TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1"

Transkript

1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Geometrik Çizimler-1

2 2/32 Geometrik Çizimler - 1 Geometrik Çizimler-1 T-cetveli ve Gönye kullanımı Bir doğrunun orta noktasını bulma Doğruya, üzerindeki bir noktadan dikme çıkma Doğruya, dışındaki bir noktadan dikme inme Doğruya, istenen noktadan dikme çıkma Bir doğruyu istenen sayıda eşit parçaya bölme Bir açının açıortayını çizmek Dik açıyı üçe bölmek Bir açıyı taşımak Tepe noktası bilinmeyen açının açıortayı Gönye ile 15 katlarında açılar çizmek Eşkenar üçgen çizmek Daire içine eşkenar üçgen çizmek Kare çizmek Dairenin merkezini bulmak Çemberin içine ve dışına kare çizmek Kenar uzunluğu bilinen beşgen çizmek Çember içine beşgen çizmek Çember içine altıgen çizmek Çember içine yedigen çizmek Birbirine paralel iki doğruyu iki yayla birleştirmek Doğru üzerindeki bir noktayla diğer doğruyu birleştirmek Çember dışındaki noktadan çembere teğet çizmek Çember üzerindeki bir noktadan çembere teğet çizmek İki daireye dıştan ortak teğet doğru çizmek İki daireye içten ortak teğet doğru çizmek

3 3/32 T-cetveli ve Gönye kullanımı

4 4/32 Bir doğrunun orta noktasını bulma

5 5/32 Doğruya, üzerindeki bir noktadan dikme çıkma

6 6/32 Doğruya, dışındaki bir noktadan dikme inme

7 7/32 Doğruya, istenen noktadan dikme çıkma

8 8/32 Bir doğruyu istenen sayıda eşit parçaya bölme

9 9/32 Bir açının açıortayını çizmek

10 10/32 Dik açıyı üçe bölmek

11 11/32 Bir açıyı taşımak

12 12/32 Tepe noktası bilinmeyen açının açıortayı

13 13/32 Gönye ile 15 katlarında açılar çizmek

14 14/32 Eşkenar üçgen çizmek Geometrik Çizimler-1 Pergel ile Gönye ile

15 15/32 Daire içine eşkenar üçgen çizmek

16 16/32 Kare çizmek Geometrik Çizimler-1 Pergel ile Gönye ile

17 17/32 Dairenin merkezini bulmak

18 18/32 Çemberin içine ve dışına kare çizmek

19 19/32 Kenar uzunluğu bilinen beşgen çizmek

20 20/32 Çember içine beşgen çizmek 1. O merkezine göre çember çizilir. 2. OA yarıçap uzunluğunun orta noktası B bulunur. B merkez olmak üzere pergel R 1 = BC kadar açılarak çizilen yay ile çember ekseni D noktasında kesiştirilir. 3. CD ölçüsü beşgenin kenar uzunluğudur. Bu ölçü, R 2 yayıyla çember üzerine sırayla işaretlenip çember beşe bölünür. 4. Bulunan noktalar birleştirilerek beşgen tamamlanır.

21 21/32 Çember içine altıgen çizmek 1. R yarıçaplı çember çizilir. 2. Pergel açıklığı bozulmadan A ve B noktaları merkez olmak üzere iki yay çizilerek çember üzerinde altıgenin diğer noktaları bulunur. 3. Çember üzerinde bulunan noktalar ile A ve B noktaları sırasıyla birleştirilerek altıgen çizimi tamamlanır.

22 22/32 1. R yarıçaplı çember çizilir. Çember içine yedigen çizmek 2. Pergel açıklığı bozulmadan A noktasına konarak O merkezinden geçen, B ve C noktalarında kesen yay çizilir. 3. B ve C noktalarının birleştirilmesiyle eksen üzerinde D noktası bulunur. 4. Bulunan BD mesafesi yedigenin kenar uzunluğudur. Pergel BD kadar açılarak çember yedi eşit parçaya bölünür. 5. Bulunan noktalar birleştirilerek yedigen çizimi tamamlanır. Geometrik Çizimler-1

23 23/32 Birbirine paralel iki doğruyu iki yayla birleştirmek 1. Doğrular üzerindeki A ve B noktaları birleştirilir. 2. AB doğrusu üzerinde herhangi bir T noktası işaretlenir. 3. Bulunan AT ve BT doğrularının orta dikmeleri çizilir. A ve B noktalarından da doğrulara dikmeler çıkılır. 4. Doğruların kesiştiği C ve D noktaları merkez olmak üzere AT ve BT noktaları arasında yaylar çizilir.

24 24/32 Doğru üzerindeki bir noktayla diğer doğruyu birleştirmek Geometrik Çizimler-1 1. Doğru üzerindeki A noktasından dikme çıkılır. R yarıçap ölçüsü işaretlenerek B merkezli R yayı çizilir. 2. Yine B merkez olmak üzere pergel 2R kadar açılarak bir yay daha çizilir. 3. Diğer doğruya R mesafesinde paralel doğru çizilerek 2R yayını kestiği C noktası bulunur. 4. B ve C merkez noktaları birleştirilerek ve C noktasından doğruya dik inilerek T teğet noktaları bulunur. 5. C merkez olmak üzere R yarıçaplı yayla daha önce çizilmiş yay T noktaları arasında birleştirilir.

25 25/32 Çember dışındaki noktadan çembere teğet çizmek 1. Çember dışındaki P noktası ile O merkezini birleştiren doğru çizilir. 2. PO doğrusunun orta noktası (A) bulunur. 3. A merkez olmak üzere O ve P den geçen daire çizilir. 4. Çizilen bu daire ile çemberin kesiştiği noktalar (T 1,2 ) teğet noktalarıdır. 5. P noktası T noktası ile birleştirilirse teğet doğru çizilmiş olur. T noktası O merkeziyle birleştirilirse teğet doğrusuna dik doğru çizilmiş olur.

26 26/32 Çember üzerindeki bir noktadan çembere teğet çizmek 1. Gönyenin dik kenarlarından birisi O merkez ile P noktasına göre ayarlanır. 2. Gönyenin dik olmayan kenarına T cetveli veya diğer gönye yerleştirilir. 3. Gönyenin diğer dik kenarı P noktasına ayarlanıp çembere teğet doğru çizilir.

27 Pergel ile İki daireye dıştan ortak teğet doğru çizmek 27/32 1. Dairelerin merkezleri arasındaki mesafenin orta noktası A bulunur. 2. A merkez olmak üzere O 1 ve O 2 noktalarından geçen daire çizilir. 3. Büyük dairenin yarıçap ölçüsünden küçük dairenin yarıçap ölçüsü çıkarılarak (R 1 -R 2 ) büyük dairenin O 1 merkezinden daire çizilir. 4. Çizilen bu daireyle A merkezli dairenin kesişme noktaları B ve C bulunur. 5. O 1 merkezi ile B ve C noktalarından geçen doğrularla T 1 teğet noktaları elde edilir. Geometrik Çizimler-1 6. B ve C noktaları O 2 merkeziyle birleştirilir. Pergel O 2 B kadar açılıp, T 1 noktaları merkez olmak üzere küçük daire kesiştirilir ve T 2 teğet noktaları bulunur. 7. T 1 ve T 2 teğet noktalarının birleştirilmesiyle teğet doğru çizilir.

28 Gönye ile İki daireye dıştan ortak teğet doğru çizmek 28/32 1. Gönyenin bir kenarı iki daireye de teğet olacak şekilde ayarlanıp T cetveli üzerine yerleştirilir. 2. Gönyenin diğer dik kenarı ile O 1 ve O 2 merkezlerinden doğrular çizilerek T 1 ve T 2 noktaları bulunur. 3. T 1 ve T 2 teğet noktaları birleştirilerek teğet doğru çizilir.

29 29/32 Kısa yoliki daireye dıştan ortak teğet doğru çizmek

30 Pergel ile İki daireye içten ortak teğet doğru çizmek 1. Dairelerin merkezleri arasındaki mesafenin orta noktası A bulunur. 2. A merkez olmak üzere O 1 ve O 2 noktalarından geçen daire çizilir. 30/32 3. Dairelerin yarıçaplarının toplamı olan (R 1 +R 2 ) yarıçapında merkezi O 1 olacak şekilde daire çizilir. 4. Çizilen R 1 +R 2 yarıçaplı daireyle daha önce çizilen dairenin kesiştiği B noktaları işaretlenir. 5. B noktaları O 1 merkeziyle birleştirilir ve T 1 noktaları bulunur. Geometrik Çizimler-1 6. Pergel O 2 B kadar açılıp T 1 noktaları merkez olmak üzere O 2 merkezli daire kesiştirilir ve T 2 noktaları bulunur. 7. T 1 ve T 2 teğet noktaları birleştirilerek teğet doğru çizilir.

31 Gönye ile İki daireye içten ortak teğet doğru çizmek 31/ lik gönyenin dik kenarı iki daireye teğet olacak şekilde ayarlanır. 2. Gönyenin dik kenarı T cetveli üzerinde kaydırılarak O 1 ve O 2 merkezlerinden geçen doğrularla T 1 ve T 2 noktaları bulunur. 3. T 1 ve T 2 noktaları dairenin arasından geçecek şekilde birleştirilerek içten teğet çizimi tamamlanır.

32 Kısa yol İki daireye içten ortak teğet doğru çizmek 32/32

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

1.5. Doğrularla İlgili Geometrik Çizimler

1.5. Doğrularla İlgili Geometrik Çizimler 1.5. Doğrularla İlgili Geometrik Çizimler Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şeklin üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler, çemberlerin

Detaylı

4. BÖLÜM GEOMETRİK ÇİZİMLER

4. BÖLÜM GEOMETRİK ÇİZİMLER 4. ÖLÜM GEOMETRİK ÇİZİMLER MHN 113 Teknik Resim ve Tasarı Geometri 2 4. GEOMETRİK ÇİZİMLER 4.1. ir doğruyu istenilen sayıda eşit parçalara bölmek 1. - doğrusunun bir ucundan herhangi bir açıda yardımcı

Detaylı

1- Resim Kağıtları. 1.1-Genel Bilgi

1- Resim Kağıtları. 1.1-Genel Bilgi 1.1-Genel ilgi 1- Resim Kağıtları Resim çizmek için çeşitli kağıtlar kullanılır. Kağıt cinsi resmin kullanılma amacına göre seçilir. Kağıtlar çeşitli genişlikte ve uzunluklarda, rulo şeklinde veya standart

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır.

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim İzometrik Perspektifler Küpün iz düşüm düzlemi üzerindeki döndürülme açısı eşit ise kenar uzunluklarındaki kısalma miktarı da aynı olur. Bu iz düşüme, izometrik

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

1- Resim Kağıtları. 1.1-Genel Bilgi

1- Resim Kağıtları. 1.1-Genel Bilgi 1.1-Genel ilgi 1- Resim Kağıtları Resim çizmek için çeşitli kağıtlar kullanılır. Kağıt cinsi resmin kullanılma amacına göre seçilir. Kağıtlar çeşitli genişlikte ve uzunluklarda, rulo şeklinde veya standart

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ GEOMETRİK MOTİFLER

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ GEOMETRİK MOTİFLER T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ GEOMETRİK MOTİFLER ANKARA 2008 Milli Eğitim Bakanlığı tarafından geliştirilen modüller;

Detaylı

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni aşağıdakilerden hangisidir? A) Estetik görünmesi için. B) Rahat

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) MAKİNE TEKNOLOJİSİ GEOMETRİK ÇİZİMLER ANKARA 2005 Milli Eğitim Bakanlığı tarafından geliştirilen modüller;

Detaylı

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri İkosahedron Küpoktahedron Hazırlayan: Banu Binbaşaran Tüysüzoğlu Çizim: Bilgin Ersözlü İkosidodekahedron Çember Eşkenar üçgen İkizkenar üçgen Dik üçgen Kare Küpoktahedron Üçgen şeklinde sekiz, kare şeklinde

Detaylı

İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT

İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT Kesit çıkarma ve Merdivenler MERDİVENLER Bir yapıda birbirinden farklı iki seviye arasında muntazam aralıklı, yatay

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.ibrahimcayiroglu.com TEKNİK RESİM

Karabük Üniversitesi, Mühendislik Fakültesi...www.ibrahimcayiroglu.com TEKNİK RESİM TEKNİK RESİM Teknik resim mühendis ve teknikerlerin tasarladıkları yada tasarlanan bir ürünü ifade edebilmek için kullandıkları bir lisandır. Bu lisan çok az farklarda olsa dünyanın her tarafında aynı

Detaylı

TEKNİK RESMİN AMACI ve ÖNEMİ

TEKNİK RESMİN AMACI ve ÖNEMİ TEKNİK RESİM Endüstride çalışan elemanlar, çalıştıkları yere göre yeterli resim bilgisine sahip olmalıdır. Bir teknisyen, resmi hem iyi bilmeli hem de iyi ve doğru çizmelidir. Tezgah başında çalışan işçi

Detaylı

TEKNİK RESMİN AMACI ve ÖNEMİ

TEKNİK RESMİN AMACI ve ÖNEMİ TEKNİK RESİM Endüstride çalışan elemanlar, çalıştıkları yere göre yeterli resim bilgisine sahip olmalıdır. Bir teknisyen, konstrüktör resmi hem iyi bilmeli hem de iyi ve doğru çizmelidir. Tezgah başında

Detaylı

11. SINIF GEOMETRİ KONU ÖZETİ

11. SINIF GEOMETRİ KONU ÖZETİ 2012 11. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÖRTGENLER DÖRTGEN VE TEMEL ELEMANLARI Herhangi üçü doğrusal olmayan A, B, C ve D noktaları verilsin. [AB], [BC], [CD] ve [DA]

Detaylı

TEKNİK RESİM DERS KİTABI

TEKNİK RESİM DERS KİTABI Bu proje Avrupa Birliği ve Türkiye Cumhuriyeti tarafından finanse edilmektedir. İNSAN KAYNAKLARININ GELİŞTİRİLMESİ OPERASYONEL PROGRAMI GENÇ İSTİHDAMININ DESTEKLENMESİ HİBE PROGRAMI İŞSİZLİĞE ÇARE MESLEKİ

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Geometri Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 45 dakikadır. 3. Bu testte

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) MAKİNE TEKNOLOJİSİ KROKİ, PERSPEKTİF VE YAPIM RESMİ ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

1. HAFTA ENM 108 BİLGİSAYAR DESTEKLİ TEKNİK RESİM. Yrd.Doç.Dr. İnan KESKİN. inankeskin@karabuk.edu.tr

1. HAFTA ENM 108 BİLGİSAYAR DESTEKLİ TEKNİK RESİM. Yrd.Doç.Dr. İnan KESKİN. inankeskin@karabuk.edu.tr 1. HAFTA ENM 108 BİLGİSAYAR DESTEKLİ TEKNİK RESİM Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler Tablosu Dersin Amacı...

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) MAKİNE TEKNOLOJİSİ GEOMETRİK ÇİZİMLER

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) MAKİNE TEKNOLOJİSİ GEOMETRİK ÇİZİMLER T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) MAKİNE TEKNOLOJİSİ GEOMETRİK ÇİZİMLER ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen modüller;

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80.

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80. Lisans Yerleştirme Sınavı (Lys ) / 9 Haziran 00 Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD m(acd) = m(dcb) m(bac) = 80 m(abc) = x Yukarıdaki verilere göre x kaç derecedir? A) 40 B) 45 C) 50

Detaylı

TEMEL İŞLEMLER VE UYGULAMALARI Prof.Dr. Salim ASLANLAR

TEMEL İŞLEMLER VE UYGULAMALARI Prof.Dr. Salim ASLANLAR 2 MARKALAMA TEKNİĞİ 2.1 Markalamanın Tanımı Çizilmiş resimlerden, imalatı bitmiş parçalardan ve verilen bilgilerden faydalanılarak o işin yapılacağı malzemenin üzerine çizilmesine markalama denir. Markalama

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Perspektifler 2/23 Perspektifler Perspektifler-1 Perspektif Nedir? Perspektif Çeşitleri Paralel Perspektif Aksonometrik Perspektif

Detaylı

Görünüş çıkarmak için, cisimlerin özelliğine göre belirli kurallar uygulanır.

Görünüş çıkarmak için, cisimlerin özelliğine göre belirli kurallar uygulanır. Görünüş Çıkarma Görünüş çıkarma? Parçanın bitmiş halini gösteren eşlenik dik iz düşüm kurallarına göre belirli yerlerde, konumlarda ve yeterli sayıda çizilmiş iz düşümlere GÖRÜNÜŞ denir. Görünüş çıkarmak

Detaylı

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3 Ö.S.S. 000 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ., 0,, + Đşleminin sonucu kaçtır? 0, A) B) C) D) E) Çözüm, 0,, + 0, 0 + 0 +. + : Đşleminin sonucu kaçtır? A) B) C) D) E) Çözüm + : ( ) +. ( - ).. -. b a. a - ve

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT

TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT DERS 6 Perspektif Cismin üç yüzünü gösteren, tek görünüşlü resimlerdir. Cisimlerin, gözümüzün gördüğü şekle benzer özelliklerdeki üç boyutlu (hacimsel) anlatımını

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.. YÜKSKÖĞRTİM KURULU ÖĞRNİ SÇM V YRLŞTİRM MRKZİ LİSNS YRLŞTİRM SINVI MTMTİK SINVI GOMTRİ TSTİ SORU KİTPÇIĞI 9 HZİRN 00 U SORU KİTPÇIĞI 9 HZİRN 00 LYS GOMTRİ TSTİ SORULRINI İÇRMKTİR. u testlerin

Detaylı

Parametrik Yer Eğrileri

Parametrik Yer Eğrileri Parametrik Yer Eğrileri Haldun Gürmen Özgür Cemal Özerdem Yakın Doğu Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü Alernatif akım devrelerinde parametrik empedans veya admitanslara sık rastlanır.

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF TEK KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007

T.C. MİLLİ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF TEK KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007 T.C. MİLLİ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF TEK KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

Part-Helical Sweep/ Yrd. Doç. Dr. Mehmet FIRAT- Yrd. Doç. Dr. Murat ÖZSOY

Part-Helical Sweep/ Yrd. Doç. Dr. Mehmet FIRAT- Yrd. Doç. Dr. Murat ÖZSOY HELICAL SWEEP YÖNTEMİ İLE CİVATA ÇİZİMİ 1. Bu ve bundan sonraki hafta basit bir cıvata çizimi yapılacaktır. Cıvata çizimi için ilk olarak cıvata başını çizmek gerekir. Bunun için bir altıgen çizip bu altıgeni

Detaylı

PROJE AŞAMALARI : Karayolu Geçkisi (Güzergahı Araştırması, Plan ve Boykesit):

PROJE AŞAMALARI : Karayolu Geçkisi (Güzergahı Araştırması, Plan ve Boykesit): Bartın Üniversitesi Ad Soyad : Mühendislik Fakültesi Numara : İnşaat Mühendisliği Bölümü Pafta No : KONU : INS36 ULAŞTIRMA II (PROJE) DERSİ P R O J E V E R İ L E R İ /2000 ölçekli tesviye (eşyükselti)

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden ALAN PROBLEMLERĐ Viktor Prasolov un büyük eseri Plane Geometry kitabının alan bölümünün özgün bir tercümesini matematik severlerin hizmetine sunuyoruz. Geomania organizasyonu olarak çalışmalarınızda kolaylıklar

Detaylı

DİŞLİ ÇARK ÇİZİMİ: 1. Adım Uzunlukları diş üstü dairesi çapından biraz büyük olacak şekilde bir yatay ve bir düşey çizgi çizilir.

DİŞLİ ÇARK ÇİZİMİ: 1. Adım Uzunlukları diş üstü dairesi çapından biraz büyük olacak şekilde bir yatay ve bir düşey çizgi çizilir. DİŞLİ ÇARK ÇİZİMİ: Bir dişli çarkın çizilebilmesi için gerekli boyutların tanımlaması gerekir. Yandaki şekilde gösterilen boyutların hesaplanması için gerekli formüller aşağıda belirtilmiştir. Do= Bölüm

Detaylı

3.Etkinlik Örnekleri. 3.1 Çemberde Açı ve Uzunluklar

3.Etkinlik Örnekleri. 3.1 Çemberde Açı ve Uzunluklar 3.Etkinlik Örnekleri 3.1 Çemberde Açı ve Uzunluklar GeoGebra programını açınız. Üstteki araçlar menüsünden merkez ve bir noktadan geçen çember seçeneğini seçerek bir Çember oluşturunuz. A merkezli ve B

Detaylı

Ölçme Bilgisi DERS 4. Basit Ölçme Aletleri ve Arazi Ölçmesi. Kaynak: İ.ASRİ

Ölçme Bilgisi DERS 4. Basit Ölçme Aletleri ve Arazi Ölçmesi. Kaynak: İ.ASRİ Ölçme Bilgisi DERS 4 Basit Ölçme Aletleri ve Arazi Ölçmesi Kaynak: İ.ASRİ HATA SINIRI EŞİTLİĞİ d s = 0.005 S+0.00015xS+0.015 düzensiz hata düzenli hata kaba hata d 1 = A B d 2 = B A S = (d 1 +d 2 )/2 d

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF İKİ KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007

T.C. MİLLÎ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF İKİ KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007 T.C. MİLLÎ EĞİTİM BAKANLIĞI GRAFİK VE FOTOĞRAF İKİ KAÇIŞ NOKTALI PERSPEKTİF ÇİZİMİ 211GS0007 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

BLEND YÖNTEMİ İLE KATI MODEL OLUŞTURMA

BLEND YÖNTEMİ İLE KATI MODEL OLUŞTURMA BLEND YÖNTEMİ İLE KATI MODEL OLUŞTURMA Bu yöntem ile çizilen iki kesit katı olarak birleştirilir. Aşağıdaki şekilde blend yöntemi ile oluşturulan bir katı model gözükmektedir. 1. FILE menüsünden New seçilir.

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Çizgiler Yazılar Ölçek

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Çizgiler Yazılar Ölçek TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi 2/21 Çizgi Tipleri Kalın Sürekli Çizgi İnce Sürekli Çizgi Kesik Orta Çizgi Noktalıİnce Çizgi Serbest Elle Çizilen Çizgi Çizgi Çizerken

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL 1. DO RULARIN D KL 2. B R DO RUNUN B R DÜZLEME D KL a. Tan m b. Düzlemde Bir Do ru Parças n n Orta Dikme Do rusu c. Bir Do runun Bir Düzleme Dikli ine Ait

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

9. SINIF GEOMETRİ KONU ÖZETİ

9. SINIF GEOMETRİ KONU ÖZETİ 2012 9. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Nokta: Herhangi bir büyüklüğü olmayan ve yer belirten geometrik terimdir.

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Teknik Resime Giriş

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Teknik Resime Giriş TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Teknik Resime Giriş 2/37 Teknik Resime Giriş Teknik Resime Giriş Teknik Resim Nedir? Tasarı Geometri Tarihçesi Bilgisayar Destekli

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Teknik Resime Giriş. Rıdvan YAKUT

Teknik Resime Giriş. Rıdvan YAKUT Teknik Resime Giriş Rıdvan YAKUT Ders İçeriği Teknik resmin amacı Çizgiler, ölçek Temel geometrik çizimler Görünüş çıkarma Ölçülendirme Kesit çıkarma Perspektif Makinenin Dili Teknik Resim Bir mühendisin,

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

Sınıf :10-A Tarih : 02.12.2013. (0-49,99)1: Geçmez (50-59,99)2: Geçer (60-69,99)3: Orta (70-84,99)4: İyi (85-100)5: Pekiyi

Sınıf :10-A Tarih : 02.12.2013. (0-49,99)1: Geçmez (50-59,99)2: Geçer (60-69,99)3: Orta (70-84,99)4: İyi (85-100)5: Pekiyi BİLİŞİM TEKNOLOJİLERİNİN TEMELLERİ DERSİ ÖDEVİ DEĞERLENDİRME FORMU (I. DÖNEM) alınarak 00 puan üzerinden değerlendirilecektir. Sınıf :0-A Tarih : 0..0 (0-49,99): Geçmez (50-59,99): Geçer (60-69,99): Orta

Detaylı

Öğretim Görevlisi Rıdvan Yakut TEKNİK RESİME GİRİŞ

Öğretim Görevlisi Rıdvan Yakut TEKNİK RESİME GİRİŞ Öğretim Görevlisi Rıdvan Yakut TEKNİK RESİME GİRİŞ Teknik Resim Nedir? Makine elemanlarının, yapıların ve en genel haliyle mühendislik ürünlerinin biçimini ve boyutlarını tarif etmekte kullanılan bir dildir.

Detaylı

Öğr. Gör. Cahit GÜRER

Öğr. Gör. Cahit GÜRER YAPI TEKNOLOJİLERİ-II Konu-4: MERDİVENLER VE DENGELENDİRİLMELERİ Öğr. Gör. Cahit GÜRER Afyonkarahisar 21 Mart 2008 Bir yapıda birbirinden farklı iki seviye arasında muntazam aralıklı, yatay ve düşey yüzeylerden

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen Eslem Nur KELEŞOĞLU Muhammet Enes ÖRCÜN ÖZEL BAŞAKŞEHİR ÇINAR FEN LİSESİ İSTANBUL,

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

sözel geometri soruları

sözel geometri soruları YAYINLARI sözel geometri soruları LYS Konu Testi: 01 1. Bir üçgenin bir iç aç s n n ölçüsü di er iki iç aç s n n ölçüleri toplam na eflittir. Bu üçgen için afla dakilerden hangisi kesinlikle do rudur?

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR Koyu uçlu bir kurşun kalem kullanın ve lütfen okunaklı yazın Bir hata yaptığınızda, lütfen yumuşak silgi kullanın ve hatanızı güzelce silin Değişkenlerin Belirlenmesi Bağımsız değişkenleri x eksenine,

Detaylı

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler:

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler: GEOMETRİ 1 Üçgenler Gösterimler: Bir ABC üçgeni için aşağıdaki gösterimleri kullanacağız: Kenar uzunlukları: BC = a, CA = b, AB = c Açılar: Â, ˆB, Ĉ (Trigonometrik ifadelerde açı işareti kullanılmayacak.)

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI ÇİZİMLER Vaziyet Planı (1/100 veya 1/50) Detaylar Paftası (1/5 veya 1/2) Yarım Çerçeve (1/10 veya

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir. KÜRESEL AYNALAR Yansıtıcı yüzeyi küre parçası olan aynalara denir. Küresel aynalar iki şekilde incelenir. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.eğer

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

H. Turgay Kaptanoğlu. Bu yazüda çember, elips, parabol ve hiperbolden. çemberin denklemi olan

H. Turgay Kaptanoğlu. Bu yazüda çember, elips, parabol ve hiperbolden. çemberin denklemi olan KONİNİN KESİTLERİ (I) H. Turgay Kaptanoğlu Bu yazüda çember, elips, parabol ve hiperbolden söz edeceğiz. Bu düzlem eğrilerinin denklemlerini elde ettikten sonra birkaç değişik konuyu açacağüz. Bunlar,

Detaylı

DOĞRUDAN VÜCUT ÖLÇÜLERİNE DAYALI, VÜCUDA TAM OTURAN YENİ BİR BAYAN ÜST BEDEN TEMEL KALIP HAZIRLAMA TEKNİĞİNİN GELİŞTİRİLMESİ

DOĞRUDAN VÜCUT ÖLÇÜLERİNE DAYALI, VÜCUDA TAM OTURAN YENİ BİR BAYAN ÜST BEDEN TEMEL KALIP HAZIRLAMA TEKNİĞİNİN GELİŞTİRİLMESİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 3 Sayı: 2 Sh. 69-82 Ocak 2001 DOĞRUDAN VÜCUT ÖLÇÜLERİNE DAYALI, VÜCUDA TAM OTURAN YENİ BİR BAYAN ÜST BEDEN TEMEL KALIP HAZIRLAMA TEKNİĞİNİN GELİŞTİRİLMESİ

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ MERDİVEN PLANI VE DONATI ÇİZİMİ ANKARA 2006 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

YAPI TEKNOLOJİSİ DERS-7 MERDİVENLER

YAPI TEKNOLOJİSİ DERS-7 MERDİVENLER YAPI TEKNOLOJİSİ DERS-7 MERDİVENLER Bir yapıda birbirinden farklı iki seviye arasında muntazam aralıklı, yatay ve düşey yüzeylerden meydana getirilen ve ya düşey sirkülasyon vasıtası olarak kullanılan

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

MERCEKLER 1 R 1 ± 1 n = F. MERCEKLER Özel ışınlar:

MERCEKLER 1 R 1 ± 1 n = F. MERCEKLER Özel ışınlar: MERCEKLER Bir yüzü veya iki yüzü küresel olan ya da bir yüzü küresel diğer yüzü düzlem olan saydam isimlere merek denir. Merekler, üzerine düşen ışığı kırma özelliğine saiptir. MERCEKLER Özel ışınlar:.

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Gazi Üniversitesi Kimya Müh. Böl. 2005-2006 II YY KM-380 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

Gazi Üniversitesi Kimya Müh. Böl. 2005-2006 II YY KM-380 KİMYA MÜHENDİSLİĞİ LABORATUVARI I Gazi Üniversitesi Kimya Müh. Böl. 2005-2006 II YY KM-380 KİMYA MÜHENDİSLİĞİ LABORATUVARI I SIVI-SIVI FAZ DENGESİ (ÜÇ BİLEŞENLİ SİSTEMLERDE) Deney No : 3a AMAÇ Çalışmanın amacı üç bileşenli sistemlerin

Detaylı

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat EĞİTİCİLER İÇİN 1. Konunun Müfredattaki Yeri İlköğretim matematik yedinci sınıflara yönelik olan geometrik cisimler, öğrencilere dairesel silindirin ve küpün yakından tanımasına imkan sağlamaktadır. Bu

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

AÇIKLAMALAR... iii Ö RENME FAAL YET -2...46

AÇIKLAMALAR... iii Ö RENME FAAL YET -2...46 Ç NDEK LER AÇIKLAMALAR... iii G R...1 Ö RENME FAAL YET -1...3 1. YAZI VE RAKAM...3 1.1. Teknik Resmin Endüstrideki Yeri, Önemi ve Tan m...3 1.1.1. Endüstriyel Teknik Resmin Önemi...4 1.1.2. Teknik Haberle

Detaylı