Bölüm 10: Katı Cismin Sabit bir Eksen Etrafında Dönmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bölüm 10: Katı Cismin Sabit bir Eksen Etrafında Dönmesi"

Transkript

1 avraa Soruları Bölü 0: atı Cn Sabt br Eken Etrafında Döne - Br nokta etrafında dönekte olan cn hareketn tanılaak çn naıl br er değştre tanılarınız? - Açıal hızın önü varıdır, vea açıal hız vektörel br ncelk dr? 3- Döne olaında, ürtüne hal edle de, clern kütlenn şekl öneldr? onu İçerğ Sunuş 0- Açıal Yer Değştre, Hız ve İve 0- Döne neatğ 0-3 Açıal ve Doğrual Ncelkler 0-4 Döne Enerj 0-5 Tork 0-6 Tork ve Açıal İve Bağlantıı Sunuş Bu bölüde, önce abt br eken etrafında dönen katı br cn açıal er değştre, açıal hız ve açıal ve ncelkler türetlecek ve döne hareket le açıal hareket arındak lşk ve benzerlkler elde edlecektr. Daha onra döne hareket apan katı br cn döne knetk enerj fade türetlecektr. Br kuvvetn br c br nokta etrafında döndüre etknn fade olan tork kavraı tanılanacaktır. İk vektörün vektörel çarpıı tanılanarak tork kavraı kuvvet ve uzunluk vektörler le vektörel çarpı olarak fade edlecektr. Son olarak da br kuvvetn döndüre etk le açıal ve araında naıl br lşk olduğu ncelenerek Newton un. aaının dönü hareket çn fade elde edlecektr. Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz 008 /0

2 0. Açıal Yer Değştre, Hız ve İve Döne olaını nceleeblek çn öncelkle döne hareketn en tanılaacak erdeğştre ncelğn tanılaaız gerekecektr. Bu er değştre tanıladıktan onra doğrual harekette tanıladığıız gb er değştrenn zaana göre değşne bakarak dönen cn hızını (açıal hız), dönüş hızının br zaandak değşnden de dönü hızındak değşeler göteren dönü ve (açıal ve) kavralarını türeteblrz. Aşağıdak gb, noktaı etrafında döneblen herhang br şekle ahp katı br c göz önüne alalı. Bu cn üzernde tanıladığıız br P noktaının hareketn nceleel. P r P =r Sabt erkez etrafında r arıçaplı P noktaının aldığı ol, arıçap r ve eken le ölçülen q açıı cnnden =r nın br radan (rad) dır. Br radan, arıçapla eşt uzunluktak br a parçaının arıçapa oranı le elde edlen açıdır. =r=r.( radan) Radan açı ölçüü le derece açı ölçüü araındak lşk Açıal Yer değştre: (rad)=(π/80 o ).(derece) r arıçaplı P noktaının zaan onra Q noktaına geldğn düşünürek P noktaının açıal er değştre: Q Δ= - P şeklnde azılablr. Açıal er değştrenn boutu oktur!, br e radandır! Δ= Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz 008 /0

3 rtalaa Açıal Hız ( ): rtalaa açıal hız ( ), zaan aralığındak açıal er değştrenn(δ), zaanına oranıdır. Δ = = An Açıal hız (w): An açıal hız (), zaanı lt duruda ıfıra gttğnde ( 0) açıal er değştrenn (Δ), zaana oranıdır. Δ d = l = Δ t 0 dt açıı boutuz olduğundan açıal hızın boutu []=/[T] dr. Br e radan/ane (rad/) vea - dr. Açıal hız vektörel br ncelktr öle k önü aşağıdak gb belrlenr. Açıal hızın önü: Döne açıı, aat brenn ter önde artara (ağ el) poztf Döne açıı, aat bre le anı önde artara (ol el) negatfdr. rtalaa açıal ve ( α ): rtalaa açıal ve( α geçen zaana oranıdır. ), zaan aralığındak açıal hızdak değşe ktarının (Δ) Δ α = = An açıal ve (α): An açıal ve (α), zaan aralığı lt duruda ıfıra gttğnde ( 0) açıal hızın (Δ) zaana oranıdır. Δ d α = l = Δ t 0 dt açıı boutuz olduğundan açıal venn boutu [α]=/[t ] dr. Br e radan/ane (rad/ ) vea - dr. Açıal venn önü: Açıal hız artara (aat bre le anı vea ter önde) α poztf Açıal hız azalıra (aat bre le anı vea ter önde) α negatf dr. v,w ve α nın önler: α v v çzgel hız örüngee teğettr. döne eken üzerndedr Saat önünün ter önde e, +; Saat önünü le anı önde e, -; Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

4 α (açıal ve), le anı önlüdür. Açıal hız vektörünün önünü belrleek çn ağ el kuralı : Açıal hızın önünü bulak çn ağ elz kullanablrz. Bu kuralda ağ eln baş parak dışındak dört parağı brleştrlp kıvrılarak dönen cn dönüş önü le çakıştırılır (paraklar çzgel (teğetel) hızın önünü göterecek şeklde aarlanır). Baş parak bu dört parağa dk tutulur ve baş parağın göterdğ ön açıal hızın önünü göterr. Doğrual ve açıal hareket tanılaada kullanılan ncelkler karşılıklı olarak azarak: Açıal Doğrual (erdeğştre) v (hız) α a (ve) 0- Döne neatğ: Sabt Açıal İvel Döne Hareket Daha önce doğrual hareket çn türettğz kneatk eştlkler döne hareketne uarlaablrz. Doğrual harekette türettğz forüllere dönü hareketn tanılaan, v ve a erne açıal erdeğştre(δ), açıal hız() ve açıal ve(α) ncelklern azarak: Sabt vel doğrual hareket Sabt açıal vel döne hareket v = v + at = +α t = + vt + at v = v + a = t + + α t = + α elde ederz. Doğrual ve açıal ncelkler araındak lşk br onrak başlık altında arıntılı olarak ncelenecektr. Örnek 0. Dönen Teker: Br tekerlek, 3,5 rad/ lk abt açıal ve le dönüor. t=0 de tekerleğn açıal hızı rad/ e; a) anede teker ne kadarlık açı üpürür? b) t= onra açıal hızı nedr? Çözü: w = rad/ a) t = + + α t =(rad/).()+½(3,5 rad/ ).() = rad=630 o Devr aıı=δ/360 o (derece/dev)=,75 devr b) = +α t =( rad/)+(3,5 rad/ ).()=9 rad/ bulunur Açıal ve Doğrual Ncelkler Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

5 Dönen br cn açıal hız ve ve le cn üzerndek br noktanın çzgel hız ve ve araında naıl br bağlantı vardır? Yandak şekln ardıı le bu lşk bulaa çalışalı. =r r=abt Teğetel hız: d d d v = = ( r ) = r = r dt dt dt r v=r P dv d d Teğetel ve: a t = = ( r) = r = rα dt dt dt Daha önce dareel örüngede dönen br noktanın erkeze önelk v /r büüklüğünde a r erkezcl ve le hareket ettğn görüştük. a r venn büüklüğünü açıal hız cnnden azarak: v ( r) a r = = = r r r Dönen br katı c üzernde hareket eden br noktanın topla ve, a t teğetel, a r de açıal ve olak üzere: a=a t +a r Bu venn büüklüğü: a 4 = at + ar = r α + r = r α + 4 a = r 4 α + bulunur. Örnek 0. CD Çalar: Tpk br CD plağında dk aatn ter önünde döner ve lazerercek te noktaında üzen abt hızı,3 / dr. CD nn ç arıçapı r =3 ve dış arıçap r d =58 dr. a) Dkn açıal hızını devr başına dakka olarak ç ve dış noktada bulunuz. b) Standart br CD nn aku çala üre 74 dakka 33 anedr. Bu ürede dk kaç devr apar? Çözü: r d lazer ercek a) En çtek z çn açıal hız v,3 / = = = 56,5rad r,30 / = (56,5rad / ).( dev / rad).(60 / dak) π = 5,40 devr / dak En dıştak z çn açıal hız Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

6 v,3 / = = =,4rad d r 5,80 / d =,0 devr / dakka b) t=(74dak).(60 /dak)+33=4473 ane İlk açıal konu =0 o, =? rtalaa açıal hız=( + )/ = +½( + )t=0+(540dev/dak+0dev/dak).(760dak/).(4473)=,80 4 devr bulunur d 0-4 Döne Enerj eken etrafında dönen katı cn knetk enerjn bulaa çalışalı. atı cn gb küçük parçacıklardan oluştuğunu ve eken etrafında abt açıal hızı le döndüğünü kabul edel. v r. parçacığın teğetel hızı v e knetk enerj = v Topla knetk enerj T her nokta çn anı olduğundan ( =) T = = v = r azılablr. Bu fade T = ( T = r ) I şeklnde daha önce azılan knetk enerj =(/)v forunda enden azılıra I r fadene döne elezlk oent denr. Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

7 Döne elezlk oent I, doğrual harekettek kütlene özdeştr. Döne Doğrual Hareket = v = I I elezlk oent, cn hang eken etrafında döndürüldüğüne bağlıdır. I=½MR I=MR Örnek 0.4 Dönen Dörtlü Parçacık: Dört küçük küreel kütle, düzlende kütle hal edleblen br çerçevenn köşelerne erleştrlştr. ürelern arıçaplarının çerçevenn boutlarına kıala çok küçük olduğu varaılıor. a) Ste, w açıal hızı le eken etrafında dönere bu ekene göre elezlk oentn ve döne knetk enerjn bulunuz. b) Sten dan geçen br eken (z-eken) etrafında düzlende döndügünü varaalı. Z ekenne göre elezlk oentn ve döne knetk enerjn bulunuz. Çözü: M a b b a M I a) I r = Ma + Ma = = D = I = (Ma ) = b) = r Ma Ma z = Ma + Ma + b + b = Ma + b Dz Dz = I z = (Ma = + D D + b ) = ( Ma + b ) 0-6 Tork Br F kuvvetnn br c br eken etrafında döndüre etk tork (τ) le fade edlr (Tork le Moent anı kavralardır; oent le oentu farklı kavralar olup brbr le Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

8 karıştırılaalıdır, Bkz Bölü 9). uvvet le kuvvetn ugulandığı nokta le döne eken araındak uzaklık an kuvvet kolu araındak açı dk e tork Tork=(kuvvet)(kuvvetn ugulandığı nokta le döne eken araı uzaklık, kuvvet kolu) τ=fd şeklnde tanılanır. Eğer ugulanan kuvvet le kuvvet kolu araındak açı 90 o den farklı e: d Fn F Fco Fco: döne hareketne katkıda bulunaz Fn: döne hareketn ağlar τ= Fn.d şeklnde azılır. Torku heaplarken kuvvetn kuvvet koluna dk bleşen alınır (ş fadende kuvvetn paralel bleşen alınır) İk Vektörün Vektörel Çarpıı: İk vektörün vektörel çarpıı ne br vektörel ncelktr. Dolaıı le onuç vektörün he büüklüğü hede br önü olacak. Aralarındak açı olan A ve B gb k vektör olun. An A B Bu k vektörün vektörel çarpıı C gb br vektör verecektr. C vektörel olduğundan: AB=C C vektörünün büüklüğü, AB = C = A. B.n C vektörünün önü e, A ve B vektörlernn oluşturduğu düzlee dktr. Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

9 C A B Eğer A ve B vektörler üç boutta br vektörler cnnden tanılanış e; A=A î+a ĵ+a z k B=B î+b ĵ+b z k Bu k vektörün vektörel çarpıının ne olacağını bulaa çalışırak: AB=(A î+a ĵ+a z k)(b î+b ĵ+b z k)= A B (îî)+a B (îĵ)+a B z (îk) +A B (ĵî)+a B (ĵĵ)+a B z (ĵk) +A z B (kî)+a z B (kĵ)+a z B z (kk) Br vektörlern (î, ĵ ve k) vektörel çarpılarına bakacak olurak: ĵĵ=îî=kk=0 (Anı br vektörler araındak açı =0 o olduğundan n(0 o )=0) îĵ=k z ĵk=î kî=ĵ k ĵ ĵî=-k î AB=(A î+a ĵ+a z k)(b î+b ĵ+b z k)= 0 + A B (îĵ) +A B z (îk) +A B (ĵî) + 0 +A B z (ĵk) +A z B (kî) +A z B (kĵ)+ 0 AB=(A î+a ĵ+a z k)(b î+b ĵ+b z k)=(a B z -A z B )î+(a z B -A B z )ĵ+(a B -A B )k bulunur. Vektörek çarpı notaonunu kullanarak tork faden, F ve d vektörlern vektörel çarpıı olarak fade edeblrz. τ=fd 0-7 Tork ve Açıal İve Araındak Bağıntı Teğetel kuvvet F t, ve teğetel ve (a t ) araındak lşk, Newton un. aaından. F t =a t F t kuvvetnn erkeze göre uguladığı tork (=90 o ) olduğundan r F t τ=f t.r=a t r Teğetel ve açıal vee a t =rα eştlğ le bağlı olduğundan; F r τ=f t.r Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

10 τ =(rα).r=r α I= r olduğu hatırlanıra, burdan τ =Iα Bulunur. Bu eştlk, Newton un doğrual hareket çn türettğz F=a hareket kanununa benzeektedr. Doğrual a F Döne I α τ Örnek 0.0 Dönen Çubuk: Uzunluğu L, kütle M olan düzgün br çubuk, şelldek gb br ucu etrafında ürtünez döneblecek durudadır. Çubuk ata duruda ken erbet bırakılıor. Çubuğun lk açıal ve ve ağ ucunun lk çzgel ve nedr? Çözü: τ=f.d τ =Mg(L/) Mg L Mg( ) 3g = τ 3 α = = a I t = Lα = g L ML 3 Bölü 0 un Sonu anak: Bu der notları, R. A. Serwa ve R. J. Bechner (Çevr Edtörü:. Çolakoğlu), Fen ve Mühendlk çn FİZİ-I (Mekank), Pale Yaıncılık, 005. ktabından derlenştr. Bölü 0: atı Cn Sabt br Eken Etrafında Döne, Hazırlaan: Dr. H.Sarı Güncel: Teuz /0

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları:

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları: Blok yaraları: araşık teler, rok alt ten rrne uyun şeklde ağlanaından oluşur. Blok dyaraları, her r alt te araındak karşılıklı ağlantıyı öterek n kullanılır. Blok dyaralarında her r alt ten fonkyonu ve

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ MANYETİK OLAAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLADA KÜTLE AKTAIM KATSAYILAININ İNCELENMESİ Metn ŞENGÜL, Ahet. ÖZDUAL* Şeker Enttüü Etegut/ANKAA; *H.Ü. Kya Mühendlğ Bölüü Beytepe/ANKAA ÖZET Bu çalışanın

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

Bölüm 8: Potansiyel Enerji ve Enerjinin Korunumu

Bölüm 8: Potansiyel Enerji ve Enerjinin Korunumu Kavrama Soruları Bölüm 8: Potansiel Enerji ve Enerjinin Korunumu 1- Hızı olmaan bir cismin enerjisi varmıdır? 2- Hızı olan bir cismin potansiel enerjisinden bahsedilebilir mi? 3- Hangi durumlarda bir cisim

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

Bölüm 9: Doğrusal Momentum

Bölüm 9: Doğrusal Momentum Bölü 9: Doğrual Moetu Kavraa Soruları - Br te oetuu e zaa koruur? - Sürtüe her zaa teee br etkdr? - Uzada(boşlukta) atrootlar aıl hareket ederler (erdeğştrrler)? Kou İçerğ Suuş 9- Doğrual Moetu ve Moetuu

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

Fizik 101: Ders 3 Ajanda

Fizik 101: Ders 3 Ajanda Anlamlı Saılar Fizik 101: Ders 3 Ajanda Tekrar: Vektörler, 2 ve 3D düzgün doğrusal hareket Rölatif hareket ve gözlem çerçeveleri Düzgün dairesel hareket Vektörler (tekrar) Vektör (Türkçe) ; Vektör (Almanca)

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

MAK 212 - TERMODİNAMİK. ÖDEV 6b-ÇÖZÜM

MAK 212 - TERMODİNAMİK. ÖDEV 6b-ÇÖZÜM MAK - ERMODİNAMİK CRN: 688, 689, 690, 69, 69 00-0 AHAR YARIYILI ÖDEV 6b-ÇÖZÜM S barı adyabatk br türbne 6 Ma baın, 600ºC ıcaklık e 80 / ızla rekte, 50 ka baın, 00ºC ıcaklık e 0 / ızla ıkaktadır. ürbnn

Detaylı

ivme hız bağıntısı ile hareket ediyor. t = 0 da konum s = 0 ve hız V = 20 m/

ivme hız bağıntısı ile hareket ediyor. t = 0 da konum s = 0 ve hız V = 20 m/ MKİNE - ÜZ YRIYILI İNMİK ERSİ.İZE SORULRI E EPLRI Soru) ir maddeel nokta bir doğru üzerinde a =, ivme hız bağıntıı ile hareket edior. t = da konum = ve hız = m/ olduğuna göre t = deki konumu hızı ve ivmei

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Vücut Kütle Merkezi Konumu Hesabı

Vücut Kütle Merkezi Konumu Hesabı Kütle Çeki Kuvveti Kütle Merkezi Konuu Hesabı Kütle Ağırlık Moent SBA 06 Spor Biyoekaniği Mart 00 Arif Mithat Aca Denge Ağırlık Merkezi (Center of Gravity - CG) Kütle Merkezi (Center of Mass - CM) İnsanda

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU MÜHENİSLİK MEKNİĞİ STTİK ES NOTLI Yrd. oç. r. Hüsen YIOĞLU İSTNUL 6 . Mekanğn tanımı 5. Temel lkeler ve görüşler 5 İçndekler GİİŞ 5 EKTÖLEİN E İŞLEMLEİNİN TNIMI 6. ektörün tanımı 6. ektörel şlemlern tanımı

Detaylı

Bölüm 8: Potansiyel Enerji ve Enerjinin Korunumu

Bölüm 8: Potansiyel Enerji ve Enerjinin Korunumu Kavrama Soruları Bölüm 8: Potansiel Enerji ve Enerjinin Korunumu 1- Hızı olmaan bir cismin enerjisi varmıdır? 2- Hızı olan bir cismin potansiel enerjisinden bahsedilebilir mi? 3- Hangi durumlarda bir cisim

Detaylı

FZM450 Elektro-Optik. 6.Hafta. Işığın Kutuplanması

FZM450 Elektro-Optik. 6.Hafta. Işığın Kutuplanması FZM450 lektr-optk 6.Hafta Işığın Kutuplanması 008 HSarı 6. Hafta Ders İçerğ Dalga Plakaları Çerek Dalga Plakası Yarım Dalga Plakası Tam Dalga Plakası Işığın Kutuplanması Dğrusal Kutupluluk Daresel Kutuplanma

Detaylı

Bölüm 2: Bir Boyutta Hareket

Bölüm 2: Bir Boyutta Hareket Bölüm : Br Boyua Hareke Kavrama Soruları 1- Harekel br cmn yer değşrme le aldığı yol aynımıdır? - Hız le üra araındak fark nedr? 3- Oralama ve an hız araındak fark nedr? 4- Ne zaman oralama hız (vme) an

Detaylı

2- Skaler ve Vektörel Büyüklükler (Skaler nicelikler, Vektörsel nicelikler, Vektör bileşenleri, Birim vektörler, Vektör

2- Skaler ve Vektörel Büyüklükler (Skaler nicelikler, Vektörsel nicelikler, Vektör bileşenleri, Birim vektörler, Vektör DESİN DI : İZİK ve MÜHENDİSLİK İLMİ DESİ VEEN ÖĞETİM ELEMNI : Yrd. Doç. Dr. ahrettn ÖVEÇ DESİN İÇEİKLEİ: -zsel üülüler ve out nalz (Teel ve Türev üülüler, r Ssteler, r dönüşüler) - Saler ve Vetörel üülüler

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

YAY DALGALARI. 1. m. 4. y(cm) Şe kil de 25 cm lik kıs mı 2,5 dal ga ya kar şı lık ge lir.

YAY DALGALARI. 1. m. 4. y(cm) Şe kil de 25 cm lik kıs mı 2,5 dal ga ya kar şı lık ge lir. 1. BÖÜM A DAGAARI AIŞTIRMAAR ÇÖZÜMER A DAGAARI 1.. (c) T λ 5c Şe kil de 5 c lik kıs ı,5 dal ga a kar şı lık ge lir. 0 5 (c) Bu du ru da, 5 λ = 5 λ = 10 c Dal ga nın aıla hı zı, 60 V = = = 15 t c/ s Dal

Detaylı

MUKAVEMET FORMÜLLER, TABLOLAR VE ŞEKĐLLER.

MUKAVEMET FORMÜLLER, TABLOLAR VE ŞEKĐLLER. MUKAVMT FORMÜLLR, TABLOLAR V ŞKĐLLR. 008/09 D Statk Denge Denklemler: + F 0 + F 0 M 0 ksenel Gerlme P σ A σ Normal gerlme P Kuvvet A Kest Alanı Ortalama Kama Gerlmes V τ ort., τ Kama Gerlmes A V kesme

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

BÖLÜM 4: M-N-V 4.1. İZOSTATİK SİSTEMLER. Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş,

BÖLÜM 4: M-N-V 4.1. İZOSTATİK SİSTEMLER. Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş, ÖÜ Q.. İZOSTTİK SİSTR ÖÜ : Yapıda döşee üzerinde bulunan sabit ve hareketli ükleri kolonlara aktaran apı eleanı olan kiriş,. ir boutu diğerine göre küçük olan [b,h

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

2011-2012 Öğretim Yılı Bahar Yarıyılı Karayolu Dersi (0423412) Grup 4 Uygulama-I -Çözümler

2011-2012 Öğretim Yılı Bahar Yarıyılı Karayolu Dersi (0423412) Grup 4 Uygulama-I -Çözümler 011-01 Öğreti Yılı Bahar Yarıyılı Karayolu Der (04341) Grup 4 Uygulaa-I -Çözüler Soru 1 (MSY-3+4)- Topla kütle 1,5 ton olan bir otoobil 80 k/a hızla %6,5 eğili bir yol keinde eyrederken yarıçapı 350 olan

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Dersn Adı: Fzk - Klask ekank assacusetts Teknoloj Ensttüsü-Fzk Bölüü Fzk 8.0 Ödev # 9 Güz, 999 Proble 9. ÇÖZÜLE Aralık 999 Saat:.5 (a) Jon blgsayarın ontörünü tutarken erang br ş yapaz. Jon blgsayarın

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri Elektrk Akımı, Potansyel Fark ve Drenç Testlernn Çözümler 1 Test 1 n Çözümü. 1. Soruda verlen akım-potansyel farkı grafğnn eğmnn ters drenc verr. 8 X 5 8 8 Z Ohm kanunu bağıntısıyla verlr. Bu bağın- k

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Ffth E CHPTER MECHNICS OF MTERILS Ferdnand P. eer E. Russell Johnston, Jr. John T. DeWolf Davd F. Mazurek Lecture Notes: J. Walt Oler Texas Tech Unversty. Eksenel Yüklemede Toplam uzama-hperstatk problemler-termal

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

BETONARME TAŞIYICI SİSTEMLERDE KAPASİTE TASARIMI

BETONARME TAŞIYICI SİSTEMLERDE KAPASİTE TASARIMI etonare taşııı itelerde kapaite taarıı ETONRE TŞIYICI SİSTELERDE KPSİTE TSRII Zekai Celep Prof.Dr. İtanbul Teknik Üniveritei İnşaat Fakültei elep@itu.edu.tr http://www.in.itu.edu.tr/zelep/z.ht İnşaat ühendileri

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına

Detaylı

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MINKOWSKI -UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER YÜKSEK LİSANS TEZİ Smge DAĞLI Anablm Dalı Matematk Anablm Dalı Programı Geometr Tez Danışmanı Yrd. Doç.

Detaylı

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ.

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. ENEY FÖYLERİ ENEYSAN EĞİİM CİHAZLARI SANAYİ VE İCARE L. Şİ. Küçük Sanay stes Ek Cad. 5.Sk. N:8A BALIKESİR el:066 46075 Faks:066 460948 ttp://www.deneysan. al: deneysan@deneysan. BALIKESİR-0 Sğuk su grş

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: KUVVET ve HAREKET 3. Konu TORK, AÇISAL MOMENTUM ve DENGE ETKİNLİK ve TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: KUVVET ve HAREKET 3. Konu TORK, AÇISAL MOMENTUM ve DENGE ETKİNLİK ve TEST ÇÖZÜMLERİ 11. SINIF ONU ANAIMI 2. ÜNİE: UVVE ve HAREE 3. onu OR, AÇISA MOMENUM ve DENGE EİNİ ve ES ÇÖZÜMERİ 2 2. Ünite 3. onu ork, Aç sal Momentum ve Denge A n n Yan tlar 1. Çubuk dengede oldu una göre noktas na

Detaylı

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK 2. KUVVETLERİN VEKTÖREL TOPLANMASI AMAÇ Hazırlaan Arş. Grv. A. E. IRMAK Eş zamanlı kuvvetler etkisinde dengede bulunan bir cismin incelenmesi, analitik ve vektörel metotları kullanarak denge problemlerinin

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:...

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:... ADI: SOYADI: No: Sınıfı: A) Grubu Tarih.../.../... ADIĞI NOT:.... Boşluk doldura a) uetin büyüklüğünü ölçek için... kullanılır. b) Uyduların gezegen etrafında dolanasını sağlayan kuet... c) Cisilerin hareket

Detaylı

Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri

Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri 31.12.2015 Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri Soru 1 ) Kuzey istikametinde 8m giden bir aracın, sonrasında 6m doğuya ve 10m güneye ilerlediği görülüyorsa,

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi:

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi: LÜ SOULA SOU. Şekilde gösterilen D m = mm çapında bir mil D =,5 mm çapında ve L = mm genişliğinde bir atak içerisinde eksenel doğrltda kp lk bir kvvetle anak,5 m/s ızla areket ettirilebilior. Bna göre

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc 009 Kasım FRENLER GENEL 40-4. Güven KUTAY 40-4-frenler-genel.doc İ Ç İ N D E K İ L E R 4 enler... 4.3 4. en çeştler... 4.3 4.3 ende moment hesabı... 4.4 4.3.1 Kaba hesaplama... 4.4 4.3. Detaylı hesaplama...

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ 11. SINI SRU BANASI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENE ES ÇÖZÜMERİ 8 ork ve Denge est 1 in Çözümleri. 1 k x 1 k x 1 x 1 x 1. (+) ( ) x 1 k r k x x k x r x k k x noktasına göre tork alalım. oplam tork;

Detaylı

ELEKTR K AKIMI BÖLÜM 19

ELEKTR K AKIMI BÖLÜM 19 EET II BÖÜ 9 ODE SOU DE SOUIN ÇÖZÜE ODE SOU DE SOUIN ÇÖZÜE. letken tel Teln kestnden geçen yük mktarı; q N elektron.q elektron T. - gra fğ nn eğ m y ve rr. T Bu na gö re;. ara lık ta, sa bt. ara lık ta,

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Bölüm 7: İş ve Kinetik Enerji

Bölüm 7: İş ve Kinetik Enerji Bölüm 7: İş ve Kinetik Enerji Kavrama Soruları - iziksel iş ile günlük hayatta alışık oluğumuz iş kavramları aynımıır? - Kuvvet ve yer eğiştirmenin sıfıran farklı oluğu urumlara iş sıfır olabilir mi? 3-

Detaylı

ANALOG SERVO MOTOR DEVRESİ TASARIMI VE SİMULASYONU

ANALOG SERVO MOTOR DEVRESİ TASARIMI VE SİMULASYONU ANALOG SEVO MOTO DEVESİ TASAIMI VE SİMULASYONU Caner BEYONT, Çağata ÇAI, İlker ALTAY İtanbul Teknik Üniveritei Makina Fakültei, Makina Mühendiliği Bölüü, İSTANBUL cbekont@ahoo.co, cagatacakir@gail.co,

Detaylı

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

- 1 - EYLÜL KAMPI SINAVI-2003

- 1 - EYLÜL KAMPI SINAVI-2003 - - EYLÜL KAMPI SINAVI-. a) İki uçak birbirilerine doğru hızıyla yaklaşaktadırlar. Aralarındaki uzaklık iken birebirlilerini görebilektedirler. Ta o anda uçaklardan birisi hızı ile bir yarı çeber çizdikten

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

NEWTON UN HAREKET KANUNLARI

NEWTON UN HAREKET KANUNLARI NEWTON UN HAREET ANUNARI. I. aza anında eniyet keeri olayan yolcunun ön cadan fırlaası. II. Hızlanan bir araç içindeki kolilerin devrilesi. III. Masa üzerinde duran vazonun asa örtüsü hızla çekildiğinde

Detaylı

ÖRNEKLEME VE NİCEMLEME

ÖRNEKLEME VE NİCEMLEME ÖNEKLEME VE NİCEMLEME Eliizde ürekli bir işaret yada onun graiği olduğunu, bu işareti teleonla arkadaşııza tari edip onun da aynı işareti üreteini/çizeini ağlaak itediğiizi varayalı. Örneğin böyle bir

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Tork ve Denge. Test 1 in Çözümleri

Tork ve Denge. Test 1 in Çözümleri 9 ork ve Denge est in Çözümleri M. Sistemlerin engee olması için toplam momentin (torkun) sıfır olması gerekir. Verilen üç şekil için enge koşulunu yazalım. F. br =. br F = Şekil II G =. +. +. =. 6 = 6

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

KOR İÇİ YAKIT YÖNETİM KOD SİSTEMİ GELİŞTİRİLMESİ DEVELOPMENT OF IN CORE FUEL MANAGEMENT CODE SYSTEM

KOR İÇİ YAKIT YÖNETİM KOD SİSTEMİ GELİŞTİRİLMESİ DEVELOPMENT OF IN CORE FUEL MANAGEMENT CODE SYSTEM KO İÇİ YAKIT YÖNETİ KO İTEİ GELİŞTİİLEİ EVELOPENT OF IN COE FUEL ANAGEENT COE YTE EHAN ŞENLİK Prof. r. EHET TOBAKOĞLU Tez anışmanı Hacettepe Ünverte Lanütü Eğtm Öğretm ve ınav Yönetmelğnn Nükleer Enerj

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 7 BÖÜM İTME E MMENTUM MDE SRU - DEİ SRUARIN ÇÖZÜMERİ Cisi esnek çarpışa yaptığına göre, çarptığı hızla engelden eşit açıyla yansır II engeline dik geldiğinden üzerinden geri döner II I 45 45 45 3 Cis e

Detaylı

KÜRESEL AYNALAR BÖLÜM 26

KÜRESEL AYNALAR BÖLÜM 26 ÜRESE AYNAAR BÖÜ 6 ODE SORU DE SORUARN ÇÖZÜER d d noktası çukur aynanın merkezidir ve ışınlarının izlediği yoldan, yargı doğrudur d noktası çukur aynanın odak noktasıdır d olur yargı doğrudur d + d + dir

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ANADOLU ÜNİVESİTESİ BİLİ VE TEKNOLOJİ DEGİSİ ANADOLU UNIVESITY JOUNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Saı/No: : 9-6 (006) AAŞTIA AKALESİ/ESEACH ATICLE İL VE İLÇELEDE YAILACAK KAUOYU AAŞTIALAI İÇİN

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

ÇÖZÜMLÜ PARALEL KUVVETLERİN DENGESİ SORULARI. F 1 e göre moment alırsak; X = 3x0 + 2x4 + 4x6 = 32 = 3,55 birim F 1 den uzakta

ÇÖZÜMLÜ PARALEL KUVVETLERİN DENGESİ SORULARI. F 1 e göre moment alırsak; X = 3x0 + 2x4 + 4x6 = 32 = 3,55 birim F 1 den uzakta ÇÖZÜMLÜ ARALEL KUVVETLERİN DENGESİ SORULARI Örnek 1: 4br 2br F 1 =3N F 2 =2N F 3 =4N F 1 e göre moment alırsak; X = 3x0 + 2x4 + 4x6 = 32 = 3,55 birim F 1 den uzakta 3 + 2 + 4 9 Örnek 2 : Moment alırken

Detaylı