BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II"

Transkript

1 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr Adý Soyadý : Bu kitapçýðýn her hakký saklýdýr Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd Þti e aittir Kýsmen de olsa alýntý yapýlamaz Metin ve sorular, kitapçýðý yayýmlayan þirketin önceden izni olmaksýzýn elektronik, mekanik, fotokopi ya da herhangi bir kayýt sistemiyle çoðaltýlamaz yayýmlanamaz POLÝNOMLAR - IV P(x) POLÝNOMUNUN (x n +a) ÝLE BÖLÜMÜNDEN KALAN BULMA x n +a=0 ise x n = a yazýlarak kalan bulunur Örnek: 1 P(x) + a B(x) K n P(x) = (x + a)b(x) + K P(x)=x 4 x 3 +3x +1 0 a) P(x) polinomunun (x +1) ile bölümünden kalaný bulunuz b) P(x) polinomunun (x 3 1) ile bölümünden kalaný bulunuz n x Örnek: 3 (x )P(x)=x 3 +x ax+b P(x) polinom olduðuna göre, a+b toplamý kaçtýr? Örnek: 4 P(x)=x 8 3x 4 +a+4 polinomunun (x 4 +) ile bölümünden kalan 4 olduðuna göre, a kaçtýr? Örnek: 5 P(x)=x 4 5x +x 3 a) P(x) polinomunun (x +x) ile bölümünden kalaný bulunuz Örnek: P(x)=x 18 4x 1 +x 6 +3 olduðuna göre, P(x) polinomunun (x 6 +3) ile bölümünden kalaný bulunuz b) P(x) polinomunun (x +x+1) ile bölümünden kalaný bulunuz c) P(x) polinomunun (x x 3) ile bölümünden kalaný bulunuz 1

2 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 6 x 3 5x +7x+4=(x x )B(x)+ax+b olduðuna göre, a+b toplamý kaçtýr? Örnek: 10 P(x) polinomunun (x+) ile bölümünden kalan 1, (x 5) ile bölümünden kalan 15 tir Buna göre, P(x) polinomunun (x 3x 10) ile bölümünden kalaný bulunuz Örnek: 7 P(x)=x 4 +x 3 +ax+b polinomu (x 3x+) ile tam bölünebildiðine göre, b kaçtýr? Örnek: 8 P(x) polinomunun (x x 3) ile bölümünden kalan (x+3) tür Buna göre, P(x) polinomunun (x 3) ile bölümünden kalan kaçtýr? Örnek: 9 P(x), Q(x) ve B(x) birer polinom olmak üzere, P(x) 0 x+3 Q(x) Q(x) 4 Yukarýdaki bölme iþlemlerine göre, P(x) polinomunun (x +5x+6) ile bölümünden kalaný bulunuz x+ B(x) Örnek: 11 P(x+1) polinomunun kat sayýlarý toplamý ( ), P(x 1) polinomunun sabit terimi ise 4 tür Buna göre, P(x) polinomunun (x x ) ile bölümünden kalaný bulunuz Örnek: 1 P(x) polinomunun (x 5)(x ) ile bölümünden kalan (x 1) dir Buna göre, P (x) polinomunun (x ) ile bölümünden kalan kaçtýr? Örnek: 13 P(x) polinomunun (x +) ile bölümünden kalan (3x 1) dir Buna göre, P (x) polinomunun (x +) ile bölümünden kalaný bulunuz

3 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 14 P(x)=x 3 3x +ax b polinomunun (x 1) ile bölümünden kalan (x 1) olduðuna göre, a+b toplamý kaçtýr? Uyarı: P(x) polinomunun x=a çift katlı kökü ise P(x) polinomu (x a) ile tam bölünür der[p(x)]=m, der[q(x)=n ve m>n olmak üzere, k der[p(x )]=km k der[p (x)]=km Örnek: 15 Üçüncü dereceden bir P(x) polinomunun (x 1), (x+1) ve (x ) ile bölümünden kalanlar 3 tür P(x) polinomunun (x+) ile bölümünden kalan 15 olduðuna göre, P(x) polinomunun sabit terimi kaçtýr? P(x) der =m n Q(x) Örnek: 18 P(x )=x 5x+3 a) P(x 1) polinomunun derecesi b) P 3 (x) polinomunun derecesi c) P(x 4 ) polinomunun derecesi Örnek: 16 kesri sadeleþtirilebildiðine göre, m+n toplamý kaçtýr? Örnek: 17 3 x 3x mx n x 1 P(x)=x 3 mx +16x+n 10 polinomunun çift katlý kökü x= olduðuna göre, m+n toplamý kaçtýr? d) P 3 (x ) polinomunun derecesi Örnek: 19 P(x) üçüncü dereceden, Q(x) dördüncü dereceden polinom olmak üzere, a) (x 3 +1)P (x)+q(x 6 ) polinomunun derecesi kaçtýr? b) P(x 1)Q 3 (x+1) polinomunun derecesi kaçtýr? 3

4 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 0 P(x) ve Q(x) birer polinom olmak üzere, der[p(x)q(x)] = 8 P(x) = der 7 Q(x) olduðuna göre, P(x) Q(x) polinomunun derecesi kaçtýr? POLÝNOMLARDA EBOB VE EKOK P(x) ve Q(x) en az birinci dereceden iki polinom olmak üzere, P(x) ve Q(x) polinomlarýnýn her ikisini de tam bölen en büyük dereceli polinoma, bu iki polinomun en büyük ortak böleni (EBOB) denir ve EBOB [P(x), Q(x)] þeklinde gösterilir P(x) ve Q(x) polinomlarýnýn her ikisine de tam bölünen en küçük dereceli polinoma en küçük ortak katý (EKOK) denir ve EKOK[P(x), Q(x)] þeklinde gösterilir Polinomlarýn EBOB veya EKOK u bulunurken ilk önce verilen polinomlar asal çarpanlarýna ayrýlýr ÝNDÝRGENEMEYEN POLÝNOM En az birinci dereceden iki polinomun çarpýmý biçiminde yazýlamayan polinomlara indirgenemeyen polinom denir Örnek: 1 Aþaðýdaki polinomlardan hangisi indirgenemeyen polinom deðildir? A) P(x)=3x+6 B) P(x)=x +4 C) P(x)=x +x+1 D) P(x)=x 5x+7 ASAL POLÝNOM Örnek: E) P(x)=15x +x 1 Baþ kat sayýsý 1 olan ve indirgenemeyen polinomlara asal polinom denir Aþaðýdaki polinomlardan hangisi asal polinomdur? A) P(x)=x 4 B) P(x)=x 3x+ C) P(x)=x 3 +8 D) P(x)=x 3 +x 10 E) P(x)=x+61 4 Örnek: 3 P(x)=(x 3x)(x 1) Q(x)=x 3 x a) P(x) ve Q(x) polinomlarýnýn en büyük ortak bölen polinomunu bulunuz b) P(x) ve Q(x) polinomlarýnýn en küçük ortak kat polinomunu bulunuz Örnek: 4 olduðuna göre, a kaçtýr? Örnek: 5 3 x 3x ax 6 0 mod(x ) P(x)=x 9 3x 6 4x 4 +3 ( ) polinomunun (x x+1) ile bölümünden kalaný bulunuz

5 POLÝNOMLAR IV 1 P(x)=3x 3 x x+5 polinomunun (x 1) ile bölümünden kalan aþaðýdakilerden hangisidir? A) 4 x B) x+3 C) x 4 D) x 3 E) x+3 5 P(x)=x 3 +3x ax+b KONU TESTÝ polinomu (x ) ile tam bölünebildiðine göre, a b farký kaçtýr? A) 4 B) 6 C) 8 D) 10 E) 15 P(x)=4x 15 +3x polinomunun (x 5 3) ile bölümünden kalan kaçtýr? A) 10 B) 130 C) 13 D) 134 E) P(x)=x 3 +mx +4x+n polinomunun (x x 3) ile bölümünden kalan (5x ) olduðuna göre, m kaçtýr? A) 3 B) C) 1 D) E) 3 3 P(x)=x 3 x+4 polinomunun (x x) ile bölümünden kalan aþaðýdakilerden hangisidir? A) 4x+1 B) x+4 C) x+4 D) 4x 1 E) x 4 7 P(x) polinomunun (x 1x+35) ile bölümünden kalan (x+1) dir Buna göre, P(x) polinomunun (x 5) ile bölümünden kalan kaçtýr? A) 9 B) 11 C) 13 D) 15 E) 17 4 P(x)=x 3 +x 5 polinomunun (x +x 3) ile bölümünden kalan aþaðýdakilerden hangisidir? A) x+ B) x+ C) 4x+6 D) 6x+4 E) x 5 8 P(x) polinomunun (x +x 1) ile bölümünden kalan (3x+1) olduðuna göre, P(x 1) polinomunun (x ) ile bölümünden kalan kaçtýr? A)4 B)5 C)7 D)8 E)10

6 POLÝNOMLAR IV 9 P(x) polinomunun (x 6x+8) ile bölümünden kalan (x 7) olduðuna göre, P (x) polinomunun (x 4) ile bölümünden kalan kaçtýr? A) 1 B) 4 C) 9 D) 16 E) 5 KONU TESTÝ 13 P(x) polinomunun (x ) ile bölümünde bölüm Q(x), kalan dir Q(x) polinomunun (x+) ile bölümünden kalan 3 tür Buna göre, P(x) polinomunun (x 4) ile bölümünden A) 8 x B) x+4 C) x 4 D) 3x+4 E) 3x 4 10 P(x) bir polinom olmak üzere, (x 1)P(x)=x 3 +mx +nx olduðuna göre, mn çarpýmý kaçtýr? A) 4 B) 3 C) D) 1 E) 14 P(x) polinomunun (x 3 7) ile bölümünden kalan (x +x+1) dir Buna göre, P(x) polinomunun (x +3x+9) ile bölümünden A) x 8 B) 8 x C) x 4 D) x+4 E) x 8 11 P(x)=x 3 +ax +bx 1 polinomunun (x x+1) ile bölümünden kalan (1 x) olduðuna göre, ab çarpýmý kaçtýr? A) 6 B) 3 C) 1 D) 3 E) 6 15 P(x)=x 4 x 3 +ax +x+b polinomunun bir çarpaný (x ) olduðuna göre, b kaçtýr? A) 4 B) 5 C) 6 D) 7 E) 8 1 P(x) polinomunun (x 1) ile bölümünden kalan 4, (x+) ile bölümünden kalan 7 dir Buna göre, P(x) polinomunun (x +x ) ile bölümünden A) x+1 B) x+5 C) x+3 D) x E) x a ve b birer gerçek sayýdýr ( ) 3 3x ax bx 0 mod(x ) olduðuna göre, a+b toplamý kaçtýr? A) 3 B) 4 C) 5 D) 6 E) 7

7 POLÝNOMLAR IV KONU TESTÝ 17 P(x)=x 3 +5x +5x+5 olduðuna göre, aþaðýdakilerden hangisi P(x) polinomunun bir çarpanýdýr? A) x 4 B) x 5 C) x +5 D) x +4 E) x x 4x kx 10 x x ifadesi sadeleþebilir bir kesir olduðuna göre, k kaçtýr? A) 5 B) 3 C) 3 D) 5 E) 7 18 Aþaðýdaki polinomlardan hangisi indirgenemeyen polinom deðildir? A) P(x)=x 7 B) P(x)=x +x+1 C) P(x)=x +3 D) P(x)=x 4 +x+1 E) P(x)=x 3 +8 P(x) = x 6 7x +x Q(x) = 3x 3 +4x +5 olduðuna göre, P(x ) [Q(x)] polinomunun derecesi kaçtýr? A) 3 B) 9 C) 10 D) 1 E) 1 19 Aþaðýdaki polinomlardan hangisi asal polinomdur? A) P(x)=x 8x+15 B) P(x)=x 7 C) P(x)=x +5 D) P(x)=x 3 +8 E) P(x)=x P(x)= x 5 +3x 3 x +1 olduðuna göre, x P(x 3 ) polinomunun derecesi kaçtýr? A) 13 B) 14 C) 15 D) 16 E) 17 0 A=x 3 5x +6x B=x 3 4x olduðuna göre, A ve B ifadelerinin ortak bölenlerinin en büyüðü aþaðýdakilerden hangisidir? A) x B) x C) x+ D) x x E) x +x 7 4 P(x) ve Q(x) birer polinom olmak üzere, der[p (x)q(x)]=7 3 P(x ) der 3 Q(x) olduðuna göre, der(x P(x) 4Q(x)) kaçtýr? A) B) 3 C) 4 D) 5 E) 6

8 POLÝNOMLAR IV 5 P(x) polinomunun (x +4x) ile bölümünden kalan (x+) ve (x 9) ile bölümünden kalan (x 1) dir Buna göre, P(x) polinomunun x(x+3) ile bölümünden A) 3x B) x 3 C) 3x+ D) 3x+ E) x+3 KONU TESTÝ 9 (x +x)p(x 1)=x 3 +x +ax+b olduðuna göre, P(x ) polinomunun sabit terimi kaçtýr? A) 6 B) 4 C) D) E) 4 6 P(x) polinomunun (x+1) ile bölümünden kalan 9, (x 3) ile bölümünden kalan 1 dir Buna göre, P(x+1) polinomunun (x 4) ile bölümünden A) 3x B) x+3 C) x 5 D) 3x+ E) x+3 30 P(x) üçüncü dereceden bir polinom fonksiyonu olmak üzere, P( 4)=P( 3)=P(5)=0 P(0)= olduðuna göre, P(1) kaçtýr? A) B) C) D) E) (010 LYS) 7 P(x) polinomunun (x 3) 3 ile bölümünden bölüm B(x), kalan (x 3) +3 tür Buna göre, P(x) polinomunun (x 3) ile bölümünden elde edilen bölüm polinomu aþaðýdakilerden hangisidir? A) (x 3)B(x)+ B) (x 3)B(x) C) (x+)b(x)+3 D) 3B(x)+1 E) (x 1)B(x)+ 31 P(x)=x 18 +x 9 +x 1 polinomunun (x x+1) ile bölümünden kalan aþaðýdakilerden hangisidir? A) x B) x 1 C) x D) x 4 E) x+1 8 P(x) polinomunun (x 5x+6) ile bölümünden kalan (x 3) olduðuna göre, P (x) polinomunun (x 5x+6) ile bölümünden A) 8x+15 B) 8x+15 C) 15x 8 D) 8x 15 E) 15x+8 3 P(x 3)=x 4 11x +31 olduðuna göre, P(x) polinomunun (x 5x) ile bölümünden A) x+7 B) x 7 C) 3x 1 D) 7 E) 5x 7 1-E -C 3-C 4-E 5-D 6-A 7-B 8-E 9-C 10-C 11-A 1-E 13-E 14-E 15-C 16-C 17-C 18-E 19-C 0-D 1-B -D 3-E 4-C 5-D 6-C 7-A 8-D 9-C 30-B 31-B 3-D 8

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý LYS GEOMETRÝ Soru Çözüm ersi Kitapçığı 1 (MF - TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende lan u yayýnýn her hakký saklýdýr. Tüm

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I BÝRE DERSHANEERÝ SINIF ÝÇÝ DERS UUAMA FÖÜ (MF) DERSHANEERÝ S FÝÝ - 13 ADIRMA UVVETÝ - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ADIRMA UVVETÝ - I Adý Soyadý :... Bu

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - I MF TM LYS 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

1. Böleni 13 olan bir bölme iþleminde kalanlarýn

1. Böleni 13 olan bir bölme iþleminde kalanlarýn 4. SINIF COÞMAYA SORULARI 1. BÖLÜM 3. DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. Böleni 13 olan bir bölme iþleminde kalanlarýn toplamý kaçtýr? A) 83 B) 78 C) 91 D) 87

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

MATEMATİK SORU BANKASI

MATEMATİK SORU BANKASI Bu kitap tarafından hazırlanmıştır. MATEMATİK SORU BANKASI ISBN-978-605-6067-8- Sertifika No: 748 Konu Kavrama s e r i s i Üniversiteye Hazırlık & Okula Yardımcı Bu kitabın tüm basım ve yayın hakları na

Detaylı

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - I Ödev Kitapçığı (MF-TM) Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Adý

Detaylı

DERSHANELERÝ MATEMATÝK - II

DERSHANELERÝ MATEMATÝK - II B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. TOPLAM - ÇARPIM SEMBOLÜ - II MF-TM 50 MATEMATÝK - II 50 Bu yayýnýn her hakký saklýdýr. Tüm

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012 YGS Seti www.pianalitikyayinlari.om YGS Matematik Soru Bankası Copyright Sürat Basým Reklamýlýk ve Eðitim Araçlarý San. Ti. AÞ Bu kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin ön eden

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

MATEMAT K SORU BANKASI

MATEMAT K SORU BANKASI LYS MATEMAT K SORU BANKASI 14 KONU ÖZET 118 KONU TEST TOPLAM 2320 SORU TEŞEKKÜR Kitaba emeği geçen değerli Zafer Dershaneleri öğretmenlerine ve de dizgisinden baskısına kadar kitaba emek veren tüm çalışanlara

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM 7. SINIF COÞMAYA SORULARI 1. BÖLÜM DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? 2 1 1 2 A) B) C) D) 3 2 3

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON ORTAÖĞRETİM MATEMATİK 0. SINIF DERS KİTAI YAZARLAR KOMİSYON DEVLET KİTAPLARI İKİNCİ ASKI..., 0 MİLLİ EĞİTİM AKANLIĞI YAYINLARI...: 5659 DERS KİTAPLARI DİZİSİ...: 54.?.Y.000.470 Her hakkı saklıdır ve Milli

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

Kanguru Matematik Türkiye 2015

Kanguru Matematik Türkiye 2015 3 puanlýk sorular 1. Aþaðýdaki þekillerden hangisi bu dört þeklin hepsinde yoktur? A) B) C) D) 2. Yandaki resimde kaç üçgen vardýr? A) 7 B) 6 C) 5 D) 4 3. Yan taraftaki þekildeki yapboz evin eksik parçasýný

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z. MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

3. FASÝKÜL 1. FASÝKÜL 4. FASÝKÜL 2. FASÝKÜL 5. FASÝKÜL. 3. ÜNÝTE: ÇIKARMA ÝÞLEMÝ, AÇILAR VE ÞEKÝLLER Çýkarma Ýþlemi Zihinden Çýkarma

3. FASÝKÜL 1. FASÝKÜL 4. FASÝKÜL 2. FASÝKÜL 5. FASÝKÜL. 3. ÜNÝTE: ÇIKARMA ÝÞLEMÝ, AÇILAR VE ÞEKÝLLER Çýkarma Ýþlemi Zihinden Çýkarma Ýçindekiler 1. FASÝKÜL 1. ÜNÝTE: ÞEKÝLLER VE SAYILAR Nokta Düzlem ve Düzlemsel Þekiller Geometrik Cisimlerin Yüzleri ve Yüzeyleri Tablo ve Þekil Grafiði Üç Basamaklý Doðal Sayýlar Sayýlarý Karþýlaþtýrma

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Kümeler II. KÜMELER. Çözüm A. TANIM. rnek... 3. Çözüm B. KÜMELERÝN GÖSTERÝLMESÝ. rnek... 1. rnek... 2. rnek... 4. 9. Sýnýf / Sayý..

Kümeler II. KÜMELER. Çözüm A. TANIM. rnek... 3. Çözüm B. KÜMELERÝN GÖSTERÝLMESÝ. rnek... 1. rnek... 2. rnek... 4. 9. Sýnýf / Sayý.. Kümeler II. KÜMLR. TNIM Küme, bir nesneler topluluðudur. Kümeyi oluþturan nesneler herkes tarafýndan ayný þekilde anlaþýlmalýdýr. Kümeyi oluþturan nesnelerin her birine eleman denir. Kümeyi genel olarak,,

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

İTÜ Bilgisayar Mühendisliği Bölümü, BLG433-Bilgisayar Haberleşmesi ders notları, Dr. Sema Oktuğ

İTÜ Bilgisayar Mühendisliği Bölümü, BLG433-Bilgisayar Haberleşmesi ders notları, Dr. Sema Oktuğ Bölüm 3 : HATA SEZME TEKNİKLERİ Türkçe (İngilizce) karşılıklar Eşlik sınaması (parity check) Eşlik biti (parity bit) Çevrimli fazlalık sınaması (cyclic redundancy check) Sağnak/çoğuşma (burst) Bölüm Hedefi

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

17 ÞUBAT 2016 5. kontrol

17 ÞUBAT 2016 5. kontrol 17 ÞUBAT 2016 5. kontrol 3 puanlýk sorular 1. Tuna ve Coþkun un yaþlarý toplamý 23, Coþkun ve Ali nin yaþlarý toplamý 24 ve Tuna ve Ali nin yaþlarý toplamý 25 tir. En büyük olanýn yaþý kaçtýr? A) 10 B)

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

2014 2015 Eðitim Öðretim Yýlý ÝSTANBUL ÝLÝ ÝLKOKULLAR ARASI 2. Zeka Oyunlarý Turnuvasý 7 Mart Silence Ýstanbul Hotel TURNUVA PROGRAMI 09.30-10.00 10.00-10.45 11.00-11.22 11.35-11.58 12.10-12.34 12.50-13.15

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

KÜMELER TEST / 1. 1. Aþaðýdakilerden hangisi bir küme belirtir?

KÜMELER TEST / 1. 1. Aþaðýdakilerden hangisi bir küme belirtir? KÜMELER TEST /. þaðýdakilerden hangisi bir küme belirtir? 6. ten küçük asal sayýlar kümesinin Venn þemasý ile gösterimi aþaðýdakilerden ) Yýlýn aylarý ) Sokaktaki yaþlý insanlar ) Trabzondaki en iyi lokantalar

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ Mat624 Cebir II Ders Notları Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ İçindekiler Kısım 1. CİSİM TEORİSİ iii Bölüm 1. Eşitliklerin

Detaylı

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR ÖABT 205 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

İÇİNDEKİLER I. BÖLÜM: GEOMETRİ BÖLÜM: SAYILAR TEORİSİ III. BÖLÜM: ANALİZ VE CEBİR SORULARI

İÇİNDEKİLER I. BÖLÜM: GEOMETRİ BÖLÜM: SAYILAR TEORİSİ III. BÖLÜM: ANALİZ VE CEBİR SORULARI İÇİNDEKİLER I. BÖLÜM: GEOMETRİ A) ÜÇGENLER...8 1. Üçgende açılar...8. Üçgen eşitsizliği...11 3. Teoremler, Pisagor, Kosinüs, Stewart, Carnot, Öklid, Menaleus, Ceva Teoremleri...14 4. Açıortay, Kenarortay

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý LYS GMTRÝ ÇLIÞM ÝTI LYS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

Kanguru Matematik Türkiye 2015

Kanguru Matematik Türkiye 2015 3 puanlýk sorular 1. Hangi þeklin tam olarak yarýsý karalanmýþtýr? A) B) C) D) 2 Þekilde görüldüðü gibi þemsiyemin üzerinde KANGAROO yazýyor. Aþaðýdakilerden hangisi benim þemsiyenin görüntüsü deðildir?

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

Ural Federe Bölgesi Öğretmen Evi. IX. Uluslararası Bilim Temelleri Bilgi Yarışması. 2012-2013 öğretim yılı. 1.etap. Maxim Kontsevich e ithafen

Ural Federe Bölgesi Öğretmen Evi. IX. Uluslararası Bilim Temelleri Bilgi Yarışması. 2012-2013 öğretim yılı. 1.etap. Maxim Kontsevich e ithafen Ural Federe Bölgesi Öğretmen Evi IX. Uluslararası Bilim Temelleri Bilgi Yarışması 2012-2013 öğretim yılı 1.etap Matematik 8.sınıf Maxim Kontsevich e ithafen Test soruları hazırlayan: Koutsenkova Olga,

Detaylı

Kanguru Matematik Türkiye 2015

Kanguru Matematik Türkiye 2015 3 puanlýk sorular 1. Aþaðýda verilen iþlemleri sýrayla yapýp, soru iþareti yerine yazýlmasý gereken sayýyý bulunuz. A) 7 B) 8 C) 10 D) 15 2. Erinç'in 10 eþit metal þeridi vardýr. Bu metalleri aþaðýdaki

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (TM-TS) LYS TÜRKÇE - 61 ANLATIM BOZUKLUKLARI - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (TM-TS) LYS TÜRKÇE - 61 ANLATIM BOZUKLUKLARI - I LYS TÜRKÇE - 61 DERSHANELERÝ ANLATIM BOZUKLUKLARI - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ANLATIM BOZUKLUKLARI - I Anlatým bozukluklarý, cümle düzeyindeki dil yanlýþlarýdýr.

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

SAYILAR TEORÝSÝNE GÝRÝÞ

SAYILAR TEORÝSÝNE GÝRÝÞ OLÝMPÝK MATEMATÝK SERÝSÝ MATEMATÝK OLÝMPÝYATLARINA HAZIRLIK ÝÇÝN MERAKLISINA SAYILAR TEORÝSÝNE GÝRÝÞ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVÝ ÝZMÝR - 2013 Copyright Altýn Nokta Basým Yayýn Daðýtým Biliþim ISBN

Detaylı

: 10. S n f Matematik Soru Bankas. Erhan Nemutlu Ali Kocab y k. : Kany lmaz Matbaas A ustos - 2011. : Model Ajans ISBN : 978-605 - 89824-8 - 2

: 10. S n f Matematik Soru Bankas. Erhan Nemutlu Ali Kocab y k. : Kany lmaz Matbaas A ustos - 2011. : Model Ajans ISBN : 978-605 - 89824-8 - 2 Bu kitab n tamam n n ya da bir k sm n n, yazarlar n izni olmaks z n elektronik, mekanik, fotokopi ya da herhangi bir kay t sistemi ile ço alt lmas, yay nlanmas yasakt r. Bu kitab n tüm haklar yazarlar

Detaylı

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez?

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez? 5. SINIF COÞMY SORULRI 1. 1. BÖLÜM DÝKKT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. Kazan Bardak Tam dolu kazandan 5 bardak su alýndýðýnda kazanýn 'si boþalmaktadýr. 1 12 Kazanýn

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Matematik Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 75 dakikadır. 3. Bu testte

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM)

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) Permütasyon Kombinasyon Binom Açýlýmý Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

2013-2014 Eğitim Öğretim Yılı Lise

2013-2014 Eğitim Öğretim Yılı Lise 4 + 4 + 4 2013-2014 Eğitim Öğretim Yılı Lise 10. Sınıf Deneme Müfredatı 9. Sınıf Denemeleri Soru Adetleri Dersler Soru Sayısı Dil ve Anlatım Türk Edebiyatı Matematik Fizik Kimya Biyoloji Tarih Coğrafya

Detaylı

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir.

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Değişkenler 1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Örnek Kullanım : sayı değer= 3; sayı sayı1; 2- ondalık - Ondalık sayıları ifade etmek için

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim Matematik 1. Fasikül ÜNÝTE 1 Geometriye Yolculuk ... ÜNÝTE 1 Geometriye Y olculuk Çevremizdeki Geometri E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme Geometrik Þekilleri Ýnceleyelim E E E E E Üçgenler

Detaylı

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir.

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir. CEVAPLAR .BÖLÜM - TEST ) {K.K.T.C nin g harfi ile başlayan ilçeleri} ) İlkbahar, yaz, sonbahar, kış mevsimlerinin bazıları ile oluşturulacak kümeler farklı olacağından, bir küme oluşturmazlar. ) Okulumuzdaki

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

2 n 2n + 1 2. < n + 1olduğundan [ x ] = [ 2n + 1 ] = n

2 n 2n + 1 2. < n + 1olduğundan [ x ] = [ 2n + 1 ] = n ANALİZ-CEBİR I-TAM VE KESİR DEĞER x gerçel sayısı için n x < n + eşitsizliğini sağlayan n tam sayısına x in tam değeri denir ve [ x ] ile gösterilir. x [ x ] ifadesi ise x in kesir değeri olarak adlandırılır

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

Matematik ve Türkçe Örnek Soru Çözümleri Matematik Testi Örnek Soru Çözümleri 1 Aþaðýdaki saatlerden hangisinin akrep ve yelkovaný bir dar açý oluþturur? ) ) ) ) 11 12 1 11 12 1 11 12 1 10 2 10 2 10 2

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

MATLAB de. Programlama. Kontrol Yapıları. Döngü Yapıları. Doç. Dr. İrfan KAYMAZ Matlab Ders Notları

MATLAB de. Programlama. Kontrol Yapıları. Döngü Yapıları. Doç. Dr. İrfan KAYMAZ Matlab Ders Notları MATLAB de Programlama Kontrol Yapıları Döngü Yapıları Doç. Dr. İrfan KAYMAZ if Şartlı deyimi: Bir mantıksal ifadeyi kontrol ederek bunun sonucuna göre mümkün seçeneklerden birini icra edebilen bir komuttur.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

ÝÇÝNDEKÝLER. 1. ÜNÝTE Kümeler. 2. ÜNÝTE Bölünebilme Kurallarý ve Kesirler

ÝÇÝNDEKÝLER. 1. ÜNÝTE Kümeler. 2. ÜNÝTE Bölünebilme Kurallarý ve Kesirler ÝÇÝNDEKÝLER 1. ÜNÝTE Kümeler KÜMELER... 13 Ölçme ve Deðerlendirme... 19 Kazaným Deðerlendirme Testi - 1... 21 Kazaným Deðerlendirme Testi - 2 (Video lü)... 23 KÜMELERLE ÝÞLEMLER... 25 Ölçme ve Deðerlendirme...

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

AYRANCI AYSEL YÜCETÜRK ANADOLU LİSESİ KURS PROGRAMI DİL VE ANLATIM 2 3 TÜRK EDEBİYATI 3 3 TARİH 2 3 COĞRAFYA 2 3 MATEMATİK 6 5 FİZİK 2 3 KİMYA 2 3

AYRANCI AYSEL YÜCETÜRK ANADOLU LİSESİ KURS PROGRAMI DİL VE ANLATIM 2 3 TÜRK EDEBİYATI 3 3 TARİH 2 3 COĞRAFYA 2 3 MATEMATİK 6 5 FİZİK 2 3 KİMYA 2 3 9.SINIFLAR (En fazla üç ders seçilebilir ) TARİH 2 3 COĞRAFYA 2 3 MATEMATİK 6 5 FİZİK 2 3 KİMYA 2 3 BİYOLOJİ 2 3 ingilizce 6 5 ( istediğiniz kurs öğretmenini adını yazınız) na katılmak isteyen öğrenciler

Detaylı

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır.

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır. BÖLME, BÖLÜNEBİLME A. Bölme İşlemi A, B, C, K doğal sayılar ve B 0 olmak üzere, Bölünen A 75, bölen B 9, bölüm C 8 ve kalan K tür. Yukarıdaki bölme işlemine göre, 1. 9 yani, K B dir. işlemine bölme denir.

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 16 HAZİRAN 2013 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 16 HAZİRAN 2013 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 16 HAZİRAN 2013 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK MATEMATİK 1-)Ekmeğin tanesi 75 krş.tur.2ekmek alana 1 ekmek bedava olduğuna göre 30 ekmek için kaç tl ödenir? a)22,5 tl b)30 tl c)15tl d)10 tl 2-)3 kardeşin yaşları toplamı 45 tir.10 yıl sonra yaşları

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nasıl Kullanılır? Takdim Sevgili Öğrenciler ve Değerli Öğretmenler, Eğitimin temeli okullarda atılır. İyi bir okul eğitiminden geçmemiş birinin hayatta başarılı olması beklenemez.

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı