t c φ φ φ φ = G i G i t Co M M t c φ φ = G G i M i M M φ φ φ = 0 0 G M G j G φ = j G j G =

10 Frekan Cevabının Çizilmei Bir G iteminin frekan yanıtı bir iki şekilde çizilebilir: Örnek: =jw için 1 Genlik ve fazın frekanın bir fonkiyonu cininden ayrı ayrı çizilmei Kutupal olarak genlik ve fazörün aynı eğri üzerinde çizilmei G G j 1 = 1 = j Sitemini analitik olarak ifade ediniz, frekan yanıtını genlik ve faözörü ayrı ayrı eğriler olarak ve aynı eğri olarak çiziniz. j G j = 4 10

11 Bu itemin genliği: G j = M = 1 Gj nın fazı ie: φ = tan 1 Bode eğrilerinde genelde genlik deibeldb cininden ifade edilir. Bir M kazancının deibel değeri 0logM dir. Ayrıca hem kazanç hemde frekan ekenleri logaritmiktir. Dolayııyla Bode eğrimizde genlik ; 0log Açı ie; φ M = = tan 1 0log, 1 log 4, log 4 Eken takımıyla çizilir. 11

12 1

13 Genlik ile açı kutupal olarak çizildiğinde ie M φ 1 = 4 tan 1 13

14 Logaritmik Çizimin Avantajları Elle hızlıca çizmek mümkün Genlik ve frekan için çok geniş ınırlar kolayca göterilebilir Çok karmaşık tranfer fonkiyonları kolayca çizilebilir ve çarpım veya bölüm halinde olan terimler baitçe grafikel toplama ve çıkarma ile daha kolay anlaşılabilir. Rakam katlandıkça db değeri 6dB artar. 14

15 15 Aimptotik Yaklaşımlar: Bode Eğrileri Logaritimik genlik ve faz frekan eğrilerinin logaritmik açıal hıza göre çizimleri düz çizgilerin toplamı yaklaşımı ile baitleştirilebilir n m n p p p z z z K G = Sitemini dikkate alalım. Bu itemin genlik frekan cevabı her bir terim genlik frekan cevaplarının çarpımıdır. j n m n p p p z z z K j G = Eğer herbir kutup ve ıfırın genlik cevabını biliyorak toplam genlik cevabını bulabiliriz.

16 Logaritmik olarak çalışırak toplam genlik ifadeini elde etmemiz kolaylaşır. Zira paydakiıfırlar çarpımlar toplanacak, paydadaki çarpımlar ie çıkartılacak. Deibel olarak yazacak olurak: 0logG j = 0logK 0log z 1 0log z... 0log m 0log p 1... j Eğer her bir terimi biliyorak cebrik toplamları ile onucu kolayca elde edebiliriz. Ayrıca her bir terimin düz çizgi yaklaşımını biliyorak bu düz çizgilerin toplanıp çıkartılmaı ile grafik kolayca çizilebilir. 16

17 G=a nın BodeÇizimi G j = j a = a1 j a G j a olur. Düşük frekanlarda, Deibel cininden genlik: 0log M=0log a M = G j ve abittir. Yükek frekanlarda, >>a G G j = j a = j a a 0 = 90 = a j a

18 Deibel cininden genlik: 0log M=0log a 0 log M = 0log a 0log = 0log a a<< Eğer db veya 0log M yi0log ya göre çizicek olurak, yukarıdaki denklem doğru denklemi olur: Eğrinin eğimi 0 dir. y=0x Her katlayan frekan 0log ve 6db artmaına ebep olur ve eğri 6dB/oktav lık eğim ile artar.burada oktav frekanın katlayanıdır,,4,8,16,

19 Düz eğri yaklaşımına aimptot denir. Düşük frekan yaklaşımına düşük frekan aimptotu, yükek frekan yaklaşımına yükek frekan aimptotu denir. a frekanına da köşe frekanı denir. a nın BodeGenlik Eğrii 19

20 Faz cevabını inceleyecek olurak: G j = j a = a1 j a İfadeine göre köşe frekanında=a açı 45 0 olmalıdır. G j = a aj Düşük frekanlarda G j a İfadeine göre açı O 0 olmalıdır. Yükek frekanlarda G j a a 0 = 90 = 90 0 İfadeine göre açı 9O 0 olmalıdır. 0

21 a nın BodeFaz Eğrii 1

22

23 3

24 G G=1/a nın Bode Çizimi = 1 a = a 1 a Bu tranfer fonkiyonu 0log1/a düşük frekan aimptotuna ahiptir. Bode eğrii köe frekanı, a rad/ ya ulaşıncaya kadar abittir. Yükek frekanlarda: 1 G = a 1 a j = a 1 j a = 1 a a = 90 4

25 db olarak, 1 0 log M = 0 log 0 log = 0 a a G= in Bode Çizimi log G= adece yükek frekan aimptotuna ahiptir. =j, 0log genliğindedir. Böylece Bode eğrii 6dB/oktav0dB/dekad lık eğimli ve =1 de 0dB den geçen bir doğrudur. Fazı ie abit 90 0 dir G=1/ in Bode Çizimi G=1/ Bode eğrii -6dB/oktav0dB/dekad lık eğimli ve =1 de 0dB den geçen bir doğrudur. Fazı ie abit dir 5

26 G= 6

27 G=1/ 7

28 8

29 9

30 Örnek: G = K 3 1 Bode eğriini çiziniz? İlk olarak köşe frekanları:-1, -, -3. Genlik eğrii en küçük köşe frekanından 1 dekad önce başlamalı ve en yükek köşe frekanından 1 dekad onraına kadar devam etmelidir. Öyleye 0.1 rad ile 100 rad araı uygun bir eçimdir. =0.1 değeri bütün a ifadeleri için düşük frekantır=0 böylece 3K G j0.1 = = 15K 0.11 K genlik eğriini yukarı veya aşağı kaydır 30

31 31

32 3

33 Bode eğrii =0.1 değerinde, 0log15=3.5dB değeri ile başlıyor. Paydadaki teriminden dolayı hemen -6dB/oktav lık eğimle düşüşe geçiyor. =1 değerinde, 1terimi bir - 6dB/oktav lık eğim daha ekiliyor ve eğri toplam -1dB/oktav lık eğim ile düşüşüne devam ediyor. Daha onra = değerinde, terimi bir -6dB/oktav lık eğim daha ekiliyor ve eğri toplam -18dB/oktav lık eğime ahip oluyor. =3 değerinde, 3terimi bir 6dB/oktav lık pozitif eğim ekliyor ve eğrinin toplam eğimi - 1dB/oktav oluyor ve bundan onra başka köşe frekanı olmadığı için eğri bu eğimle devam eder. Bode faz eğriide benzer şekilde elde edilebilir, köşe frekanının 1 dekad öncei ve 1 dekad onraında kırılmaların olmaı biraz daha dikkat gerektirir. 33

34 34

35 35

36 G= ζ n n in Bode Çizimi İkinci derece itemlerin Bode eğrilerinin çizimlerini inceleyeceğiz. G = ζ n Birinci derece itemlerin akine ikinci derece itemlerde ζ nin bazı değerleri için gerçek frekan cevabı ile aimptotik yaklaşımdaki frekan cevabı araındaki fark ihmal edilebilecek eviyeden büyük olabilir. Düşük frekanlarda, Düşük frekanlarda genlik ie, n n n G = 0 0log M = 0log G j = 0logn 0 36

37 Yükek frekanlarda, G G j = Yükek frekanlarda genlik ie, 0log M = 0log G j = 0log Eğim 40dB/oktav yada 40dB/dekad = 40log Dikkat edilecek olura = n iken düşük ve yükek frekan aimptotları aynıdır. Dolayııyla n ikinci derece itemin köşe frekanıdır. 37

38 38

39 Faz ı ie düşük frekanlarda 0 derece, yükek frekanlarda ie 180 derecedir. Doğal frekanta açı: G j = ζ = jζ = n için onuç n n n j n j ζ olduğundan doğal frekantaki açı Dolayııyla 0.1 n ile 10 n araında açı 90 0 /dekad ile yükelir. G= n / ζ n n in Bode Çizimi n Genlik eğrii doğal frekanta kırılır ve -1dB/oktav 40dB/dekad lık eğim ile azalır. Faz düşük frekanlarda 0 derecedir ve 0.1 n ile 10 n araında açı /dekad açı ile azalır ve 10 n den onra -180 decede kalır. 39

40 nin değişen ζ değerleri için Bode Genlik Eğrileri 40

41 nin değişen ζ değerleri için Bode Faz Eğrileri 41

42 nin değişen ζ değerleri için Bode Genlik Eğrileri 4

43 nin değişen ζ değerleri için Bode Faz Eğrileri 43

44 Örnek: 3 G = 5 Bode eğriini çiziniz? G nin düşük frekan değeri =0 alınarak 3/50 yada 4.44dB olarak bulunur. Bode eğrii bu değer ile başlar ve ilk köşe frekanı - ye kadar bu değer ile devam eder. deki kutup -0dB/dekad lık bir eğimle bir onraki köşe frekanı -3 e kadar devam eder. -3 deki ıfır, 0dB/dekad lık bir pozitif eğim oluşturur ki net eğim bu noktadan onra 0 olur. 5 rad/ de ie ikinci derece terim devreye girer ve 40dB/dekad lık bir pozitif eğim oluşturarak onuza kadar devam eder. 44

45 45

46 46

47 47

48 48

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

Yukarıdaki şekilde, birim geribeslemeli bir kontrol sisteminin ileri yol transfer fonksiyonuna ait, sistemin orijinal çevrim kazancı K = 1 için deneysel olarak elde edilmiş Bode eğrisi verilmiştir. Aşağıdaki

Detaylı

DİELEKTRİK ÖZELLİKLER

DİELEKTRİK ÖZELLİKLER 0700 ENEJİ HATLAINDA ÇAPAZLAMA! zun meafeli enerji taşıma hatlarında iletkenler belirli meafelerde (L/) çarazlanarak direğe monte edilirler! Çarazlama yaılmadığı durumlarda: Fazların reaktan ve kaaiteleri

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ

PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ 9. Ululararaı Makina Taarı ve İalat Kongrei 3 5 Eylül 000, ODTÜ, Ankara, Türkiye PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ Meut ŞENGİRGİN, Uludağ Üniveritei

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N DENEY 7: ÖRNEKLEME, AYRIK SİNYALLERİN SPEKTRUMLARI VE ÖRTÜŞME OLAYI. Deneyin Amacı Bu deneyde, ürekli inyallerin zaman ve rekan uzaylarında örneklenmei, ayrık inyallerin ektrumlarının elde edilmei ve örtüşme

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar Temel Yaa Fourier ıı iletim yaaı İLETİMLE ISI TRANSFERİ Ek bağıntı/açıklamalar k: ıı iletim katayıı A: ıı tranfer yüzey alanı : x yönünde ıcaklık gradyanı Kartezyen koordinatlar (düz duvar Genel ıı iletimi

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlei m=.kg olan bir taş, yükekliği h=5m olan bir kaleden yatay yönde v =5m/ hızı ile atılıyor. Cimin kinetik ve potaniyel enerjiini zamanın fonkiyonu olarak

Detaylı

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ İtanbul Ticaret Üniveritei Fen Bilimleri Dergii Yıl: 6 Sayı:12 Güz 2007/2. 67-79 GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ Deniz TÜRSEL ELİİYİ, Selma GÜRLER ÖZET Bu çalışmada, her

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım.

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım. 1.. Karışıın özkütleini bulalı. d K 6 v v v d 9 3v (1) 6 kütleli ıvının özkütleini bulalı. O noktaına göre oent alırak şekildeki T niceliğinin büyüklüğünü bulabiliriz. 7P. = P.1 + T.4 Bu ifade yardııyla

Detaylı

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ 5. MODEL DENEYLEİ İLE GEMİ DİENİNİ BELİLEME YÖNTEMLEİ Gei projeinin değişik erelerinde iteatik odel deneylerine dayalı yaklaşık yöntelerle gei topla direnci e dolayııyla gei ana akine gücü belirlenektedir.

Detaylı

Devreler II Ders Notları

Devreler II Ders Notları Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem

Detaylı

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI M.Emin BAŞAK 1 Ayten KUNTMAN Hakan KUNTMAN 3 1, İtanbul Üniveritei,Mühendilik Fakültei, Elektrik&Elektronik

Detaylı

ELEKTRİK VE ELEKTRİK DEVRELERİ 2

ELEKTRİK VE ELEKTRİK DEVRELERİ 2 1 ELEKTİK VE ELEKTİK DEVELEİ ALTENATİF AKIM Enstrümantal Analiz, Doğru Akım Analitik sinyal transduserlerinden çıkan elektrik periyodik bir salınım gösterir. Bu salınımlar akım veya potansiyelin zamana

Detaylı

2. Bölüm Ses, Ses bileşenleri, İnsan kulağının duyarlılığı, İşitsel-Fizyolojik yeğinlik, Grafik gösterme biçimleri Prof. Dr.

2. Bölüm Ses, Ses bileşenleri, İnsan kulağının duyarlılığı, İşitsel-Fizyolojik yeğinlik, Grafik gösterme biçimleri Prof. Dr. AKUSTİK TEMEL KONULARI SUNUMU 2. Bölüm Ses, Ses bileşenleri, İnsan kulağının duyarlılığı, İşitsel-Fizyolojik yeğinlik, Grafik gösterme biçimleri Prof. Dr. Neşe Yüğrük AKDAĞ BİRDEN FAZLA SES DÜZEYİNİN TOPLAMINI

Detaylı

BÖLÜM 1 GİRİŞ, TERMODİNAMİK HATIRLATMALAR

BÖLÜM 1 GİRİŞ, TERMODİNAMİK HATIRLATMALAR BÖLÜM GİİŞ, EMODİNAMİK HAILAMALA.-ermodinamik hatırlatmalar..- Mükemmel gaz..- İç enerji e antali..3- ermodinamiğin. kanunu..4- Antroi e termodinamiğin. kanunu..5- Antroinin healanmaı..6- İzantroik bağıntılar.-

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

Bölüm 2: Bir Boyutta Hareket

Bölüm 2: Bir Boyutta Hareket Bölüm : Bir Boyua Hareke Kavrama Soruları 1- Harekeli bir cimin yer değişirmei ile aldığı yol aynımıdır? - Hız ile üra araındaki fark nedir? 3- Oralama ve ani hız araındaki fark nedir? 4- Ne zaman oralama

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi DENEY-4 Transistörlü Yükselteçlerin Frekans Analizi Deneyin Amacı: BJT yapmak. transistörlerle yapılan yükselteçlerin alçak ve yüksek frekans analizlerini Teorinin Özeti: Şimdiye kadar gördüğümüz transistörlü

Detaylı

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ Tanel YÜCELEN 1 Özgür KAYMAKÇI 2 Salman KURTULAN 3. 1,2,3 Elektrik Mühendiliği Bölümü Elektrik-Elektronik Fakültei İtanbul Teknik

Detaylı

BULANIK MANTIK DENETLEYİCİLİ GÜÇ SİSTEM UYGULAMASI

BULANIK MANTIK DENETLEYİCİLİ GÜÇ SİSTEM UYGULAMASI BUANIK MANTIK DENETEYİCİİ GÜÇ SİSTEM UYGUAMASI Emre ÖZKOP İmail Hakkı ATAŞ Adem Sefa AKPINAR 3,,3 Karadeniz Teknik Üniritei, Elektrik-Elektronik Mühendiliği Bölümü, Trabzon e-pota: eozkop@ktu.edu.tr e-pota:

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi Akademik Bilişim 0 - XII. Akademik Bilişim Konferanı Bildirileri 0-2 Şubat 200 Muğla Üniveritei Uydu Kentlerin Taarımı için Bir Karar Detek Sitemi ve Bilişim Sitemi Modeli Önerii TC Beykent Üniveritei

Detaylı

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü Oomaik Konrol I Laplace Dönüşümü Vafi Emre Ömürlü Laplace Dönüşümü: Özellikleri eoremleri Kımî Keirlere Ayırma By Vafi Emre Ömürlü, Ph.D., 7 Laplace ranform I i advanageou o olve By uing, we can conver

Detaylı

HİDROLİK SİSTEMLERDE ENERJİ KAYIPLARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ

HİDROLİK SİSTEMLERDE ENERJİ KAYIPLARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ 17 HİDROLİK SİSTEMLERDE ENERJİ KAYILARI VE YÜK DUYARLI SİSTEMLERE GEÇİŞ İmail OBUT ÖZET Hidrolik itemlerde ea olu itenen; yükü hareket ettirmek için kullanılan gücün, hidrolik omayı tahrik eden elektrik

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Güven Aralığı Hesaplamaları ÖRNEKLER

Güven Aralığı Hesaplamaları ÖRNEKLER Güven Aralığı Healamaları ÖRNEKLER Standart normal dağılım ile olaılık healamaları Standart normal dağılım ile olaılık healamaları 1 1 2 2 3 3 f ( x) dx P(( 1 ) x ( 1 )) 0.6826 f ( x) dx P(( 2 ) x ( 2

Detaylı

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi EEB 06 Elektrik-Elektronik ve Bilgiayar Sempozyumu, -3 Mayı 06, Tokat TÜRKİYE Haberleşme Gecikmeli Hibrid Enerji Üretim Siteminin Kararlılık Analizi Hakan GÜNDÜZ Şahin SÖNMEZ Saffet AYASUN Niğde Üniveritei,

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol Rüzgar ürbininde Kullanılan AC/DC Çeviricilerde Uzay ektörü Modülayonu Yöntemi ile Kontrol Cenk Cengiz Eyüp Akpınar Dokuz Eylül Üniveritei Elektrik ve Elektronik Mühenliği Bölümü Kaynaklar Yerleşkei, Buca-İzmir

Detaylı

Programı : Savunma Teknolojileri

Programı : Savunma Teknolojileri İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNSANSIZ HAVA ARAÇLARINDA YEDEKLİ ÇALIŞMA YÜKSEK LİSANS TEZİ Müh. Hüeyin Fatih Lokumcu Programı : Savunma Teknolojileri TEMMUZ 2008 İSTANBUL TEKNİK

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

YAĞLAMA VE KAYMALI YATAKLAR

YAĞLAMA VE KAYMALI YATAKLAR YAĞLAMA TĐPLERĐ YAĞLAMA VE KAYMALI YATAKLAR Yağlamanın beş farklı şekli tanımlanabilir. 1) Hidrodinamik ) Hidrotatik 3) Elatohidrodinamik 4) Sınır 5) Katı-film VĐSKOZĐTE τ F du = = A µ dy du U = dy h τ

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON

KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON TMMOB Harita ve Kadatro Mühendileri Odaı 13. Türkiye Harita Bilimel ve Teknik Kurultayı 18 Nian 011, Ankara KARAYOLU VE DEMİRYOLU PROJELERİNDE ORTOMETRİK YÜKSEKLİK HESABI: EN KÜÇÜK KARELER İLE KOLLOKASYON

Detaylı

Çevrimsel yüklemeye maruz tabakalı kompozitlerin maksimum yorulma ömrü için optimum tasarımı

Çevrimsel yüklemeye maruz tabakalı kompozitlerin maksimum yorulma ömrü için optimum tasarımı Ululararaı Katılımlı 7. Makina Teorii Sempozyumu, İzmir, -7 Haziran 05 Çevrimel yüklemeye maruz tabakalı kompozitlerin makimum yorulma ömrü için optimum taarımı H. Arda Deveci * H. Seçil Artem İzmir Intitute

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever Ders #-3 Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performasını tahmin etmek ister.

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer ayıal evreler (Lojik evreleri) AIŞIL VL (equential ircuit) erin ilk bölümünde kombinezonal (combinational) devreleri inceledik. Bu tür devrelerde çıkışın değeri o andaki girişlerin değerlerine bağlıdır.

Detaylı

ÖRNEKLEME VE NİCEMLEME

ÖRNEKLEME VE NİCEMLEME ÖNEKLEME VE NİCEMLEME Eliizde ürekli bir işaret yada onun graiği olduğunu, bu işareti teleonla arkadaşııza tari edip onun da aynı işareti üreteini/çizeini ağlaak itediğiizi varayalı. Örneğin böyle bir

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. MATEMATİKSEL MODELLEME

1. MATEMATİKSEL MODELLEME . MATEMATİKSEL MODELLEME İşletmeler çabuk ve iabetli kararlar alabilmeleri büyük ölçüde itematik yaklaşıma gerekinim duyarlar. İter ayıal analizler, iter yöneylem araştırmaı adı altında olun uygulanmakta

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME

ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENM 557 ÇOK ÖLÇÜTLÜ KARAR VERME GALATASARAY SK nın 2009-2010 Sezonu 2 Dönemi için Forvet Seçim Problemi DERSİN SORUMLUSU: Yrd Doç

Detaylı

Darbeli Doppler Laminar Kan Akış Sinyal Simülasyonuna STFT ve AR Spektral Analizlerinin Uygulanması

Darbeli Doppler Laminar Kan Akış Sinyal Simülasyonuna STFT ve AR Spektral Analizlerinin Uygulanması KSÜ Fen ve Mühendilik Dergii 5(2) 22 14 KSU J. Science and Engineering 5(2) 22 Darbeli Doppler Laminar Kan Akış Sinyal Simülayonuna STFT ve AR Spektral Analizlerinin Uygulanmaı M.Kemal KIYMIK Abdülhamit

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman

Detaylı

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI Elektrik Mühendii İmail Ercan BUZCU FBE

Detaylı

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ 825 LPG DEPOLAMA TAKLARII GAZ VERME KAPASİTELERİİ İCELEMESİ Fehmi AKGÜ 1. ÖZET Sunulan çalışmada, LPG depolama tanklarının gaz verme kapaitelerinin belirlenmei amacına yönelik zamana bağlı ve ürekli rejim

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

T.C. NĠĞDE ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ ANABĠLĠM DALI

T.C. NĠĞDE ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ ANABĠLĠM DALI YÜKSEK LĠSANS TEZĠ H. YILDIZ, 0 NĠĞDE ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. NĠĞDE ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ ANABĠLĠM DALI HABERLEġME GECĠKMELERĠNĠN YÜK FREKANS

Detaylı

ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ

ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ ÇELİK TEL HALAT DEMETİNİN MODELLENMESİ VE SONLU ELEMANLARLA ANALİZİ Prof.Dr. C.Erdem İMRAK 1 ve Mak.Y.Müh. Özgür ŞENTÜRK 2 1 İTÜ. Makina Fakültei, Makina Mühendiliği Bölümü, İtanbul 2 Oyak- Renault, DITECH/DMM

Detaylı