Bilginin Görselleştirilmesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bilginin Görselleştirilmesi"

Transkript

1 Bilginin Görselleştirilmesi Bundan önceki konularımızda serbest halde azılmış metinlerde gerek duduğumuz bilginin varlığının işlenmee, karşılaştırmaa ve değerlendirmee atkın olmadığını, bu nedenle bilginin formalleştirilmesi oluna gidildiğini anlatmıştık. Formalleştirilmiş bilgi; hakkında bilgi edinmek istediğimiz her bir nesne için nesne özelliklerinin er aldığı bir bilgi formu oluşturmak demekti. Bu saede hem gerek duduğumuz her bilginin alınmasını, hem de sıra ve şekillerinin birbirine eş olmasını garanti etmiş oluruz. Öte andan bilgi formlarını birleştirerek tek bir tabloa dönüştürmek ve üzerinde işlem apabilmek eteneğine de sahip olunur. Tabloların aslında birer matris olduğu hatırlandığında anı tablo üzerinde, hatta birbirlerile ilişkili farklı tablolar arasında işlem apmak mümkün olur. Çoğu zaman tablolardan elde ettiğimiz bilgiler de birer tablo halinde karşımıza çıkar. Bu durumda bu tablodaki karşılıklı durumları değerlendirmek ve tablonun ifade ettiği anlamı çözmek pek çok değer arasında zorluk aratabilir. Alışkın olmaan gözlerin bu kadar çok saı arasında kabolması pek mümkündür. Arıca sizin adına araştırma aptığınız insanların çoğu algılama bakımından bu saılardan anlam çıkartmaa ugun olmaabilir. Arıca denemeler göstermiştir ki; çoğu zaman bir değişimin nasıl değiştiğini hızlı, etkin ve görsel biçimde göstermek, saısal olarak hangi ara değerleri aldığından daha çok bilgilendirici olabilmektedir. Bu nedenle elde ettiğimiz bir dizi bilginin arasındaki ilişkii görselleştirmek, ilişkii anlamak bakımından son derece önemlidir. Ama bir başka sorun hangi bilginin nasıl görselleştirilmesinin daha ugun olacağıdır. Verinin görselleştirilmesi için değişik grafik gösterilim teknikleri kullanılmaktadır. Aşağıda bunların biçimleri ve kullanım erleri anlatılmaktadır. Çizgi Grafik (Bar) Değişimin bir değişkene bağlı bir a da daha fazla değişkenle ifade edildiği ve sürekli olduğu durumlarda çizgi grafiklerin kullanılması doğru olur. Bu tür grafikler özellikle örnek ölçme vea hesaplama değerlerinin aralarında apılması mümkün başka ölçümlerin de olacağı sürekliği vurgular. t Örneğin elimizde verilen tabloda er aldığı gibi bir dizi veri olsun. Bir t değişkeninin değişimi ile elde edilmiş değişkenleri vardır. Bunlar arasındaki ilişkinin = f(t) fonksionu şeklinde olduğunu bilior vea düşünüor olabiliriz. Buradaki değerlerini verilen t lere karşılık olarak teker teker ölçmüş a da hesaplamış olabiliriz. Tabloa baktığımızda bunlar arasında birlikte arttıklarına dair bir kanaatimiz çabucak gelişir. Daha alışkın bir göz bu ilişkinin = 2x + 1 şeklinde bir fonksion ifade ettiğini de görebilir. Ama bütün bu ek bilgii sağlamak basit bir grafik ardımıla çok daha kola ve etkin olacaktır. Aşağıdaki grafiğe bu gözle bakacak olursak; değişimin doğrusal olduğunu, demek ki ilişkinin de doğrusal olduğunu, başlangıç, son ve ara değerlerin etkinliğini kolaca görüp anlaabiliriz. Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 1

2 t Daha karmaşık değişimler için görselleştirme işi fazla önem kazanır. Aşağıdaki tabloda er alan saılar bir önceki örneğe göre daha anlaşılmaz görünmektedir. Bunlar arasındaki ilişkii anlamak için grafik gösterilimden ararlanmak akıllıca olur. Verilen t değerlerinin arasında başka t ler de (aslında sonsuz t) olacağı dikkate alınırsa oluşturulacak grafiğin ine bir çizgi grafik olması ararlıdır t Çizilen grafik aradaki ilişkinin (neredese) sinüzoidal olduğunu belirlememize ardımcı olmaktadır. Ama gerçekten sinüzoidal mıdır? Bunu anlamanın en doğru olu seçilen t leri çoğaltarak daha fazla ara değere sahip olmaktır. Artış miktarını 1 den.2 e düşürdüğümüzde; görüldüğü gibi eğri daha gerçekçi olmaktadır. Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 2

3 t t Bazı durumlarda andaki şekilde görüldüğü gibi bir değişimin erel tepe ve çöküntü noktaları bulunur. Yeteri kadar sık alınmamış örneklerle apılan çalışmalarda bu tür arıntıları atlamak olası olduğundan çalışmanın sağlığı açısından bir risk ortaa çıkar. Aksine çok sık örnek almaa çalışmak ölçme ve işlem bakımından zaman kabına ol açar. Đki nokta arasında sonsuz nokta olduğuna göre örnekleme sıklığının sonu oktur. Önemli olan makul ve güvenilir sıklıkta alınmış örneklerle çalışmaktır. O halde güvenilir sıklık nedir? Bunun için iki ölçüden bahsedilebilir. Grafiğin estetik olarak kırık çizgi görüntüsünden gerçek eğri görüntüsüne akınlaştırılmasıdır. Bunu apmak için grafik ve geometrile ilişkili olanların akından bildiği gibi kirişi gören merkez açısının o den küçükse aın kendisi erine kirişinin kullanılması halinde insan gözü tarafından fark edilemeeceği olgusudur. Demek ki ukarıda sinüs eğrisinde olduğu gibi noktalar arasında oluşması gereken eğrilikleri gören merkez açılarını o den olacak şekilde düzenleme apılabilir. Daha teknik bir aklaşım ise değişimin sıklığı her ne ise örnekleme sıklığını bunun iki katı apmaktır. Yani saniede farklı değer aldığı bilinen bir değişimin sağlıkla izlenebilmesi için saniede 1 örnek alınması ugun olur. Buna örnekleme frekansı (sıklığı) adı verilir. Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 3

4 Bu değerden daha fazlası gereksiz işlem hacmi, daha azı ise bir takım tepe ve çöküş noktalarının gözden kaçırılma riski anlamına gelir. Kullanım eri ve mantığı anı olmakla birlikte çizgi grafikler için farklı biçimler kullanılabilir. Yata ve düşe eksene ilişkin büüklükleri kola takip edebilmek için kılavuz çizgileri, eksen adları, verinin gerçek değerinin üstüne azdırılması, verinin arı bir işaretle vurgulanması gibi seçenekler ihtiaca göre kullanılır düşe eksen verileri ata eksen verileri Sıklıkla apılan ugulamalardan birisi de anı değişkene bağlı fonksionlar olarak ortaa çıkan değişimlerin grafiklerini birlikte ve anı ortak eksende göstererek karşılaştırma ve algılama kolalığı sağlamaktır Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 4

5 Çubuk Grafik (Histogram) Eğer elinizdeki veriler dönemler halinde arılmış halde ise bunların karşılaştırılması ve birlikte gösterilmesi için çubuk grafikler kullanmak daha ugundur. Çubuk grafikte her bir dönem için bir çubuk vea sütun oluşturulur. Bunlar taşıdıkları değerle ilgili olan üksekliklerdedir. Bölece birbirinden bağımsız her bir dönemde ne olduğu okunabilirken dönemler arasında kıaslamalar da kolalaşmış olur. Örnek olarak ılın ilk 6 aında apılan alık üretimlere ilişkin saıların grafikle anlatımını ele alalım. Bu tablou temsil eden çubuk grafik anda görüldüğü gibidir. Dönem Üretim[ton] ocak 12 şubat 23 mart 18 nisan 14 maıs 16 haziran ocak şubat mart nisan maıs haziran Çoğunlukla anı döneme ilişkin birden fazla değişken değerlendirme kapsamında birlikte görülmek istenir. Bu durumda her dönemin üstünde her değişken için bir sütun an ana oluşturulur. 2 A B B Dönem [ton] [ton] [ton] ocak şubat mart nisan maıs haziran ocak şubat mart nisan maıs haziran Anı verilerin her dönem için toplamlarının nasıl değiştiğine dikkat çekilmek isteniorsa, bir döneme ilişkin verileri temsil eden çubuklar an ana erine üst üste çizilir. Bölece bunların toplamının büüklüğü diğer dönemlerle karşılaştırılabilir. Ama ine de her bir değişkenin kendi grubu içindeki durumu çubuğun parçaları halinde gösterilmiş olur. Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211]

6 ocak şubat mart nisan maıs haziran Eğer anlatıma daha ardımcı olacağı düşünülüorsa anı üst üste veriler aşağıdaki gibi de gösterilebilir ocak şubat mart nisan maıs haziran Pasta Grafik (Pie) Bir pastadan kesilen dilimleri andırdığından bu adı almıştır. Bir döneme ilişkin değerlerin bütün içindeki palarını göstermekte kullanılır. Dönemsel toplam %1 olacağından paların her birisi bu gerçek değerinin genel toplama bölümünden elde edilen oranlarla ifade edilir. Dönem ocak A [ton]; 12; A [ton] B [ton] B [ton] B [ton]; 21; 46% 27% B [ton]; 12; 27% Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 6

7 Dağılım Grafik (Scattering) Đki değişkenin tanımladığı düzlemde karşılıklı değerlerin düzleme nasıl dağıldıklarını göstermek amacıla kullanılır. Aşağıdaki tabloda verilen ve z değişkenlerine ilişkin eksenler bir düzlem tanımlamaktadır. Burada x in alabileceği her değere karşılık bir de mevcuttur. Bu x, değerleri bir koordinat olarak düzlemde erleştirilmişlerdir. Daha çok verilerin nasıl kümelendiğinin gösterilmesi amacıla kullanılır z Radar Grafik Birbirlerile dolalı olarak ilişkide olan verilerin kendi bağımsız değerlerinin ortaa çıkarttığı hacimsel büüklüğün gösterilmee çalışıldığı durumlarda kullanılan bir grafik biçimidir. Alan Not Okuma Anlama 46 Yazma 3 Gramer 27 Konuşma Konuşma Genel Dil Performansı Okuma Anlama Gramer Yazma Yukarıdaki örnekte bir personelin abancı dil bilgisinin değişik boutları bağımsız olarak değerlendirilmiş, ancak bunların ortak etkisinden kanaklanan genel bir performans değerlen- Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 7

8 dirmesi apılmıştır. Noktalar arasında kalan alanın büüklüğü performansın büüklüğü hakkında bir kanaat uandırmaktadır. 3 Boutlu ve Renkli Grafikler Yukarıda saılanlardan başka, haritalardaki eşükselti eğrilerinde olduğu gibi birbirlerine eş değerler taşıan noktaların ortak bir çizgile birleştirildiği a da anı renge boandığı grafikler kullanılabildiği gibi, 3 boutlu üzeler de veri görselleştirilmesinde kullanılabilir. Araştırmacı elindeki veriden en anlamlı sonucu çıkartmak ve en etkili biçimde anlatmak için ugun bir görselleştirme öntemini seçebilir. Aşağıda daha kapsamlı veriler için 3 boutlu veri görselleştirme örnekleri görülmektedir. Prof. Dr. E. Murat Esin, Araştırma Yöntemleri ve Ugulamaları [Okan Ü. 211] 8

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler DERS 5 Çok Değişkenli Fonksionlar Kısmi Türevler 5.1. Çok Değişkenli Fonksionlar. Reel saılar kümesi R ile gösterilmek üere ve her n için olarak tanımlanır. R R 3 {( ): R} = {( ) : R} = {( L ): L R} n

Detaylı

DERS 2. Fonksiyonlar - I

DERS 2. Fonksiyonlar - I DERS Fonksionlar - I.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması belli büüklükleri belirleme vea tahmin

Detaylı

Fizik 101: Ders 3 Ajanda

Fizik 101: Ders 3 Ajanda Anlamlı Saılar Fizik 101: Ders 3 Ajanda Tekrar: Vektörler, 2 ve 3D düzgün doğrusal hareket Rölatif hareket ve gözlem çerçeveleri Düzgün dairesel hareket Vektörler (tekrar) Vektör (Türkçe) ; Vektör (Almanca)

Detaylı

ĐKĐ BOYUTLU BEZERLĐK VE AFĐN DÖNÜŞÜMLERĐ

ĐKĐ BOYUTLU BEZERLĐK VE AFĐN DÖNÜŞÜMLERĐ / 16 MÜHENDĐSLĐK FAKÜLTESĐ JEODEZĐ VE FOTOGRAMETRĐ MÜHENDĐSLĐĞĐ BÖLÜMÜ Bölüm Đçi Seminer Çalışması ĐKĐ BOUTLU BEZERLĐK VE AFĐN DÖNÜŞÜMLERĐ Hazırlaan : Öğr.Gör.Orhan KURT Đçindekiler 1. Đki Boutlu Benzerlik

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Ders 7: Konikler - Tanım

Ders 7: Konikler - Tanım Ders 7: Konikler - Tanım Şimdie kadar nokta ve doğrular ve bunların ilişkilerini konuştuk. Bu derste eni bir kümeden söz edeceğiz: kuadrikler ve düzlemdeki özel adı konikler. İzdüşümsel doğrular, doğrusal

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ

UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ Uygulamalı davranış analizinde verilerin gösterilmesi ve yorumlanması için grafikler kullanılır. Grafikler öğrenci performansının merkezi eğilimi,

Detaylı

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 3 HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 2 EŞ-ANLI DENKLEM SİSTEMLERİ Bu bölümde analitik ve grafik olarak eş-anlı denklem sistemlerinin

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde DERS 4 Üstel ve Logaritmik Fonksionlar, Bileşik Faiz 4.. Üstel Fonksionlar. > 0, olmak üzere fonksiona taanında üstel fonksion denir. f = ( ) denklemi ile tanımlanan gösterimi ile ilgili olarak, okuucunun

Detaylı

Quartic Authalic Projeksiyonu ve Bir Bilgisayar Programı: Pseudo

Quartic Authalic Projeksiyonu ve Bir Bilgisayar Programı: Pseudo Harita Teknolojileri Elektronik Dergisi Cilt: 1, No:, 009 (10-19) Electronic Journal of Map Technologies Vol: 1, No:, 009 (10-19) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1309-3983

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI. HAZIRLAYAN Mehmet KUZU

GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI. HAZIRLAYAN Mehmet KUZU GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI HAZIRLAYAN Mehmet KUZU GRAFİKLER GRAFİKLER Grafik Nedir? Grafik nasıl oluşturulur? Word de ne tür grafikler oluşturulur? Grafik Oluşturma? Grafikler,

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

w EI M x w M x Eğilmeye Maruz Kompozit Kirişler İzotropik kiriş: M momentine maruz bir kiriş için çökme denklemi: ( z yönündeki çökme) 1 x w EI M x

w EI M x w M x Eğilmeye Maruz Kompozit Kirişler İzotropik kiriş: M momentine maruz bir kiriş için çökme denklemi: ( z yönündeki çökme) 1 x w EI M x Eğilmee aruz Kompozit Kirişler İzotropik kiriş: momentine maruz ir kiriş için çökme denklemi: EI w w EI ( z önündeki çökme) w: w EI vea EI. Taakalı kompozit kiriş: ij ij ij ij N N N 6 6 6 6 6 6 6 6 vea

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ 1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ ÖZET A. Celan 1, Ö. Mutluoğlu 2, R. Günaslan 3 1 S. Ü. Müh. Mim. Fak., Jeodezi ve Fot. Müh.

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

DERS 1. İki Değişkenli Doğrusal Denklem Sistemleri ve Matrisler

DERS 1. İki Değişkenli Doğrusal Denklem Sistemleri ve Matrisler DES İki Değişkenli Doğrusal Denklem Sistemleri ve Matrisler.. Doğrusal Denklem Sistemleri. Günlük aşamda aşağıdakine benzer pek çok problemle karşılaşırız. Problem. Manavdan alışveriş eden bir müşteri,

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

KENAR TETİKLEMELİ D FLİP-FLOP

KENAR TETİKLEMELİ D FLİP-FLOP Karadeniz Teknik Üniversitesi Bilgisaar Mühendisliği Bölümü Saısal Tasarım Laboratuarı KENAR TETİKLEMELİ FLİP-FLOP 1. SR Flip-Flop tan Kenar Tetiklemeli FF a Geçiş FF lar girişlere ugulanan lojik değerlere

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

GRAFĠKLER. WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU. HAZIRLAYAN Mehmet KUZU

GRAFĠKLER. WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU. HAZIRLAYAN Mehmet KUZU GRAFĠKLER WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU HAZIRLAYAN Mehmet KUZU GRAFİKLER GRAFİKLER Grafik Nedir? Grafik nasıl oluģturulur? Word de ne tür grafikler oluģturulur? Derse giriş

Detaylı

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için SYISL ÖLÜM ĐKKT! U ÖLÜM VPLYĞINIZ TPLM SRU SYISI 90 IR. Đlk 45 soru Matematiksel Đlişkilerden Yararlanma Gücü, Son 45 soru Fen ilimlerindeki Temel Kavram ve Đlkelerle üşünme Gücü ile ilgilidir. şit ğırlık

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

MİCROSOFT OFFİCE EXCEL 2010 İLE GRAFİK OLUŞTURMA

MİCROSOFT OFFİCE EXCEL 2010 İLE GRAFİK OLUŞTURMA MİCROSOFT OFFİCE EXCEL 2010 İLE GRAFİK OLUŞTURMA YAZARLAR BÜŞRA TÜFEKCİ/ e-mail busratufekci@anadolu.edu.tr FERİDE NUR ŞAHİN/ e-mail fns@anadolu.edu.tr MAYIS 2013 ÖNSÖZ Bu kılavuz Microsoft Office Excel

Detaylı

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler DERS Doğrusal Denklem Sistemleri ve Matrisler Sosal ve Beşeri Bilimlerde Matematik I kitabımıda doğrusal denklemleri tanımlamıştık (safa 85). Arıca, matematiksel modeli doğrusal denklemler içeren problem

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

Çoklu-Algılayıcılardan Alınan Görüntülerde Eşleştirme Yöntemlerinin Karşılaştırılması

Çoklu-Algılayıcılardan Alınan Görüntülerde Eşleştirme Yöntemlerinin Karşılaştırılması Çoklu-Algılaıcılardan Alınan Görüntülerde Eşleştirme Yöntemlerinin Karşılaştırılması Vesel Aslantaş, Emre Bendeş, Rifat Kurban, A. Nusret Toprak Ercies Üniversitesi, Bilgisaar Mühendisliği Bölümü, 38039,

Detaylı

Problemler. Yard. Doç. Dr. Mustafa Akkol

Problemler. Yard. Doç. Dr. Mustafa Akkol Problemler 1 7 parabolü = k doğrusu ile ve B noktalarında kesişior. Oluşan OB üçgenlerinden alanı en büük olanının alanı kaç br dir? 7 O B OB k 7 7 k 7 7 ' 7 0 mak 7. 18 54br 0 1 parabolü içerisine, köşeleri

Detaylı

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık.

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme ugun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. MATEMATİK SORU BANKASI tamamıla Milli Eğitim Bakanlığı Talim ve Terbie Kurulu

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Sigma 26 301-313, 2008

Sigma 26 301-313, 2008 Journal of Engineering and Natural Sciences Mühendislik ve Fen ilimleri Dergisi raştırma Makalesi / Research rticle NEW METOD FOR SOLVING THE RESETION ROLEM Sigma 6 0-, 008 Veli KRSU * Zonguldak Karaelmas

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

İZDÜŞÜM PRENSİPLERİ 8X M A 0.14 M A C M 0.06 A X 45. M42 X 1.5-6g 0.1 M B M

İZDÜŞÜM PRENSİPLERİ 8X M A 0.14 M A C M 0.06 A X 45. M42 X 1.5-6g 0.1 M B M 0.08 M A 8X 7.9-8.1 0.1 M B M M42 X 1.5-6g 0.06 A 6.6 6.1 9.6 9.4 C 8X 45 0.14 M A C M 86 20.00-20.13 İZDÜŞÜM C A 0.14 B PRENSİPLERİ 44.60 44.45 B 31.8 31.6 0.1 9.6 9.4 25.5 25.4 36 Prof. Dr. 34 Selim

Detaylı

SINIR ŞARTLARININ KAPALI ORTAMLARDAKİ DOĞAL TAŞINIMLA ISI TRANSFERİ VE SICAKLIK DAĞILIMINA ETKİSİNİN SAYISAL ANALİZİ

SINIR ŞARTLARININ KAPALI ORTAMLARDAKİ DOĞAL TAŞINIMLA ISI TRANSFERİ VE SICAKLIK DAĞILIMINA ETKİSİNİN SAYISAL ANALİZİ _ 355 SINIR ŞARTARININ KAPAI ORTAMARDAKİ DOĞA TAŞINIMA ISI TRANSFERİ VE SICAKIK DAĞIIMINA ETKİSİNİN SAYISA ANAİZİ Birol ŞAİN ÖZET Kapalı kare ortamlardaki doğal taşınım, ortamın düşe duvarlarından birine

Detaylı

Denklem ve Eşitsizlik Öğretimi

Denklem ve Eşitsizlik Öğretimi Denklem ve Eşitsizlik Öğretimi Yazar Yrd.Doç.Dr. Murat ALTUN ÜNİTE 10 Amaçlar Bu ünitei çalıştıktan sonra öğrenciler; Denklem, özdeşlik ve eşitsizlik kavramlarının öğretiminin gerekliliği ile ilgili nedenler

Detaylı

Harita Üzerinde Türkiye Elektrik Tüketimi

Harita Üzerinde Türkiye Elektrik Tüketimi Harita Üzerinde Türkiye Elektrik Tüketimi Barış Sanlı, barissanli2@gmail.com, www.barissanli.com Türkiye elektrik tüketimini hep sayılarla, en çok tüketen iller sıralaması ve bazı gazete haberlerindeki

Detaylı

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR Koyu uçlu bir kurşun kalem kullanın ve lütfen okunaklı yazın Bir hata yaptığınızda, lütfen yumuşak silgi kullanın ve hatanızı güzelce silin Değişkenlerin Belirlenmesi Bağımsız değişkenleri x eksenine,

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Şekil I.l Su Molekülünde Hidrojen Atomları Arasında lik Bir Açı Vardır.

Şekil I.l Su Molekülünde Hidrojen Atomları Arasında lik Bir Açı Vardır. I. MDDENİN YPISI: Maddenin apısı, çok eski devirlerden beri bilim adamlarının, araştırıcıların ilgisini çekmiştir. Hemen sölemek gerekir ki, araştırıcıların bu oldaki çalışmaları henüz sonuçlanmış değildir.

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ 3. ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ Zemin plağı üzerine etki eden dış ükler, plakta momentlerin oluşmasına sebep olurlar. Kolon ve taban plakası vasıtasıla plağa etkien tekil ükler

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet T E E L L E R 1 Temeller taşııcı sistemin üklerini zemine aktaran apı elemanlarıdır. Üst apı üklerinin ugun şekilde zemine aktarılması sırasında, taşııcı sistemde ek etkiler oluşabilecek çökmelerin ve

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

ARAŞTIRMA YÖNTEMLERİ

ARAŞTIRMA YÖNTEMLERİ ARAŞTIRMA YÖNTEMLERİ Bilimsel Araştırmaların Sınıflandırılması İlişki Aramayan Araştırmalar Betimsel Araştırmalar Deneysel Olmayan Araştırmalar İlişki Arayan Araştırmalar Sebep-Sonuç İlişkisine Dayalı

Detaylı

BİRİM MEKAN BİÇİMLERİ VE BİLEŞENLERİNİN ÇEŞİTLİ DEĞİŞKENLERE GÖRE YOĞUNLUK İLİŞKİLERİ

BİRİM MEKAN BİÇİMLERİ VE BİLEŞENLERİNİN ÇEŞİTLİ DEĞİŞKENLERE GÖRE YOĞUNLUK İLİŞKİLERİ BİRİM MEKAN BİÇİMLERİ VE BİLEŞENLERİNİN ÇEŞİTLİ DEĞİŞKENLERE GÖRE YOĞUNLUK İLİŞKİLERİ Bu bileşenler, daha önce tanımladığımız birim mekanın bir araa gelmesinden oluşacak konut aşam çevresindeki bina bina

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

Bulanık Kural Tabanlı Sistemler

Bulanık Kural Tabanlı Sistemler Üçgen (Triangular) normlar: Üçgen normlar (t-norm) Schweizer ve Sklar tarafından öne sürülmüştür. Herhangi bir a [0,1] aralığı için t-norm T(a, 1) = a şeklinde tanımlanır ve aşağıdaki özellikleri sağlar;

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

Türk Eczacıları Birliği Araştırma ve Uygulama Merkezi. İlaçta Akılcılık Hibe Programı Başvuru Formu

Türk Eczacıları Birliği Araştırma ve Uygulama Merkezi. İlaçta Akılcılık Hibe Programı Başvuru Formu Türk Eczacıları Birliği raştırma ve Ugulama Merkezi İlaçta kılcılık Hibe Programı Başvuru Formu (www.teb.org.tr adresinden indirebilirsiniz) 1. TNIM Projenin dı: Başvuru Sahibinin

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

LİNEER OLMAYAN DALGA DİRENCİ ANALİZİNİN GEMİ HİDRODİNAMİK DİZAYNINDAKİ YERİ

LİNEER OLMAYAN DALGA DİRENCİ ANALİZİNİN GEMİ HİDRODİNAMİK DİZAYNINDAKİ YERİ Gemi Mühendisliği ve Sanaimiz Sempozumu, 4-5 Aralık 004 LİNEER OLMAYAN DALGA DİRENCİ ANALİZİNİN GEMİ HİDRODİNAMİK DİZAYNINDAKİ YERİ Dr. Yük. Müh. Devrim Bülent DANIŞMAN 1, Prof. Dr. Ömer GÖREN ÖZET Gemi

Detaylı

Şekil D.1. şekil değiştirme bileşenlerinin bilindiği kabul edilsin.

Şekil D.1. şekil değiştirme bileşenlerinin bilindiği kabul edilsin. EK D DENEYSEL GERİLME ANALİZİ D. DENEYSEL GERİLME ANALİZİ Elastik bir cisim, en genel halde bir kuvvet sistein ve bağ kuvvetlerinin etkisinde dengede olsun. Cisimde genelde noktadan noktaa değişen bir

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

YÖNEYLEM ARAŞTIRMASI-I

YÖNEYLEM ARAŞTIRMASI-I T.C. ANADOLU ÜNİVERSİTESİ YAYINI NO: 58 AÇIKÖĞRETİM FAKÜLTESİ YAYINI NO: 499 YÖNEYLEM ARAŞTIRMASI-I Yazarlar Prof.Dr. Müjgan SAĞIR (Ünite, 4, 5) Yrd.Doç.Dr. Mahmut ATLAS (Ünite, ) Doç.Dr. Nil ARAS (Ünite

Detaylı

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK : MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Eğik Eğilme Etkisi Altındaki Dikdörtgen Tekil Temellerde Taban Gerilmelerinin Hesabı *

Eğik Eğilme Etkisi Altındaki Dikdörtgen Tekil Temellerde Taban Gerilmelerinin Hesabı * İMO Teknik Dergi, 011 5659-5674, Yazı 6 Eğik Eğilme Etkisi Altındaki Dikdörtgen Tekil Temellerde Taban Gerilmelerinin Hesabı * Güna ÖZMEN* ÖZ Deprem bölgelerinde apılacak apılardaki tüm temellerin eğik

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

Soru. x y R olmak üzere 2 x y 3 1 x 4 olduğuna göre y nin alabileceği değerler hangi aralıktadır? A 3 y 1 B 6 y 2

Soru. x y R olmak üzere 2 x y 3 1 x 4 olduğuna göre y nin alabileceği değerler hangi aralıktadır? A 3 y 1 B 6 y 2 Eşitsizliklerde taraf tarafa toplama Sağlama işlemi apma Adana Ankara İzmir zümresine katılan meslektaşlarımızla birlikte piasada cevabı hatalı verilen sorular azıldığını tespit ederek anı hatanın tekrarı

Detaylı

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation).

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation). DERS Türevin Ugulamaları: Kapalı Türev, Değişim Oranları.. Kapalı Türev(İmplici Differeniaion). Eğer f (), denkleminde olduğu gibi kapalı(implici olarak verilmişse, ü bulmak için zincir kuralı kullanılabilir:

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı