Bağımlı Kukla Değişkenler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bağımlı Kukla Değişkenler"

Transkript

1 Bağımlı Kukla Değişkenler Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla değişkenler söz konusudur. Bu durumdaki modelleri tahmin etmek için dört yaklaşım vardır: -Doğrusal Olasılık Modeli -Logit Modeli -Probit Modeli -Tobit Modeli 1

2 Doğrusal Olasılık Modeli Y i = b 1 + b 2 X i +u i Y i = 1 Eğer i. Birey istenen özelliğe sahipse 0 Diğer Durumlarda X i = Bağımsız değişken Bu modele olasılıklı model denmesinin nedeni, Y nin X için şartlı beklenen değerinin, Y nin X için şartlı olasılığına eşit olmasıdır. E(Y i X i )=Pr(Y i =1 X i ) 2

3 Doğrusal Olasılık Modeli E(u i ) = 0 E(Y i X i )= b 1 + b 2 X i Y i değişkeninin olasılık dağılımı: Y i Olasılık 0 1-P i 1 P i Toplam 1 E(Y i X i ) = SY i P i =0.(1-P i ) + 1.(P i ) = P i E(Y i X i )= b 1 + b 2 X i = P i 0 E(Y i X i ) 1 3

4 DOM Tahminindeki Sorunlar u i hata teriminin normal dağılmayışı: Normallik varsayımının sağlanmaması durumunda tahmin ediciler sapmasızlıklarını korurlar. Nokta tahminde normallik varsayımı gözardı edilir. Örnek hacmi sonsuza giderken EKK tahmincileri çoğunlukla normal dağılıma uyarlar DOM ile yapılan istatistiksel çıkarsamalar normallik varsayımı altındaki EKK sürecine uyarlar 4

5 u ların Binom Dağılımlı Olması EKKY varsayımlarından biri u değerlerinin dağılımının normal olmasıdır. Bu varsayım sayesinde katsayı tahminlerinin güven aralıkları hesaplanıp, test yapılabilmektedir. DOM de u lar normal dağılmaz, binom dağılımı gösterir: Y b b X u u Y b b X Y i i i ve 0 değerini aldığında Y i =1 için i 1 2 i u 1 b b X u b b X Y i =0 için i 1 2 i i u lar normal değildir. İki değerli binom dağılımlıdır. Ancak büyük örneklerde DOM güven aralıkları ve hipotez testleri geçerlidir ve EKKY normal dağılım varsayımının sağlandığı 5 kabul edilmektedir.

6 u i hata teriminin değişen varyanslı olması: DOM de u lar eşit varyanslı değillerdir. Bunun için kesikli bir Y değişkeni varyansından hareketle Var ( Y) ( Y Y yerine u alınarak Var ( u) ( u Y ). P( 2 i Y i u) 2 ). P( u) ( u ). P( 2 i u i ) Y i u i İhtimal=P(u i ) 0 -b 1 -b 2 X (1-P i ) 1 1-b 1 -b 2 X P i Var(u ) ( b b X) (1 P ) (1 b b X) (P ) 2 2 i 1 2 i 1 2 i Var(u i) (b1 b2x)(1 b1 b2x) Var(u ) E(Y X )[1 E(Y X )] P (1 P ) i i i i i 6

7 u nun varyansı farklıdır. u nun varyansı Y nin X için şartlı beklenen değerine bağlıdır ve sonuçta u nun varyansı X in değerine bağlı olacak ve eşit olmayacaktır. u i hata teriminin değişen varyanslı olması: Var(u i ) = P i (1-P i ) DOM nin EKKY ile tahmininde ortaya çıkan farklı varyans problemine aşağıdaki dönüşümlü modeli tahmin ederek çözüm getirmek mümkündür: Y b1 b2xi ui v v v v i i i i vi E(Y X i)[1 E(Y X i)] P i(1 P i) 7

8 DOM de Farklı Varyansı Önleme E(Y X i) ler bilinmediğinden bunun yerine örnek tahmini ˆi değerleri hesaplanarak konur. v Y ˆ (1 Y ˆ ) i i i ifadesinde yerine 0 E(Y i X i ) 1 varsayımının yerine gelmeyişi DOM de Y nin şartlı olasılığını gösteren E(Y X) nın 0 ila 1 arasında bulunması şarttır. Y; 0 ve 1 değerini almaktadır.bu şart Y anakütle için geçerlidir. Anakütlenin tahmincisi olmayabilir. Tahmini şartlı olasılıklar 0 ile 1 olmayabilir: Yˆi için geçerli 8

9 0 E(Y i X i ) 1 0 ile 1 arasında mıdır? DOM, EKKY ile elde edildikten sonra: 1- Bunlardan bir kısmı 0 dan küçük, negatif değerli ise, bunlar için Yˆi 0 değerini alır. 1 den büyük değerli ise bunlar için nin 1 e eşit olduğu kabul edilir. 2- Bunlardan bir kısmı 0 dan küçük, negatif değerli ise, bunlar için Yˆi değerini alır. 1 den büyük değerli ise bunlar için ne değeri verilir. Yˆi Yˆi 9

10 3- Bunlardan bir kısmı 0 dan küçük, negatif değerli ve 1 den büyük değerli ise bu gözlemler atılır. Dönüştürmeden sonra EKKY tekrar uygulanır ve farklı varyansın kalktığı görülebilir. u v eşit varyanslıdır. Bu yöntem Tartılı En Küçük Kareler Yöntemi (TEKKY) olarak adlandırılır. 10

11 R 2 Değerinin Genellikle Küçük Çıkarak, İlişkinin Uyumunu Gösteren Bir Ölçü Olamaması Belli bir X e karşılık gelen Y, ya 0 ya da 1 dir. Öyleyse bütün Y değerleri, ya X ekseni ya da 1 in hizasındaki doğru üzerinde yer alır. Genellikle klasik En Küçük Kareler yöntemi ile hesaplanan R 2, böyle modellerde 1 den çok küçük çıkma eğilimindedir. Çoğu uygulamada R 2, 0.2 ile 0.6 arasında yer alır. Tahmin edilen Y i, ya 0 a ya da 1 e yakın çıkacaktır. Bu nedenle John Aldrich ile Forrest Nelson Nitel bağımlı değişkeni olan modellerde, belirlilik katsayısının bir özetleme istatistiği olarak kullanılmasından kaçınılması gerektiğini ileri sürmektedir (Gujarati, 1995:546). 11

12 Doğrusal Olasılık Modeli D i = b 1 + b 2 M i +b 3 S i +u i D i = 1 Eğer i. Kadının bir işi varsa ya da iş arıyorsa 0 Diğer Durumlarda M i = 1 Eğer i. Kadın evliyse ve diğer durumlarda 0 S i = i.kadının yıl olarak aldığı eğitim 12

13 D i M i S i D i M i S i Kadının İşgücüne Katılımı Modeli: D i = 1 i.kadının bir işi varsa ya da iş arıyorsa 0 Diğer Durumlarda M i = 1 i. Kadın evliyse 0 diğer durumlarda S i = i.kadının yıl olarak aldığı eğitim 13

14 Kadının İşgücüne Katılımı Modeli D i = b 1 + b 2 M i +b 3 S i +u i Dependent Variable: D I Included observations: 30 M i = 1 Kadın evliyse ;0 diğer durumlarda ; S i = i.kadının yıl olarak aldığı eğitim Variable Coefficient Std. Error t-statistic Prob. C M I S I R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

15 Daha sonra modelde değişen varyans olup olmadığı araştırılmak istenmiş ve White testi ile modelde değişen varyans problemi test edilmiştir. White Heteroskedasticity Test: F-statistic Probability Obs*R-squared Probability Prob değeri >0.05 olduğu için H 0 hipotezi olan Değişen varyans yoktur, eşit varyans vardır hipotezi red edilemez. Test sonucu değişen varyans problemi ile karşılaşılmadığından herhangi bir işlem yapılmaz. Model olduğu gibi kabul edilir. 15

16 UYGULAMA:Akıllı telefonunun kullanılıp kullanılmamasını ifade eden bağımlı kukla değişken 50 kişiye yapılan anket sonuncunda yaş ve aylık ortalama gelir ile açıklanmıştır.(y=1, akıllı telefona sahip ise, Y=0 akıllı telefona sahip değilse) Kişi Y X(Gelir) Z(Yaş) Kişi Y X(Gelir) Z(Yaş)

17 Y=1, akıllı telefona sahip ise, Y=0 akıllı telefona sahip değilse; X(Gelir); Z(Yaş) Dependent Variable: Y Method: Least Squares Included observations: 50 Variable Coefficient Std. Error t-statistic Prob. C X Z R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Önce Modelde değişen varyansın olup olmadığı White testi ile araştırılır. 17

18 White Heteroskedasticity Test: F-statistic Probability Obs*R-squared Probability Prob değeri <0.05 olduğu için H 0 hipotezi olan Değişen varyans yoktur, eşit varyans vardır hipotezi red edilir. Değişen varyans problemi ile karşılaşıldığından önce Y hesaplanır. 2. Y nin 0 dan küçük değerleri ve 1 den büyük değerleri veri setinden çıkartılır.. v Y ˆ (1 Y ˆ ) 3. Ardından hesaplanır. i i i 4. Y= b 1 + b 2 X + b 3 Z modelinin her iki tarafı da değerine bölünür. 5. Model tahmin edilir. vi 18

19 Kişi Kişi Kişi Kişi Y Y Y Y 19

20 Dependent Variable: Y / v Method: Least Squares Sample: 1 50 Included observations: 44 Excluded observations: 6 Variable Coefficient Std. Error t-statistic Prob. 1/ v X / v Z/ v R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

21 DOM e Alternatif Model Arama Örnek büyüklüğü arttıkça hata terimi normal dağılıma yaklaşsa ve değişen varyans durumunda, ağırlıklı en küçük kareler yöntemi kullanılsa, modelin her iki tarafı vi ye bölünüp model değişimi yapılsa bile normallik ve değişen varyans varsayımlarıyla ilgili sakıncaları giderebilmek için logit ve probit modeller geliştirilmiştir. Bu modeller, hem 0 E( Y i X i ) 1 şartını sağlayabilmekte ve hem de P i ile X i arasındaki ilişkiyi doğrusallıktan kurtarabilmektedirler. Yani, logit ve probit modelleri, farklı bağımsız X değişkeninin olasılığının 0 ile 1 arasında kalmasını sağladıkları gibi; ayrıca, değişik bağımsız değişkene ait belli bir artış karşısında, bu bağımsız değişkenin kullanılma olasılığının değişik miktarda artmasını sağlamaktadırlar. 21

22 DOM e Alternatif Model Arama Günümüzde nitel değişkenlerden oluşan kukla değişken verileri analiz etmek için çeşitli teknikler kullanılmaktadır. Bunlardan log-linear modeller iki veya daha fazla kukla değişkenin koşullu ilişkisini analiz etmek için geliştirilmiştir. Bununla birlikte, log-linear modeller sayesinde, değişkenlerin oluşturduğu bileşik dağılımı, iki veya daha fazla değişkenin birbirine bağımlı olup olmadığını ve iki veya daha fazla değişken arasındaki ilişkiyi neden-sonuç ilişkisine dayandırmaksızın test etmek mümkündür. 22

23 DOM e Alternatif Model Arama DOM ile ilgili sayılan sorunların hepsi bir şekilde aşılabilir Ancak, DOM, P i =E(Y=1 X) olasılığının X le doğrusal olarak arttığını varsayar. Yani X deki marjinal veya küçük bir artış hep sabittir. Gerçek hayatta ise bu beklenen bir durum değildir. DOM ile ilgili sorunlar şu iki özellik sayesinde aşılabilir: 1.X i arttıkça P i =E(Y=1 X) de artar ancak 0 ile 1 aralığının dışına çıkmaması gerekmektedir. 2.P i ile X i arasındaki ilişkinin doğrusal olmaması gerekmektedir. 23

24 DOM e Alternatif Model Arama Yukarıdaki iki özelliği taşıyan modelin şekli aşağıda verilmiştir: 1 P KDF X Yukarıdaki eğri kümülatif dağılım fonksiyonuna benzemektedir. Bu fonksiyon kukla bağımlı değişkenli regresyon modellerinde kullanılabilir. 24

25 Logit Model Logit modeller, genelleştirilmiş doğrusal modelin belirli koşullar altında oluşturulmuş özel durumlarıdır. Bu durumda, eğer bağımsız değişkenlerin bazısı sürekli veya uygun (ilgili) sınıflar içine ayrıştırılamazsa, o zaman log-linear analiz yerine logistik regresyon kullanılmalıdır. Aynı zamanda eğer değişkenlerin bazısı bağımlı olarak ele alınırsa, o zaman logit model uygundur. Böyle bir durumda 0 la 1 arasında kalma koşulunu sağlayabilmek için logit modelin uygulanması önerilmektedir. Logit model, bağımlı değişkenin tahmini değerlerini olasılık olarak hesaplayarak olasılık kurallarına uygun sınıflama yapma imkanı veren, tablolaştırılmış ya da ham veri setlerini analiz eden bir istatistiksel yöntemdir. 25

26 Logit Model Logistik Dağılım Fonksiyonu 1 1 P i =E(Y=1 X) (b 1 b2x i ) 1 e e Z 1 i Z b b X 1 2 kümülatif lojistik dağılım fonksiyonudur. Zi Zi 1 1 e 1 e 1 P 1 1 Zi 1 Zi 1 Zi e e e z Pi 1 1 e. z e Bahis yada olabilirlik oranı z z 1-Pi 1 e e Bu orana lehine fark oranı denir. Lojistik modelin her iki tarafının doğal log. alındığında Pi z L ln( ) ln i i ee 1 Pi L i fark oranı logaritması olup hem X, hem parametrelere göre doğrusaldır.z değişkeni - dan + a değişirken, P 0 ile 1 arasında değişir. i i 26

27 Logit Model Logit modelde olasılık 1 1 P i =E(Y=1 X) (b 1 b2x i ) 1 e e Z 1 i iken. DOM de P =E(Y=1 X) b b X i 1 2 i şeklindedir. 27

28 Logit Modelin Özellikleri 1. P i, 0 dan 1 e kadar değer aldığında, Logitte - ile + arasında değer alır. 2. Logit, X e göre doğrusal iken olasılıklara göre değildir. 3. Logit modelin b 2 katsayısı şu şekilde yorumlanır: Bağımsız değişkendeki bir birimlik değişme karşısında logitteki değişmeyi gösterir. 4. Logit model tahmin edildikten sonra, X bağımsız değişkeninin belirli bir değeri için logitin gerçekleşme olasılığı hesaplanabilir. 28

29 Logit Model 1.00 F(Z) 0.75 p F( Z) 1 1 e Z 0.50 Z X Z Bir olayın gerçekleşme olasılığının birden büyük olması durumundan kaçınmak için olasılığın Z nin S şeklinde bir fonksiyonu olduğunu varsaymaktır. Z açıklayıcı değişkenlerin fonksiyonu olarak ifade edilebilir. 29 2

30 Logit Model 1.00 F(Z) 0.75 p F( Z) 1 1 e Z Z X Z Birçok fonksiyon S şeklinde fonksiyon özelliklere sahiptir ve yukarıda gösterildiği gibi bunlardan biri de lojistik fonksiyondur. Z + sonsuza gideren, e -Z sıfıra gitmekte, ve p 1 e gitmektedir. (fakat 1 i geçmemektedir.). Z sonsuza giderken, e -Z de sonsuza gitmekte ve p de sıfıra gitmektedir (fakat sıfırın 30 altına inmemektedir.). 3

31 A- Frekanslı Serilerde Logit Modelin EKKY İle Tahmini 1.Adım: hesaplanır. 2.Adım: Pi ni Ni L ln(p 1 P ) i i i L ln[n (N n )] i i i i ihtimalleri (nispi frekanslar) fark oranı logaritmaları hesaplanır. 3.Adım: Li b1 b2xi ui orijinal lojistik modeli tahminlenir. Farklı varyans durumu söz konusu ise; orijinal lojistik modelin her iki tarafı da ile çarpılarak dönüşümlü lojistik model elde edilir. v i Li b1 b2xi ui i i i i v N P (1 P ) 31

32 Farklı varyans durumu söz konusu ise; orijinal lojistik modelin her iki tarafı da ile çarpılarak dönüşümlü lojistik model elde edilir. v i vi Li b1 vi b2 vixi viui L b v b X w Dönüşümlü veya Tartılı * * 1 i 2 i i v N P (1 P ) i i i i EKK Lojistik Modeli wi ui vi 32

33 Frekanslı Seri İçin Logit Model Uygulaması 300 aileden oluşan küçük bir kasabada ailelerin, yıllık gelirleri (X i ) ve ev sahibi olanların sayısı (n i ) aşağıdaki tabloda gösterilmiştir. X Milyon TL) Aile Sayısı= N i Ev Sahibi Olan Aile Sayısı=n i Nispi Frekanslar P i =n i /N i SN i = 300 Sn i =

34 X i 1 N i 2 n i 3 P i 4=3/2 1-P i 5=1-4 P i /1- P i 6=4/5 L i 7=ln(6)

35 Dependent Variable: L Method: Least Squares Included observations: 10 Variable Coefficient Std. Error t-statistic Prob. C X R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

36 v=n.p.(1-p) 8= v i 9= L* 10= X* 11=

37 L i* = v i X i*, s= s(b i ): (0.2315) ( ), R 2 = 0.80 t= ( ) (6.0424), d= 1.649, F= Gelir bir birim arttığında, ev sahibi olma lehine fark oranının logaritması artmaktadır. Bu fark oranına göre belli bir gelir seviyesinde ev sahibi olma olasılığı hesaplanabilir: X=40 iken vi X değerleri yukarıdaki denklemde yerine konduğunda L * = bulunur. ˆ ˆ P Anti L Anti Anti 1 Pˆ Pˆ Pˆ olabilirlik oranı * log log log( ) ˆ P 37

38 40 birim gelirli bir ailenin ev sahibi olma olasılığı %47.43 dür. Lojistik modelden, belli bir gelir seviyesinde gelirdeki bir birimlik artışın ev sahibi olma olasılığını ne ölçüde arttıracağı tahmin edilebilir: bˆ 2 (1 Pˆ) Pˆ formülünden yararlanılır. X=40 iken gelir 1 birim arttığında ev sahibi olma olasılığı [ ( )0.4743]= (%0.8) 38

39 B- En Yüksek Olabilirlik Yöntemiyle Logit Modelin Elde Edilmesi Frekanslı olmayan serilerde logit modeli EKKY ile çözülemez. Pi z L ln( ) ln e i Z 1 P i e i i P i =1 ve P i =0 değerleri logit L i deki yerine koyulduğunda ln(1/0) ve ln(0/1) değerleri elde edilir ki bunlar anlamsızdır. En küçük kareler yöntemi ile L fonksiyonundaki parametrelerin tahmin değerleri bulunamaz, fakat bu parametreler maksimum olabilirlik modeli ile tahmin edilebilir. 39

40 Örneğin aşağıda frekanslı olmayan bir serinin en yüksek olabilirlik yöntemi ile logit model tahmini yer almaktadır: 40

41 Modeldeki katsayılar aşağıdaki gibidir; 41

42 Logit modelde katsayılar doğrudan, bağımsız değişkenlerdeki bir değişimin bağımlı değişkenin beklenen değeri üzerindeki etkisi olarak yorumlanamamaktadır. Katsayının işareti bağımsız değişken ile olayın gerçekleşme olasılığı arasındaki ilişkinin yönünü gösterir. Modeldeki bağımsız değişkenlerin tümü olayın gerçekleşme olasılığı ile ters yönlü bir ilişki içerisindedir. 42

43 43

44 1 P =E(Y=1 X) 1 e i (b b X ) 1 2 i 44

45 45

46 46

47 47

48 48

49 Probit Model Probit model, y bağımlı değişkenin normal dağıldığını varsayarken, Logit model bu değişkenin lojistik eğriye dayandığını varsaymaktadır. Bu iki modelden Logit modelin dağılımda lojistik birikimli dağılım fonksiyonunun kuyruk bölgeleri Probit modele göre daha geniştir. Nitel olarak ele alındığında bu iki model benzer sonuçlar vermesine rağmen iki modelin tahmin edilen anakütle katsayılarını doğrudan karşılaştırmak mümkün değildir. 49

50 İki değer alabilen nitel değişkenli nitel tercih modellerinden biri olan DOM ndeki en belirgin sorun, tahmin edilen olasılık değerlerinin 0-1 aralığının dışına çıkması sorunudur. Bu sorunun giderilmesi adına kullanılan Probit model, olasılıkların 0-1 arasında kalmasını sağlayan ve katsayılar itibariyle doğrusal olmayan bir modeldir. Probit model, genellikle gözlenemeyen bir fayda endeksi ile oluşturulduğundan, fayda endeksi hakkında bilgi verme yükümlülüğünü taşımaktadır. 50

51 Bağımlı kukla değişkenli modellerden kümülatif lojistik fonksiyonundan farklı olarak, normal kümülatif dağılım fonksiyonunu kullanan PROBİT(NORMAL) Model aşağıdaki gibi formüle edilir: F(z)= 0 Z 1 e ( Z ) / 2 z P R O B İ T (NORMAL) MODEL Probit modeli şu şekilde tanımlayabiliriz: Herhangi bir i hanesinin ev sahibi olma veya olmama kararının gözlenemeyen bir fayda indeksi I i ye bağlı olduğunu varsayalım. 51

52 I i, bağımsız değişkenlere bağlıdır. Örneğin X i (gelir)değişkeni. I i = b 1 + b 2 X i Y=1 hane ev sahibi Y=0 hane ev sahibi değil. Her hane için I i nın belli bir değerinden itibaren ev sahibi olma durumu söz konusudur.i i değeri, I i* değerini aştığı zaman hane, ev sahibi olacak aksi durumda olmayacaktır. I i* I i ifadesi faydanın belli bir eşik değerinden sonra söz konusu olabileceğini gösterir. I i* başlangıç değeri de I i gibi gözlenemez. Ancak, aynı ortalama ve varyanslı normal dağıldığı varsayılarak I i değerleri yukarıdaki regresyon denkleminden tahmin edilir. Tahminciler bulunur. Normal dağılım varsayımıyla I i* ın I i den küçük veya eşit olma olasılığı aşağıdaki standartlaştırılmış normal KDF ile hesaplanabilir: (1) 52

53 Endeks değerinin kendisi gibi gözlenemeyen ve I i* ile ifade edilen eşik değerine sahip olduğu düşünüldüğünde, eğer I i değeri I * i değerini aşarsa olayın meydana gelmeyeceği söylenebilir. I * i değerinin I i değerinden küçük ya da I i ye eşit olması normallik varsayımı altında standartlaştırılmış birikimli dağılım fonksiyonlarından hareketle hesaplanmaktadır. Burada I i gerçekte ölçülmemiş bir endeks olup normal ve sürekli bir tesadüfi değişken olarak adlandırılabilir. I i ler için gözlemler mevcut değildir. Ancak bu endeksin küçük ve büyük değerlerinden bireysel gözlemlerin hangi kategoriye ait oldukları bilinmektedir. 53

54 P i =Pr(Y=1)=Pr(I i* I i )=F(I i ) 1 I i t 2 / 2 1 e dt 2 2 b 2 1 b2x i t / e 2 dt (2) =Standartlaştırılmış Normal KDF t N(0,1) =standartlaştırılmış normal değişken P i =Bir ev sahibi olma olasılığı. 54

55 Probit Model P i =F(I i ) P i =F(I i ) P i 1 I i = b 1 + b 2 X i I i* <=I i verilmişken ev sahibi olma olasılığı P i ordinatta bulunur P i P i verilmişken, absiste I i bulunur I i =F -1 (P i ) 55

56 I i yı bulabilmek için 2 no lu ifadenin tersi alınmalıdır. I i = F -1 (I i )= F -1 (P i )=b 1 +b 2 X i =Probit model F -1 : normal kümülatif dağılım fonksiyonunun tersi. 56

57 57

58 A- Frekanslı Serilerde Probit Modelin Tahmin Aşamaları 1. P i = n i /N i hesaplanır. 2. I i = F -1 (P i )= normal eşdeğer sapma bulunur. 3. I i = b 1 + b 2 X i + u i EKK ile tahmin edilir. 4. İstenirse, I i yerine, (I i + 5)=probit değerleri alınarak, EKKY ile (13.19) tahmin edilir. 5. modelinin hata terimi u i farklı varyanslıdır. Bu sebepten dönüşümlü değerler alınarak TEKKY uygulanabilir: 58

59 2 u P i ( 1 Pi ) N f i i f i = F -1 (P i ) ifadesine eşit standart normal yoğunluk fonksiyonudur. 6. Büyük örnekler için b i 'lerin güven aralıkları ve hipotez testleri uygulanarak, anakütlede durumun geçerliliği araştırılabilir. 7. Belirlilik katsayısı R 2, modelin fonksiyonel biçiminin iyi seçilip seçilmediği konusunda bize fikir vermez. 59

60 Probit Model Uygulaması P i 0.25 I i =F -1 (P i ) Probitler=Z i =(I i +5) X i

61 Probit Model Uygulaması I i = X i, r 2 = r= s(b i ) (0.0028) s= 0.2 d= 1.59 t= (7.094) Z i = X i, r 2 = r= s(b i ) (0.0028) s= 0.2 d= t= (7.071) 61

62 B- En Yüksek Olabilirlik Yöntemiyle Probit Modelin Elde Edilmesi En Yüksek Olabilirlik Yöntemi nde anakütle ve bu anakütleden çekilen örnek arasındaki benzerlik ilişkisinden yararlanılarak bu örneğin elde edilme olasılığını maksimum yapan parametre değerleri tahmin edilmektedir. En Yüksek Olabilirlik Yöntemi, benzerlik fonksiyonunun maksimizasyonundan oluşmaktadır. Bu yöntemin uygulanabilmesi için hata terimlerinin dağılımının bilinmesi gereklidir. Logit modelin en yüksek olabilirlik yöntemiyle elde edilen örneğin probit model uygulaması şu şekilde gerçekleşmiştir: 62

63 63

64 64

65 65

66 66

67 67

Bağımlı Kukla Değişkenler

Bağımlı Kukla Değişkenler Bağımlı Kukla Değişkenler Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla değişkenler söz konusudur. Bu durumdaki modelleri

Detaylı

Bağımlı Kukla Değişkenler

Bağımlı Kukla Değişkenler Bağımlı Kukla Değişkenler Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla değişkenler söz konusudur. Bu durumdaki modelleri

Detaylı

Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.

Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin geçerliliği u i nin normal dağılmasına bağlıdır.

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yılları arasında Y gayri safi milli hasıla, M Para Arazı (M) ve r faiz oranı verileri aşağıda verilmiştir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatası taşıyıp taşımadığını Ramsey

Detaylı

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır.

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır. Uygulama-2 Bir araştırmacı Amerika da yüksek lisans ve doktora programlarını kabul edinilmeyi etkileyen faktörleri incelemek istemektedir. Bu doğrultuda aşağıdaki değişkenleri ele almaktadır. GRE: Üniversitelerin

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

TABLO I: Bağımlı değişken; Tüketim,- bağımsız değişkenler; gelir ve fiyat olmak üzere değişkenlere ait veriler verilmiştir.

TABLO I: Bağımlı değişken; Tüketim,- bağımsız değişkenler; gelir ve fiyat olmak üzere değişkenlere ait veriler verilmiştir. EKONOMETRİ II Uygulama - Otokorelasyon TABLO I: Bağımlı değişken; Tüketim,- bağımsız değişkenler; gelir ve fiyat olmak üzere Tuketim 58 Gelir 3959 Fiyat 312 değişkenlere ait veriler verilmiştir. 56 3858

Detaylı

Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.

Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. β tahminleri için uygulanan testlerin geçerliliği u i nin normal dağılmasına bağlıdır.

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER

BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER Birden çok bağımlı değişkenin yer aldığı modelleri incelemek amacıyla kullanılan modeller Birden Çok Bağımlı Değişkenli Regresyon Modelleri ya da kısaca MRM ler

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

0, model 3 doğruysa a3. Variable Coefficient Std. Error t-statistic Prob.

0, model 3 doğruysa a3. Variable Coefficient Std. Error t-statistic Prob. EKONOMETRİYE GİRİŞ II ÖDEV 2 ÇÖZÜM (Örgün ve İkinci Öğretim için) 1987-2006 yıllarına ait GSYH, YATIRIM ve FAİZ verileri kullanılarak elde edilen sonuçlar şu şekildedir: Yuvalanmamış-F Testi Model 1: YATIRIM

Detaylı

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM (Örgün e İknc Öğretm çn) 1. 754 hanehalkına at DOMerset sml Excel dosyasında yer alan erler kullanarak tahmnlenen DOM sonuçları: Dependent Varable: CALISANKADIN Sample:

Detaylı

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ Modeldeki değişken tanımları aşağıdaki gibidir: IS= 1 i.kadının bir işi varsa (ya da iş arıyorsa) 0 Diğer

Detaylı

Ekonometri I VARSAYIMLARI

Ekonometri I VARSAYIMLARI Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:

Detaylı

Yuvalanmamış F testi- Davidson- MacKinnon J sınaması

Yuvalanmamış F testi- Davidson- MacKinnon J sınaması Yuvalanmamış F testi- Davidson- MacKinnon J sınaması Tablo da yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız. Yıllar Yatırım GSYH Faiz 1987 18491 747 45 1988 78 7495 54 1989 5187 8014

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

ÇOKLU DOĞRUSAL BAĞLANTI

ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlanı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır... r xx i j paramereler belirlenemez hale gelir.

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Appendix C: İstatistiksel Çıkarsama

Appendix C: İstatistiksel Çıkarsama Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama

Detaylı

İyi Bir Modelin Özellikleri

İyi Bir Modelin Özellikleri İyi Bir Modelin Özellikleri 1. Basitlik. Belirlenmişlik Y t = b 1 (1-r)+b X t -rb X t-1 +ry t-1 +e t 3. R ölçüsü 4. Teorik tutarlılık 5. Fonksiyonel Biçim 1 Model Tanımlanması Araştırmada kullanılan modelin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

ÇOKLU REGRESYON MODELİ. Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir.

ÇOKLU REGRESYON MODELİ. Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir. ÇOKLU REGRESYON MODELİ Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir. Y=b 1 + b X + b X + u Y=b 1 + b X + b X +...+ b k X k + u

Detaylı

1. Basitlik 2. Belirlenmişlik Y t = b 1 (1-r)+b 2 X t -rb 2 X t-1 +ry t-1 +e t 3. R 2 ölçüsü 4. Teorik tutarlılık 5. Doğru Fonksiyonel Biçim

1. Basitlik 2. Belirlenmişlik Y t = b 1 (1-r)+b 2 X t -rb 2 X t-1 +ry t-1 +e t 3. R 2 ölçüsü 4. Teorik tutarlılık 5. Doğru Fonksiyonel Biçim 1. Basitlik. Belirlenmişlik Y t = b 1 (1-r)+b X t -rb X t-1 +ry t-1 +e t 3. R ölçüsü 4. Teorik tutarlılık 5. Doğru Fonksiyonel Biçim 1 Model Tanımlanması Araştırmada kullanılan modelin tanımlamasının doğru

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Değişen Varyans

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR:

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: 2120703360 KÜBRA İNAN 2120703321 EDA ZEYNEP KAYA EDİRNE

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

OTOKORELASYON OTOKORELASYON

OTOKORELASYON OTOKORELASYON OTOKORELASYON OTOKORELASYON Y = α + βx + u Cov (u,u s ) 0 u = ρ u -1 + ε -1 < ρ < +1 Birinci dereceden Ookorelasyon Birinci Dereceden Ooregressif Süreç; A R(1) e = ρ e -1 + ε Σe e ˆ ρ = Σ 1 e KARŞILA ILAŞILAN

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

500 BÜYÜK SANAYİ KURULUŞUNDA ÜRETİM, KÂRLILIK VE İSTİHDAM İLİŞKİLERİ. YÜKSEK LİSANS TEZİ Müh. Özlem KÖSTEKLİ. Anabilim Dalı: İşletme Mühendisliği

500 BÜYÜK SANAYİ KURULUŞUNDA ÜRETİM, KÂRLILIK VE İSTİHDAM İLİŞKİLERİ. YÜKSEK LİSANS TEZİ Müh. Özlem KÖSTEKLİ. Anabilim Dalı: İşletme Mühendisliği İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 500 BÜYÜK SANAYİ KURULUŞUNDA ÜRETİM, KÂRLILIK VE İSTİHDAM İLİŞKİLERİ YÜKSEK LİSANS TEZİ Müh. Özlem KÖSTEKLİ Anabilim Dalı: İşletme Mühendisliği Programı

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yllar arasnda Y gayri safi milli hasla, M Para Araz (M) ve r faiz oran verileri a#a$da verilmi#tir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatas ta#yp ta#mad$n Ramsey RESET testi

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans

Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 12: Zaman Serisi Regresyonlarında

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir. Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı

Detaylı

Y = 29,6324 X 2 = 29,0871 X 3 = 28,4473 y 2 = 2,04 x 2 2 = 0,94 x 2 3 = 2,29 yx 2 = 0,19 yx 3 = 1,60 x 2 x 3 = 1,06 e 2 = 0,2554 X + 28,47 X 3-0,53

Y = 29,6324 X 2 = 29,0871 X 3 = 28,4473 y 2 = 2,04 x 2 2 = 0,94 x 2 3 = 2,29 yx 2 = 0,19 yx 3 = 1,60 x 2 x 3 = 1,06 e 2 = 0,2554 X + 28,47 X 3-0,53 EKONOMETR DERS ÇALIMA SORULARI SORU : 1 1980-1994 y llar aras ndaki Türkiye Özel Yat r m (Y), Reel Mevduat Faiz Oran (X ) ve GSMH (X 3 ) verilerinden hareketle a*a+ daki ortalamadan farklara göre ara sonuçlar

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

EVIEWS KULLANIMI (EVIEWS 8)

EVIEWS KULLANIMI (EVIEWS 8) EVIEWS KULLANIMI (EVIEWS 8) BAŞLANGIÇ Yeni bir dosya (workfile) yaratma Adım 1. Ana menüden File/New/Workfile ı seçin Adım 2. Workfile structure type ne tür veri kullandığınızı gösterir. ÖR1. Zaman serisi

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

Regresyon. Regresyon korelasyon ile yakından ilişkilidir

Regresyon. Regresyon korelasyon ile yakından ilişkilidir Regresyon Regresyona Giriş Regresyon korelasyon ile yakından ilişkilidir Regresyon bir bağımlı değişken ile (DV) bir veya daha fazla bağımsız değişken arasındaki doğrusal ilişkiyi inceler. DV için başka

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik

Detaylı

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

PANEL VERİ MODELLERİNİN TAHMİNİNDE PARAMETRE HETEROJENLİĞİNİN ÖNEMİ: GELENEKSEL PHILLIPS EĞRİSİ ÜZERİNE BİR UYGULAMA

PANEL VERİ MODELLERİNİN TAHMİNİNDE PARAMETRE HETEROJENLİĞİNİN ÖNEMİ: GELENEKSEL PHILLIPS EĞRİSİ ÜZERİNE BİR UYGULAMA PAEL VERİ MODELLERİİ TAHMİİDE PARAMETRE HETEROJELİĞİİ ÖEMİ: GELEEKSEL PHILLIPS EĞRİSİ ÜZERİE BİR UYGULAMA Selim TÜZÜTÜRK (*) Özet: Panel veri modellerinin tahmininde, örneklem ile ilgili dikkat edilmesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa

Detaylı

QUANTILE REGRESYON * Quantile Regression

QUANTILE REGRESYON * Quantile Regression QUANTILE REGRESYON * Quantile Regression Fikriye KURTOĞLU İstatistik Anabilim Dalı Olcay ARSLAN İstatistik Anabilim Dalı ÖZET Bu çalışmada, Lineer Regresyon analizinde kullanılan en küçük kareler yöntemine

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI

EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI Aşağıdaki verileri EVIEWS paket programına aktarınız. Veri setini tanımladıktan sonra aşağıda istenen soruları bu verileri kullanarak

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ

BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ İÇİNDEKİLER BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ I. ÖRNEKLEME... 1 II. ÖRNEKLEMENİN SAFHALARI... 2 III. ÖRNEK ALMA YÖNTEMLERİ 5 A. RASYONEL ÖRNEK ALMA... 5 B. TESADÜFİ ÖRNEK ALMA... 6 C. KADEMELİ ÖRNEK ALMA...

Detaylı