Tahminleme Yöntemleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tahminleme Yöntemleri"

Transkript

1 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG Üretim Planlama ve Kontrolü Tahminleme Yöntemleri Bahar Yarıyılı 1

2 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri 1. Niteliksel Tahmin Modelleri 2. Niceliksel Tahmin Modelleri 4. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi Gereken Hususlar 2

3 Tahmin Kavramı Tahmin: Gelecek olayları önceden kestirmektir. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak geleceğe ilişkin kestirimlerde bulunmak. Tahminlere dayalı olarak verilen kararlar: Üretim Envanter Personel Tesisler 3

4 Talep Tahmini Tanım: Gelecekteki satışların ne olabileceğini tahmin etmeyi mümkün kılacak şekilde eldeki bilginin düzenlenme ve analiz edilme sürecine Talep Tahmini denir. Talebi belirsiz kılan unsurlar : Siparişin geliş zamanı Siparişin büyüklük ve çeşitliliği İstenen ürünlerin teslim yeri ve zamanı konusundaki verilerin doğruluğu 4

5 Sürelerine Göre Tahmin Tipleri Kısa vadeli tahminler Parça, malzeme ve ürün stoklarının kontrolü, iş yükleme ve işgücü ihtiyacını tespit etmek amacı ile yapılırlar. Günlük veya haftalık dönemleri kapsarlar. Orta vadeli tahminler Ürün grubu satışlarının planlanması, işgücü ve malzeme ihtiyaçlarının planlaması amacı ile yapılırlar ve haftalık veya aylık dönemleri kapsarlar. Uzun vadeli tahminler Aylık veya yıllık dönemleri kapsarlar ve uzun dönem için kapasite ihtiyaçlarının (sermaye yatırımları, tesis yerleşimi ve genişlemeler) belirlenmesi, yeni ürünlerin planlanması, araştırma ve geliştirme için kullanılırlar. 5

6 Tahminlerin Karakteristikleri Genelde yanlış çıkarlar. Tahmin, her zaman tahmindir. Hiç bir zaman bilgi olarak görülemez. Planlama sistemi tahmin hatalarına karşı hazırlıklı olmalıdır. İyi bir tahmin yalnızca bir rakam değildir. Tahminler belli bir rakam değil, bir geçerlilik aralığı olarak veya bir tahmin hatası dağılımı ile verilmelidir. Grup tahminleri daha doğrudur. Bir grup için yapılan tahminin hata payı, bireysel tahminlerin hata payından daha küçüktür. Tahminlerin doğruluğu. tahmin süresiyle ters orantılıdır. Uzun vadede belirsizlik arttığı için yapılan tahminlerin de doğru olma olasılığı yakın zaman için tapılan tahminlerin doğru olma olasılığından daha düşüktür. Bilinen bilgiler tahminlemenin dışında tutulmamalıdır. Belirli bir teknikle çoğu durumlarda makul doğru tahminler elde edilebilir. Ancak, geçmiş verilerle ifade edilemeyen bilgiler mevcut olabilir. Örneğin, firma bir ürün için promosyon satışı planladığında tahminlerin normalin üzerinde olacağı açıktır. Bu bilgi tahminleme yaparken kullanılmalıdır. 6

7 Olası talep tahmin çalışmalarının kapsamları Yeni ürün talep araştırmaları Endüstri dalına ilişkin talep araştırmaları İşletmeler grubuna ait talep araştırmaları İşletmenin geleceğine ait toplam talep tahminleri Bir ürün grubuna ait talep tahminleri Belirli bir ürün için yapılan talep araştırmaları 7

8 Talep Tahminlerinin Faydaları Üretim üretim çizelgeleme envanter kontrolü Satın alma tedarik gereksinimlerinin belirlenmesi uygun fiyatlarla satın alma için çizelgeleme Pazarlama ürünler için pazarlama stratejilerinin saptanması satış kotalarının saptanması satış promosyonlarının ve reklam harcamalarının çizelgelenmesi 8

9 Talep Tahminlerinin Faydaları Personel işgücü gereksiniminin planlanması Finansman işletme bütçesinin oluşturulması nakit akışının planlanması sermaye yatırımı / harcamaları kararları Üst Yönetim firma operasyonlarının genel planlama ve kontrolü 9

10 Doğru Tahminlerin Yararı Düşük envanter seviyeleri Daha az sayıda stoksuz kalma hali Daha az sayıda üretim hattı değişiklikleri Daha az fazla mesai İyileştirilmiş müşteri hizmet seviyesi Daha ekonomik satın alma 10

11 Tahmin Sistemlerinin Aşamaları Tahmini yapmak için gerekli bilgilerin toplanması Tahmin için süre uzunluğunun (planlama ufkunun) belirlenmesi Tahmin modelinin seçilmesi ve hata hesabının yapılması Sonuçların doğruluğunun belirlenmesi ve uygulanması 11

12 Talep Tahmin Modelleri KISITLAR Yönetim Politikaları Mevcut Kaynaklar Pazar Şartları Teknoloji GİRDİLER Pazar Araştırması Talebin geçmişi Reklam Tanıtım Fikirler Tahmin Modelleri ÇEVRE ETKİLERİ Ekonomik Sosyal Politik Kültürel ÇIKTILAR Beklenen Talep ve Zamanı 1. Ürüne göre 2. Müşteriye göre 3. Bölgeye göre 12

13 Tahmin Yöntemlerinin Sınıflandırılması Tahmin Modelleri Niceliksel (Kantitatif) Niteliksel (Kalitatif) Zaman Serisi Modelleri Nedensel Modeller Görüş Oluşturmak Hareketli Ortalamalar Ekonomik Göstergeler Uzman Görüşü Pazar Araştırması Delphi Satıcı Görüşü Üstel Düzeltme Ekonometrik Modeller Box Jenkins 13

14 Tahmin Yöntemleri - Karşılaştırma Niteliksel Yöntemler Durum belirgin olmadığında ve çok az veri bulunduğunda Yeni ürünler Yeni teknolojiler Sezgi ve deneyim gerektirdiğinde İnternet kaynaklı siparişlerin tahmin edilmesi Niceliksel Yöntemler Durum durağan olduğunda ve geçmiş veriler bulunduğunda Mevcut ürünler Kullanılmakta olan teknoloji Matematiksel teknikler gerektirdiğinde Renkli TV lerin satışlarının tahmin edilmesi 14

15 Şekil

16 Niteliksel Yöntemler Satış ekibinin tahminlerinin birleştirilmesi: Her bölgedeki satış temsilcisinin kendi tahminlerinin birleştirilmesiyle tüm ülke düzeyindeki bir toplam tahmine ulaşma Müşteri pazar araştırmaları: Müşteri ve Pazar araştırması yapılmak suretiyle gelecekteki satışların ne yönde olacağına dair verilerin elde edilmesi. Burada yapılan anketlerin iyi düzenlenmiş olması ve anket sonuçlarının istatistiksel olarak anlamlı olması önemlidir. Uzman jüri görüşü: Geçmişe ait verilerin olmadığı durumlarda örneğin yeni ürünlerde, üst düzey yöneticilerin ve uzmanların oluşturduğu bir grubun talep tahmininde bulunması. Delphi yöntemi: Uzman jüri görüşü yöntemine benzer ancak burada uzmanlar gruptan bağımsız olarak görüşlerini ifade ederler. Bu görüşler daha sonra birleştirilerek grup kararı ortaya çıkar. 16

17 Niceliksel Talep Tahmin Yöntemleri Geçmiş verilerin mevcut ve yeterli olması durumunda ve bu verilerin geleceği temsil edebileceği kabul edildiğinde kullanılır. Nedensel Modeller: Tahmini yapılacak ölçüyü etkileyen değişkenler seçildikten sonra aradaki ilişki matematiksel bir ifade ile temsil edilir. Ekonometri modelleri olarak da isimlendirilirler. Zaman Serisi Modelleri: Talep değişkeni zamana bağlı olarak değişir ve tahminleme için sadece geçmiş değerler gereklidir. 17

18 Tahminlerin Değerlendirilmesi Tahmin hatası: Belli bir dönemdeki tahmin ile o dönemdeki gerçek talep arasındaki fark. e t = F t D t e t : tahmin hatası F t : t dönemi için yapılan tahmin D t : t döneminde gerçekleşen talep 18

19 Tahminlerin Değerlendirilmesi e 1. e 2.. e n : n dönem boyunca gözlenen tahmin hataları ise Ortalama mutlak sapma (MAD): Tahmin hataları normal dağılırsa: σ e = 1.25 MAD Ortalama karesel hata (MSE): 19

20 Tahminlerin Değerlendirilmesi Ortalama mutlak yüzdesel hata (MAPE): Tahmin yönteminin meyli (bias): 0 ise meyil yok. 20

21 Örnek-1 Bir firmanın iki ayrı tesisindeki talep tahmin performansı karşılaştırılacak olsun. İki yöneticiden hangisinin daha iyi tahminde bulunduğunu bilmek istiyoruz. Hafta F 1 D 1 e 1 e 1 /D 1 F 2 D 2 e 2 e 2 /D Σ MAD 1 = 17/6 = 2.83 MAD 2 = 18/6 = 3.00 MSE 1 = 79/6 = MSE 2 = 70/6 = MAPE 1 = 3.25 MAPE 2 =

22 Nedensel Tahmin Modelleri Ekonometri Modelleri Talep değişkeni (Y) bağımlı, diğer değişkenler (X i ) bağımsız değişken olarak tanımlanır. Talep tahminin gelecekteki değerleri matematik modelin istatistiksel yöntemlerle analizi sonucunda belirlenir. Y=f(X 1. X X n ) Doğrusal Regresyon bir tahmin yöntemi olarak kullanılabilir. Y=α 0 + α 1 X 1 + α 2 X α n X n 22

23 Regresyon Doğrusu (x 1, y 1 ), (x 2, y 2 ).. (x n, y n ) olsun. n adet veri çifti X, bağımsız, Y ise bağımlı değişken olarak alınabilir. Buna göre, X ve Y arasındaki ilişki doğrusal bir ifade ile tanımlanabilir: Y ˆ = a + bx Ŷ terimi Y nin tahmini değeri olarak alınabilir. 23

24 Talep ˆ Regresyon Doğrusu Zaman Y = a + bx ifadesindeki a ve b değerleri, regresyon doğrusu ile veri noktaları arasındaki mesafenin karelerinin toplamı en küçük olacakşekilde belirlenir (en küçük kareler yöntemi) 24

25 En küçük kareler yöntemi En küçük kareler yönteminde iki kritere göre hesaplama yapılır. Birinci kriter sapmaların toplamının sıfır, ikinci kriter ise sapmaların kareleri toplamının minimum olmasıdır. 1. Kriter: 2. Kriter: min n i= 1 n i= 1 [ Y ( a + )] = 0 i bx i [ ] 2 Y ( a + ) i bx i 25

26 En küçük kareler yöntemi 2. kriterin gerçekleşmesi için a ve b ye göre alınan kısmi türevler sıfıra eşitlenir ve denklemler çözülürse a ve b değerleri elde edilir. Hesaplanan a ve b değerleri ile belirlenen doğruya (x i. y i ) kümesinin regresyon doğrusu adı verilir. b = S / S x y x x a = D b ( n + 1 ) / 2 n n n ( n + 1 ) S = n i D D x y i i i = 1 2 i = 1 n ( n + 1 ) ( 2 n + 1 ) n ( n + 1 ) S x x = 6 4 X : D ö n e m n u m a r a l a r ı D : G e ç m iş t a l e p d e ğ e r l e r i i n : G e ç m iş t a l e p d ö n e m i s a y ı s ı 26

27 Örnek-2 Dönem Gerçekleşen Satış

28 Örnek-2 X Y X 2 X*Y Tahmin Y-Tahmin Y ,29 1, ,94 0, ,58 2, ,22 0, ,87 2, ,51 0, ,16 2, ,80 0, ,44 0, ,09 0, ,73 1, ,37 1, ,

29 Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değişkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi, T örneklem büyüklüğü olmak üzere z t, t= 1, 2,, T biçiminde gösterilir. Buna göre ilk gözlemlenen veri Z 1 ; ikinci gözlemlenen veri Z 2 ; son gözlemlenen veri Z T ile ifade edilir. 29

30 Zaman içinde sürekli olarak kaydedilebilen verilere sahip serilere sürekli zaman serileri, sadece belli aralıklarda elde edilebilen verilere sahip serilere de kesikli zaman serileri adı verilmektedir. Elektrik sinyalleri, voltaj, ses titreşimleri gibi mühendislik alanlarına ait seriler sürekli zaman serileri iken; Faiz oranı, satış hacmi, üretim miktarı gibi iktisadi seriler kesikli zaman serileridir. 30

31 Zaman Serileri Yöntemleri Eğilim (Trend) Zaman içinde verilerin artış ya da düşüş seyri Mevsimsellik Verilerin haftalık. aylık veya mevsimlik tekrarları Çevrim Birkaç yılda bir tekrarlayan iş ortamının yapısından kaynaklanan değişimler Rassal değişimler Şans faktörlerine bağlı ve olağan dışı durumların getirdiği değişimler 31

32 Mevsimsel zirve noktaları Zaman Serileri Eğilim Bileşeni TALEP Gerçek talep eğrisi Dört yıllık ortalama talep Rassal değişim Yıl 1 Yıl 2 Yıl 3 Yıl 4 ZAMAN 32

33 Zaman Serisi Modelleri Durağan Serilerin Tahmini: Durağan seri, zaman içinde ortalaması sabit kalan bir terim ile rassal hatanın toplamından oluşur: D t = µ + ε t Hareketli Ortalama Üstel Düzeltme Genel Eğilim içeren Serilerin Tahmini Regresyon Analizi Çifte Üstel Düzeltme - Holt Yöntemi Mevsimsel Davranış Gösteren Serilerin Tahmini Winters Yöntemi 33

34 Hareketli Ortalamalar Yöntemi (Moving Averages) Zaman içinde durağan yapıya sahip ortamlara uygundur. n dönemlik hareketli ortalama; yalnızca en son n adet geçmiş dönem verisinin ortalamasını hesaplar ve bunu bir sonraki dönemin talep tahmini olarak kullanır. Hareketli Ortalama = (1/n) Σ(önceki n dönemin talebi) 34

35 Örnek-3 Bir hava üssünde son sekiz ayda kaydedilen aylık motor arızaları sırasıyla 200, 250, 175, 186, 225, 285, 305, 190 olarak kaydedilmiştir. Bu verilere göre: 4-5. aylar için 3 aylık, 7-8. aylar için 6 aylık hareketli ortalamaları hesaplayınız. 35

36 Örnek-3 4. ay için 3 aylık hareketli ortalama F 4 = (1/3)( ) = ay için 3 aylık hareketli ortalama F 5 = (1/3)( ) = ay için 6 aylık hareketli ortalama F 7 = (1/6)( ) = ay için 6 aylık hareketli ortalama F 8 = (1/6)( ) =

37 Ay Hareketli Ortalamalar Yöntemi Motor Arızası MA(3) Hata MA(6) Hata

38 Hareketli Ortalamalar Yöntemi Hareketli ortalamalar eğilimin gerisinde kalır. Örnek: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 gözlemleri için MA(3) ve MA(6) tahminleri yapılırsa Dönem Gözlem MA(3) MA(6) Talep Dönem SONUÇ: Serilerde bir eğilim varsa, hareketli ortalamalar yöntemi uygun değildir. 38

39 Ağırlıklı Hareketli Ortalamalar Hareketli ortalamalar yöntemine benzer. En güncel verilere daha fazla ağırlık verir. Örneğin; En güncel veri %50, daha önceki en güncel veri %30, daha önceki en güncel veri %15 ve daha önceki en güncel veri %5 ağırlık alır. Ağırlıklar toplamı %100 olur. Kerem Aytunlu Kantitatif Tahmin Yöntemleri 39

40 Yanda verilen veriler ışığında en güncel veriye %50 ve geçmişe doğru %30 ve %20 ağırlık vererek ağırlıklı ortalamayı hesaplayınız. Örnek Kerem Aytunlu Kantitatif Tahmin Yöntemleri 40

41 Örnek Kerem Aytunlu Kantitatif Tahmin Yöntemleri 41

42 Üstel Düzeltme Yöntemi (Exponential Smoothing) Kullanımı kolay olan daha gelişmiş bir hareketli ortalama yöntemi Tahmin, önceki dönemin tahmini ile gerçek talebinin ağırlıklı ortalamasına eşittir. F t α α = Dt 1 + ( 1 ) Ft 1 = Ft 1 et 1 Yeni Tahmin = Geçen Dönemin Tahmini - α(geçen Dönemin Tahmin Hatası) Tahmin Hatası = (Talep Tahmini Gerçek Talep) 0 α 1 (Genelde 0.05 ile 0.50 arası) α Üstel düzeltme sabitidir ve α nın yüksek olmasıgüncel verilere daha fazla ağırlık verildiği anlamına gelir. α 42

43 Örnek-4 Bir hava üssünde son sekiz ayda kaydedilen aylık motor arızaları sırasıyla 200, 250, 175, 186, 225, 285, 305, 190 olarak kaydedilmiştir. Bu verilere göre: 1. ayın tahmini 200 olarak alınır ve α = 0.1 olarak kabul edilirse: F 2 = αd 1 + (1 - α)f 1 = (0.1)(200) + (0.9)(200) = 200 F 3 = αd 2 + (1 - α)f 2 = (0.1)(250) + (0.9)(200) = 205 Ay Arıza Tahmin Ay Arıza Tahmin

44 Hareketli ortalamalar ile üstel düzeltme karşılaştırması Ay Arıza MA(3) Hata ES(0.1) Hata Σ MAD(MA(3)) = 288/5 = 57.6 MAD(ES(0.1)) = 246/5 =49.2 MSE(MA(3)) = MSE(ES(0.1)) =

45 Hareketli ortalamalar ile üstel düzeltme karşılaştırması Birbirine uyumlu, hareketli ortalama dönem uzunluğu ve üstel düzeltme katsayısını belirleme: Tahminlerde kullanılan verilerin ortalama yaşları eşitlenir. MA için Ortalama yaş=(1/n)(1+2+ +N) = (N+1)/2 i= 1 ES için Ortalama yaş = iα( 1 α ) N = 2 α α = 2 ( N N = 2 α α + 1) veya i 1 = 1/ α 45

46 Hareketli ortalamalar ile üstel düzeltme karşılaştırması Benzerlikler: Her iki yöntem de talep sürecinin durağan olduğu varsayımına dayanmaktadır. Her iki yöntem de tek parametreyle tanımlanır. Küçük N ve büyük α güncel verilere daha büyük önem verildiğini gösterir. Eğer serilerde eğilim mevcutsa, her iki yöntem de bunun gerisinde kalır. α = 2/(N+1) için iki yöntem de aynı tahmin hata dağılımına sahiptir. 46

47 Hareketli ortalamalar ile üstel düzeltme karşılaştırması Farklılıklar: Üstel düzeltme sabiti 1 den küçük olduğu sürece, üstel düzeltme yöntemi geçmiş tüm verileri dikkate alır. Ancak hareketli ortalamalarda en son N dönem incelenir. Hareketli ortalamalarda, geçmiş N dönem verisinin tamamı saklanmalıdır. Üstel düzeltmede ise, yalnızca son tahmin saklanır. 47

48 Eğilimi İçeren Yöntemler Regresyon analizi Çift üstel düzeltme yöntemi (Holt yöntemi) 48

49 Eğilime Duyarlı Üstel Düzeltme Yöntemi Holt s Yöntemi Basit üstel düzeltme yöntemi durağan ortama uygundur. eğilim değişimlerini yeteri kadar iyi izleyemez. Eğilim İçeren Tahmin = serinin değeri (S t )+eğilimin değeri (G t ) S t =αd t + (1- α)(s t-1 +G t-1 ) G t =β(s t -S t-1 ) + (1- β)g t-1 F t = S t + G t S t : t anındaki ortalama G t : t anındaki eğim β α: Eğimde kararlılık daha önemlidir. 0 α 1 ve 0 β 1 49

50 Örnek-5 Bir hava üssünde son sekiz ayda kaydedilen aylık Motor arızaları sırasıyla 200, 250, 175, 186, 225, 285, 305, 190 olarak kaydedilmiştir. Bu verilere göre: S 0 = 200 ve G 0 =10 olarak alınır ve α= β = 0.1 olarak kabul edilirse: S 1 =(0.1)(200)+(0.9)(200+10) = G 1 = (0.1)( )+(0.9)(10) = 9.9 S 2 =(0.1)(250)+(0.9)( ) = G 2 = (0.1)( )+(0.9)(9.9) = 10.2 S 3 =(0.1)(175)+(0.9)( ) = G 3 = (0.1)( )+(0.9)(10.2) =

51 Örnek-5 MAD değeri basit üstel düzleştirme ve hareketli ortalama yöntemlerine göre daha düşüktür. Bu yöntem verilerde herhangi bir eğilim olduğunda verileri temsil etmede diğer iki yönteme göre daha üstündür. 51

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir?

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Dersin amacı Tahmin, geleceğe hazır

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL 1. Uygulama: İhtiyaç Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

Üretim Yönetimi. 3.1. Ürün Tasarımı 19.02.2012. 3.1.1. Ürün Tasarımını Etkileyen Faktörler. Bölüm 3. Üretim Sistemlerinin Tasarımı ve Kuruluşu

Üretim Yönetimi. 3.1. Ürün Tasarımı 19.02.2012. 3.1.1. Ürün Tasarımını Etkileyen Faktörler. Bölüm 3. Üretim Sistemlerinin Tasarımı ve Kuruluşu Üretim Yönetimi Bölüm 3. Üretim Sistemlerinin Tasarımı ve Kuruluşu Yrd. Doç. Dr. Selçuk ÇEBİ http://scebi.ktu.edu.tr 3.1. Ürün Tasarımı Ürün tasarımı, ürünün fiziksel özelliklerini ve fonksiyonlarını açıkça

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2)

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Tahmin Yöntemleri Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Mevsimsel etkenin tahmininde kullanılan diğer bir yöntem de N dönemlik hareketli ortalamaların alınmasıdır. Burada N değeri aynı

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

İÇİNDEKİLER BİRİNCİ BÖLÜM GENEL OLARAK YATIRIM VE YATIRIM PROJELERİ

İÇİNDEKİLER BİRİNCİ BÖLÜM GENEL OLARAK YATIRIM VE YATIRIM PROJELERİ İÇİNDEKİLER BİRİNCİ BÖLÜM GENEL OLARAK YATIRIM VE YATIRIM PROJELERİ PLANLAMA... 1 PLANLAMANIN ÖZELLİKLER... 3 YATIRIM PROJESİ... 4 YATIRIM PROJELERİNİN SINIFLANDIRILMASI... 5 Yeni Mal ve Hizmet Üretmeye

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ İ&tanbul Üniversitesi İktisat Fakültesi Ord. Prof.'Şükrü Baban'a Armağan İstanbul - 1984 İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ Dr. Süleyman Özmucur" (*) 1. GİRİŞ: Bu makalenin amacı Devlet

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

FİNANSAL YÖNETİM. Finansal Planlama Nedir?

FİNANSAL YÖNETİM. Finansal Planlama Nedir? FİNANSAL YÖNETİM FİNANSAL PLANLAMA Yrd.Doç.Dr. Serkan ÇANKAYA Finansal analiz işletmenin geçmişe dönük verilerine dayanmaktaydı ancak finansal planlama ise geleceğe yönelik hareket biçimini belirlemeyi

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ SORU 1. Arz-talep grafiğini çizerek; a) Arz ve talepteki değişmenin fiyatı nasıl etkilediğini yazınız. b) Arz ve talebin hangi faktörlerden ve nasıl etkilendiğini yazınız. c) Arz ve talep ile istihdam

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI

İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI Anabilim Dalı: İşletme PROGRAMIN TANIMI: Son yıllarda dünyada Sağlık yönetimi ya da Sağlık İdaresi yüksek lisans eğitim

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde 1 16-31 Temmuz 2012 SAYI: 41 MÜSİAD Araştırmalar ve Yayın Komisyonu İşsizlikte Belirgin Düşüş 2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

PAZARLAMA ARAŞTIRMA SÜRECİ

PAZARLAMA ARAŞTIRMA SÜRECİ PAZARLAMA ARAŞTIRMA SÜRECİ Pazarlama araştırması yapılırken belirli bir sıra izlenir. Araştırmada her aşama, birbirinden bağımsız olmayıp biri diğeri ile ilişkilidir. Araştırma sürecinde başlıca aşağıdaki

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

ISLYLU1700 Uzmanlık Alan Dersi (Zorunlu) 4 0 0 6

ISLYLU1700 Uzmanlık Alan Dersi (Zorunlu) 4 0 0 6 TEZLİ YÜKSEKLİSANS Birinci Dönem ISLYLU1700 ISLYL 543 Uygulamalı İstatistiğe Giriş I (Zorunlu) 3 0 3 6 Toplam 16 0 12 30 ISLYL 503 Yönetim Düşüncesinin Evrimi 3 0 3 6 ISLYL 505 Örgütsel Davranış 3 0 3

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Daha Etkin İşletme Sermayesi Yönetimi 5 Aralık 2011

Daha Etkin İşletme Sermayesi Yönetimi 5 Aralık 2011 www.pwc.com/tr Daha Etkin İşletme Sermayesi Yönetimi İçerik 1. İşletme sermayesinde etkin yönetim 2. Etkin envanter yönetiminin işletme sermayesine katkısı 2 İşletme sermayesinde etkin yönetim 3 İşletme

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

İŞLETMENİN GELİR- GİDER VE KÂR HEDEFLERİ

İŞLETMENİN GELİR- GİDER VE KÂR HEDEFLERİ İŞLETMENİN GELİR- GİDER VE KÂR HEDEFLERİ İşletme yöneticileri belli bir dönem sonunda belli miktarda kâr elde etmeyi hedeflerler. Kâr = Gelirler - Giderler Olduğuna göre, kârı yönetmek aslında gelirler

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ders Planı ve Yöntembilimi 1 ve Yöntembilimi Sözcük Anlamı ile Ekonometri Ekonometri Sözcük anlamı ile ekonometri, ekonomik ölçüm

Detaylı

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI 2012 - LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI Genel Yetenek 1) Türkçe %50 2) Matematik %50 a) Sözcük bilgisi %5 a) Sayılarla işlem yapma %10 b) Dil bilgisi %10 b) Matematiksel ilişkilerden yararlanma

Detaylı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı 15 Mayıs 2014 SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ Esra DOĞAN, Misafir Araştırmacı Mehmet Furkan KARACA, Yardımcı Araştırmacı Hanehalkı İşgücü Anketinde Yeni Düzenlemeler Avrupa Birliğine tam uyum

Detaylı

KIRMACI ENDÜSTRİ IV.0 DEĞİŞİM SÜRECİ DANIŞMANLIĞI İŞ PLANI. KIRMACI MÜHENDİSLİK DANIŞMANLIK TİC. 1

KIRMACI ENDÜSTRİ IV.0 DEĞİŞİM SÜRECİ DANIŞMANLIĞI İŞ PLANI.  KIRMACI MÜHENDİSLİK DANIŞMANLIK TİC. 1 KIRMACI ENDÜSTRİ IV.0 DEĞİŞİM SÜRECİ DANIŞMANLIĞI İŞ PLANI www.kirmacidanismanlik.com KIRMACI MÜHENDİSLİK DANIŞMANLIK TİC. 1 I. Fabrikanın sektörel teknolojik Endüstri seviye tespiti ve yol haritası, raporlama,

Detaylı

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI

İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI İŞLETME ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ GÜZ DÖNEMİ DERS PROGRAMI Dersin Kodu Kredisi Dersin Niteliği İŞL 601 Pazarlama Teorileri 3 Zorunlu İŞL 603 Finansman Teorisi 3 Zorunlu İŞL 605 Uluslararası

Detaylı

LİMANLARININ İŞLEM HACMİ İLE EKİPMAN VE ALTYAPI İLİŞKİSİNİN BELİRLENMESİ. Doç Dr. A. Zafer ACAR Arş. Gör. Pınar GÜROL

LİMANLARININ İŞLEM HACMİ İLE EKİPMAN VE ALTYAPI İLİŞKİSİNİN BELİRLENMESİ. Doç Dr. A. Zafer ACAR Arş. Gör. Pınar GÜROL LİMANLARININ İŞLEM HACMİ İLE EKİPMAN VE ALTYAPI İLİŞKİSİNİN BELİRLENMESİ Doç Dr. A. Zafer ACAR Arş. Gör. Pınar GÜROL II. Ulusal Liman Kongresi 5-6 Kasım 2015/ İzmir Global ticarette üretimden tüketime

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii. 1. Bölüm EKONOMİK GÖSTERGE ANALİZİ

İÇİNDEKİLER. ÖNSÖZ... iii. 1. Bölüm EKONOMİK GÖSTERGE ANALİZİ İÇİNDEKİLER ÖNSÖZ... iii 1. Bölüm EKONOMİK GÖSTERGE ANALİZİ A. MİKROEKONOMİK GÖSTERGELER... 2 1. Ekonomik Sistemler... 2 1.1. Kapitalist Sistem... 2 1.2. Sosyalist Sistem... 3 1.3. Karma Ekonomik Sistem...

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Finansal sistem ve finansal piyasalar hakkında genel bilgilerin verilmesi Muhasebe Standartları Hakkında Genel Bilgiler (Muhasebe

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

İŞLETME POLİTİKASI (Stratejik Yönetim Süreci)

İŞLETME POLİTİKASI (Stratejik Yönetim Süreci) İŞLETME POLİTİKASI (Stratejik Yönetim Süreci) İşletmenin uzun dönemde yaşamını devam ettirmesine ve sürdürülebilir rekabet üstünlüğü sağlamasına yönelik bilgi toplama, analiz, seçim, karar ve uygulama

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

Stok Yönetimi. Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları

Stok Yönetimi. Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları Stok Yönetimi Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları Stok nedir? Stok, işletmenin ihtiyaçlarını karşılamak üzere bulundurduğu bitmiş ürün veya çeşitli düzeylerden

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

İŞLETME POLİTİKASI (Dış Çevre Analizi)

İŞLETME POLİTİKASI (Dış Çevre Analizi) 1) Genel Çevre Analizi Politik Çevre, Demografik Çevre, Teknolojik Çevre,Yasal Çevre, Ekonomik Çevre, Sosyokültürel Çevre, Uluslararası Çevre Ne Düşünürsünüz? Sizce bir beyaz eşya üreticisini yerel politikacılar

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir?

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir? Ders : Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 4 Yrd. Doç. Dr. Beyazıt Ocaktan E-mail: bocaktan@gmail.com Ders İçerik: nedir? Markov Zinciri nedir? Markov Özelliği Zaman Homojenliği

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Konu 3 Niceliksel Talep Analizi

Konu 3 Niceliksel Talep Analizi .. Konu 3 Niceliksel Talep Analizi Hadi Yektaş Uluslararası Antalya Üniversitesi İşletme Tezsiz Yüksek Lisans Programı 1 / 43 Hadi Yektaş Niceliksel Talep Analizi . İçerik.1 Giriş.2.3 Lineer Log-Lineer.4.5

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı