BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II"

Transkript

1 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr Adý Soyadý : Bu kitapçýðýn her hakký saklýdýr Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd Þti e aittir Kýsmen de olsa alýntý yapýlamaz Metin ve sorular, kitapçýðý yayýmlayan þirketin önceden izni olmaksýzýn elektronik, mekanik, fotokopi ya da herhangi bir kayýt sistemiyle çoðaltýlamaz yayýmlanamaz POLÝNOMLAR - IV P(x) POLÝNOMUNUN (x n +a) ÝLE BÖLÜMÜNDEN KALAN BULMA x n +a=0 ise x n = a yazýlarak kalan bulunur Örnek: 1 P(x) + a B(x) K n P(x) = (x + a)b(x) + K P(x)=x 4 x 3 +3x +1 0 a) P(x) polinomunun (x +1) ile bölümünden kalaný bulunuz b) P(x) polinomunun (x 3 1) ile bölümünden kalaný bulunuz n x Örnek: 3 (x )P(x)=x 3 +x ax+b P(x) polinom olduðuna göre, a+b toplamý kaçtýr? Örnek: 4 P(x)=x 8 3x 4 +a+4 polinomunun (x 4 +) ile bölümünden kalan 4 olduðuna göre, a kaçtýr? Örnek: 5 P(x)=x 4 5x +x 3 a) P(x) polinomunun (x +x) ile bölümünden kalaný bulunuz Örnek: P(x)=x 18 4x 1 +x 6 +3 olduðuna göre, P(x) polinomunun (x 6 +3) ile bölümünden kalaný bulunuz b) P(x) polinomunun (x +x+1) ile bölümünden kalaný bulunuz c) P(x) polinomunun (x x 3) ile bölümünden kalaný bulunuz 1

2 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 6 x 3 5x +7x+4=(x x )B(x)+ax+b olduðuna göre, a+b toplamý kaçtýr? Örnek: 10 P(x) polinomunun (x+) ile bölümünden kalan 1, (x 5) ile bölümünden kalan 15 tir Buna göre, P(x) polinomunun (x 3x 10) ile bölümünden kalaný bulunuz Örnek: 7 P(x)=x 4 +x 3 +ax+b polinomu (x 3x+) ile tam bölünebildiðine göre, b kaçtýr? Örnek: 8 P(x) polinomunun (x x 3) ile bölümünden kalan (x+3) tür Buna göre, P(x) polinomunun (x 3) ile bölümünden kalan kaçtýr? Örnek: 9 P(x), Q(x) ve B(x) birer polinom olmak üzere, P(x) 0 x+3 Q(x) Q(x) 4 Yukarýdaki bölme iþlemlerine göre, P(x) polinomunun (x +5x+6) ile bölümünden kalaný bulunuz x+ B(x) Örnek: 11 P(x+1) polinomunun kat sayýlarý toplamý ( ), P(x 1) polinomunun sabit terimi ise 4 tür Buna göre, P(x) polinomunun (x x ) ile bölümünden kalaný bulunuz Örnek: 1 P(x) polinomunun (x 5)(x ) ile bölümünden kalan (x 1) dir Buna göre, P (x) polinomunun (x ) ile bölümünden kalan kaçtýr? Örnek: 13 P(x) polinomunun (x +) ile bölümünden kalan (3x 1) dir Buna göre, P (x) polinomunun (x +) ile bölümünden kalaný bulunuz

3 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 14 P(x)=x 3 3x +ax b polinomunun (x 1) ile bölümünden kalan (x 1) olduðuna göre, a+b toplamý kaçtýr? Uyarı: P(x) polinomunun x=a çift katlı kökü ise P(x) polinomu (x a) ile tam bölünür der[p(x)]=m, der[q(x)=n ve m>n olmak üzere, k der[p(x )]=km k der[p (x)]=km Örnek: 15 Üçüncü dereceden bir P(x) polinomunun (x 1), (x+1) ve (x ) ile bölümünden kalanlar 3 tür P(x) polinomunun (x+) ile bölümünden kalan 15 olduðuna göre, P(x) polinomunun sabit terimi kaçtýr? P(x) der =m n Q(x) Örnek: 18 P(x )=x 5x+3 a) P(x 1) polinomunun derecesi b) P 3 (x) polinomunun derecesi c) P(x 4 ) polinomunun derecesi Örnek: 16 kesri sadeleþtirilebildiðine göre, m+n toplamý kaçtýr? Örnek: 17 3 x 3x mx n x 1 P(x)=x 3 mx +16x+n 10 polinomunun çift katlý kökü x= olduðuna göre, m+n toplamý kaçtýr? d) P 3 (x ) polinomunun derecesi Örnek: 19 P(x) üçüncü dereceden, Q(x) dördüncü dereceden polinom olmak üzere, a) (x 3 +1)P (x)+q(x 6 ) polinomunun derecesi kaçtýr? b) P(x 1)Q 3 (x+1) polinomunun derecesi kaçtýr? 3

4 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 0 P(x) ve Q(x) birer polinom olmak üzere, der[p(x)q(x)] = 8 P(x) = der 7 Q(x) olduðuna göre, P(x) Q(x) polinomunun derecesi kaçtýr? POLÝNOMLARDA EBOB VE EKOK P(x) ve Q(x) en az birinci dereceden iki polinom olmak üzere, P(x) ve Q(x) polinomlarýnýn her ikisini de tam bölen en büyük dereceli polinoma, bu iki polinomun en büyük ortak böleni (EBOB) denir ve EBOB [P(x), Q(x)] þeklinde gösterilir P(x) ve Q(x) polinomlarýnýn her ikisine de tam bölünen en küçük dereceli polinoma en küçük ortak katý (EKOK) denir ve EKOK[P(x), Q(x)] þeklinde gösterilir Polinomlarýn EBOB veya EKOK u bulunurken ilk önce verilen polinomlar asal çarpanlarýna ayrýlýr ÝNDÝRGENEMEYEN POLÝNOM En az birinci dereceden iki polinomun çarpýmý biçiminde yazýlamayan polinomlara indirgenemeyen polinom denir Örnek: 1 Aþaðýdaki polinomlardan hangisi indirgenemeyen polinom deðildir? A) P(x)=3x+6 B) P(x)=x +4 C) P(x)=x +x+1 D) P(x)=x 5x+7 ASAL POLÝNOM Örnek: E) P(x)=15x +x 1 Baþ kat sayýsý 1 olan ve indirgenemeyen polinomlara asal polinom denir Aþaðýdaki polinomlardan hangisi asal polinomdur? A) P(x)=x 4 B) P(x)=x 3x+ C) P(x)=x 3 +8 D) P(x)=x 3 +x 10 E) P(x)=x+61 4 Örnek: 3 P(x)=(x 3x)(x 1) Q(x)=x 3 x a) P(x) ve Q(x) polinomlarýnýn en büyük ortak bölen polinomunu bulunuz b) P(x) ve Q(x) polinomlarýnýn en küçük ortak kat polinomunu bulunuz Örnek: 4 olduðuna göre, a kaçtýr? Örnek: 5 3 x 3x ax 6 0 mod(x ) P(x)=x 9 3x 6 4x 4 +3 ( ) polinomunun (x x+1) ile bölümünden kalaný bulunuz

5 POLÝNOMLAR IV 1 P(x)=3x 3 x x+5 polinomunun (x 1) ile bölümünden kalan aþaðýdakilerden hangisidir? A) 4 x B) x+3 C) x 4 D) x 3 E) x+3 5 P(x)=x 3 +3x ax+b KONU TESTÝ polinomu (x ) ile tam bölünebildiðine göre, a b farký kaçtýr? A) 4 B) 6 C) 8 D) 10 E) 15 P(x)=4x 15 +3x polinomunun (x 5 3) ile bölümünden kalan kaçtýr? A) 10 B) 130 C) 13 D) 134 E) P(x)=x 3 +mx +4x+n polinomunun (x x 3) ile bölümünden kalan (5x ) olduðuna göre, m kaçtýr? A) 3 B) C) 1 D) E) 3 3 P(x)=x 3 x+4 polinomunun (x x) ile bölümünden kalan aþaðýdakilerden hangisidir? A) 4x+1 B) x+4 C) x+4 D) 4x 1 E) x 4 7 P(x) polinomunun (x 1x+35) ile bölümünden kalan (x+1) dir Buna göre, P(x) polinomunun (x 5) ile bölümünden kalan kaçtýr? A) 9 B) 11 C) 13 D) 15 E) 17 4 P(x)=x 3 +x 5 polinomunun (x +x 3) ile bölümünden kalan aþaðýdakilerden hangisidir? A) x+ B) x+ C) 4x+6 D) 6x+4 E) x 5 8 P(x) polinomunun (x +x 1) ile bölümünden kalan (3x+1) olduðuna göre, P(x 1) polinomunun (x ) ile bölümünden kalan kaçtýr? A)4 B)5 C)7 D)8 E)10

6 POLÝNOMLAR IV 9 P(x) polinomunun (x 6x+8) ile bölümünden kalan (x 7) olduðuna göre, P (x) polinomunun (x 4) ile bölümünden kalan kaçtýr? A) 1 B) 4 C) 9 D) 16 E) 5 KONU TESTÝ 13 P(x) polinomunun (x ) ile bölümünde bölüm Q(x), kalan dir Q(x) polinomunun (x+) ile bölümünden kalan 3 tür Buna göre, P(x) polinomunun (x 4) ile bölümünden A) 8 x B) x+4 C) x 4 D) 3x+4 E) 3x 4 10 P(x) bir polinom olmak üzere, (x 1)P(x)=x 3 +mx +nx olduðuna göre, mn çarpýmý kaçtýr? A) 4 B) 3 C) D) 1 E) 14 P(x) polinomunun (x 3 7) ile bölümünden kalan (x +x+1) dir Buna göre, P(x) polinomunun (x +3x+9) ile bölümünden A) x 8 B) 8 x C) x 4 D) x+4 E) x 8 11 P(x)=x 3 +ax +bx 1 polinomunun (x x+1) ile bölümünden kalan (1 x) olduðuna göre, ab çarpýmý kaçtýr? A) 6 B) 3 C) 1 D) 3 E) 6 15 P(x)=x 4 x 3 +ax +x+b polinomunun bir çarpaný (x ) olduðuna göre, b kaçtýr? A) 4 B) 5 C) 6 D) 7 E) 8 1 P(x) polinomunun (x 1) ile bölümünden kalan 4, (x+) ile bölümünden kalan 7 dir Buna göre, P(x) polinomunun (x +x ) ile bölümünden A) x+1 B) x+5 C) x+3 D) x E) x a ve b birer gerçek sayýdýr ( ) 3 3x ax bx 0 mod(x ) olduðuna göre, a+b toplamý kaçtýr? A) 3 B) 4 C) 5 D) 6 E) 7

7 POLÝNOMLAR IV KONU TESTÝ 17 P(x)=x 3 +5x +5x+5 olduðuna göre, aþaðýdakilerden hangisi P(x) polinomunun bir çarpanýdýr? A) x 4 B) x 5 C) x +5 D) x +4 E) x x 4x kx 10 x x ifadesi sadeleþebilir bir kesir olduðuna göre, k kaçtýr? A) 5 B) 3 C) 3 D) 5 E) 7 18 Aþaðýdaki polinomlardan hangisi indirgenemeyen polinom deðildir? A) P(x)=x 7 B) P(x)=x +x+1 C) P(x)=x +3 D) P(x)=x 4 +x+1 E) P(x)=x 3 +8 P(x) = x 6 7x +x Q(x) = 3x 3 +4x +5 olduðuna göre, P(x ) [Q(x)] polinomunun derecesi kaçtýr? A) 3 B) 9 C) 10 D) 1 E) 1 19 Aþaðýdaki polinomlardan hangisi asal polinomdur? A) P(x)=x 8x+15 B) P(x)=x 7 C) P(x)=x +5 D) P(x)=x 3 +8 E) P(x)=x P(x)= x 5 +3x 3 x +1 olduðuna göre, x P(x 3 ) polinomunun derecesi kaçtýr? A) 13 B) 14 C) 15 D) 16 E) 17 0 A=x 3 5x +6x B=x 3 4x olduðuna göre, A ve B ifadelerinin ortak bölenlerinin en büyüðü aþaðýdakilerden hangisidir? A) x B) x C) x+ D) x x E) x +x 7 4 P(x) ve Q(x) birer polinom olmak üzere, der[p (x)q(x)]=7 3 P(x ) der 3 Q(x) olduðuna göre, der(x P(x) 4Q(x)) kaçtýr? A) B) 3 C) 4 D) 5 E) 6

8 POLÝNOMLAR IV 5 P(x) polinomunun (x +4x) ile bölümünden kalan (x+) ve (x 9) ile bölümünden kalan (x 1) dir Buna göre, P(x) polinomunun x(x+3) ile bölümünden A) 3x B) x 3 C) 3x+ D) 3x+ E) x+3 KONU TESTÝ 9 (x +x)p(x 1)=x 3 +x +ax+b olduðuna göre, P(x ) polinomunun sabit terimi kaçtýr? A) 6 B) 4 C) D) E) 4 6 P(x) polinomunun (x+1) ile bölümünden kalan 9, (x 3) ile bölümünden kalan 1 dir Buna göre, P(x+1) polinomunun (x 4) ile bölümünden A) 3x B) x+3 C) x 5 D) 3x+ E) x+3 30 P(x) üçüncü dereceden bir polinom fonksiyonu olmak üzere, P( 4)=P( 3)=P(5)=0 P(0)= olduðuna göre, P(1) kaçtýr? A) B) C) D) E) (010 LYS) 7 P(x) polinomunun (x 3) 3 ile bölümünden bölüm B(x), kalan (x 3) +3 tür Buna göre, P(x) polinomunun (x 3) ile bölümünden elde edilen bölüm polinomu aþaðýdakilerden hangisidir? A) (x 3)B(x)+ B) (x 3)B(x) C) (x+)b(x)+3 D) 3B(x)+1 E) (x 1)B(x)+ 31 P(x)=x 18 +x 9 +x 1 polinomunun (x x+1) ile bölümünden kalan aþaðýdakilerden hangisidir? A) x B) x 1 C) x D) x 4 E) x+1 8 P(x) polinomunun (x 5x+6) ile bölümünden kalan (x 3) olduðuna göre, P (x) polinomunun (x 5x+6) ile bölümünden A) 8x+15 B) 8x+15 C) 15x 8 D) 8x 15 E) 15x+8 3 P(x 3)=x 4 11x +31 olduðuna göre, P(x) polinomunun (x 5x) ile bölümünden A) x+7 B) x 7 C) 3x 1 D) 7 E) 5x 7 1-E -C 3-C 4-E 5-D 6-A 7-B 8-E 9-C 10-C 11-A 1-E 13-E 14-E 15-C 16-C 17-C 18-E 19-C 0-D 1-B -D 3-E 4-C 5-D 6-C 7-A 8-D 9-C 30-B 31-B 3-D 8

Polinomlar II. Dereceden Denklemler

Polinomlar II. Dereceden Denklemler Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - II Ödev Kitapçığı 1 (MF-TM) Polinomlar II. Dereceden Denklemler Adý Soyadý :... BÝREY DERSHANELERÝ MATEMATÝK-II ÖDEV KÝTAPÇIÐI

Detaylı

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler LYS MATEMATÝK II Soru Çözüm Dersi Kitapçığı 1 (MF - TM) Polinomlar II. Dereceden Denklemler Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

POLÝNOMLAR TEST / Aþaðýdakilerden hangisi polinom fonksiyonu deðildir?

POLÝNOMLAR TEST / Aþaðýdakilerden hangisi polinom fonksiyonu deðildir? POLÝNOMLAR TEST / 1 1. Bir fonksiyonun polinom belirtmesi için, deðiþkenlerin kuvveti doðal sayý olmalýdýr. Buna göre, aþaðýdakilerden hangisi bir polinomdur? 5. m 4 8 m 1 P(x) = x + 2.x + 2 ifadesi bir

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý Bölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IX MF TM LYS 6 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - II MF TM LYS 3 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IV MF TM LYS Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - IV MF TM LYS1 12 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý

Detaylı

POLİNOMLAR Test I m P x 3 2x x 4x. P x x 5 II. III. A) 13 B) 12 C) 11 D) 10 E) 9

POLİNOMLAR Test I m P x 3 2x x 4x. P x x 5 II. III. A) 13 B) 12 C) 11 D) 10 E) 9 POLİNOMLAR Test -. I. P x x 5 II. III. P x x P x ifadelerinden hangileri polinom belirtir? 6. P x x x x 7 polinomunun katsayılar toplamı A) B) C) D) 0 E) 9 A) Yalnız I B) Yalnız II C) I ve II D) I ve III

Detaylı

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý LYS GEOMETRÝ Soru Çözüm ersi Kitapçığı 1 (MF - TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende lan u yayýnýn her hakký saklýdýr. Tüm

Detaylı

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol den :... LYS GOMTRİ Ödev Kitapçığı 1 (M-TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve þkenar Üçgen Üçgende

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I BÝRE DERSHANEERÝ SINIF ÝÇÝ DERS UUAMA FÖÜ (MF) DERSHANEERÝ S FÝÝ - 13 ADIRMA UVVETÝ - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ADIRMA UVVETÝ - I Adý Soyadý :... Bu

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - I MF TM LYS 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

POLİNOMLAR. Polinomlar. Konu Kavrama Çalışması

POLİNOMLAR. Polinomlar. Konu Kavrama Çalışması POLİNOMLAR Polinomlar f: A B biçiminde tanımlanmış f(x) fonksiyonunda, A kümesi tanım kümesi ve B kümesi değer kümesidir. Fonksiyonlarda, fonksiyonu tanımsız yapan değerler tanım kümesinde yer alamaz.

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. x +6x+5=0 5. x +5x+m=0 denkleminin reel kökü olmadýðýna göre, m nin alabileceði en küçük tam sayý deðeri kaçtýr? A) {1,5} B) {,3} C) { 5, 1} D) { 5,1} E) {,3} A)

Detaylı

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik l l l EÞÝTSÝZLÝKLER I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik Çift ve Tek Katlý Kök, Üslü ve Mutlak Deðerlik Eþitsizlik l Alýþtýrma 1 l Eþitsizlik

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

1. Böleni 13 olan bir bölme iþleminde kalanlarýn

1. Böleni 13 olan bir bölme iþleminde kalanlarýn 4. SINIF COÞMAYA SORULARI 1. BÖLÜM 3. DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. Böleni 13 olan bir bölme iþleminde kalanlarýn toplamý kaçtýr? A) 83 B) 78 C) 91 D) 87

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Çarpanlara Ayırma 5 52 Polinomlar 53 100 İkinci Dereceden Denklemler 101 120 Karmaşık Sayılar

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER 7. ÜNİTE POLİNOMLAR Polinom Kavramı ve Polinomlarda İşlemler... 4 Polinom Kavramı... 4 9 Polinomlarda İşlemler... 9 Konu Testleri - - - 4-5... 6 Polinomlarda Çarpanlara Ayırma...

Detaylı

KÖKLÜ SAYILAR TEST / 1

KÖKLÜ SAYILAR TEST / 1 KÖKLÜ SAYILAR TEST / 1 1. Aþaðýdakilerden hangisi reel sayý deðildir? A) B) C) 0 D) 8 E). 6 2 9 A) 16 B) 18 C) 20 D) 2 E) 0 2. Aþaðýdakilerden hangisi irrasyonel sayýdýr? 6. Aþaðýdakilerden hangisi yanlýþtýr?

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6.

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6. LYS ÜNÝVERSÝTE HAZIRLIK ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI A Soru saýsý: 0 Yanýtlama süresi: dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

MATEMATİK SORU BANKASI

MATEMATİK SORU BANKASI Bu kitap tarafından hazırlanmıştır. MATEMATİK SORU BANKASI ISBN-978-605-6067-8- Sertifika No: 748 Konu Kavrama s e r i s i Üniversiteye Hazırlık & Okula Yardımcı Bu kitabın tüm basım ve yayın hakları na

Detaylı

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25 İçindekiler RASYONEL SAYILARDA İŞLEMLER. Çözümlü Sorular............................. 2.2 Sorular................................... 5 2 TEK - TERİMLİ veçok-terimli İFADELER 7 2. Çözümlü Sorular.............................

Detaylı

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - I Ödev Kitapçığı (MF-TM) Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Adý

Detaylı

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2).

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2). MATEMATÝK TESTÝ. Bu testte 0 soru vardýr.. Cevaplarýnýzý, cevap kaðýdýnýn Matematik Testi için ayrýlan kýsmýna iþaretleyiniz.. 0, 0, 4,0 0,04 iþleminin sonucu kaçtýr? A) 0 B) 9 0 D) 0 E) 0 4. Pozitif n

Detaylı

Komisyon LYS1 MATEMATİK 10 DENEME TAMAMI ÇÖZÜMLÜ ISBN Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon LYS1 MATEMATİK 10 DENEME TAMAMI ÇÖZÜMLÜ ISBN Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon LYS1 MATEMATİK 10 DENEME TAMAMI ÇÖZÜMLÜ ISBN 978-605-18-84-7 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Pegem Akademi Bu kitabın basım, yayım ve satış hakları Pegem Akademi Yay.

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

DERSHANELERÝ MATEMATÝK - II

DERSHANELERÝ MATEMATÝK - II B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. TOPLAM - ÇARPIM SEMBOLÜ - II MF-TM 50 MATEMATÝK - II 50 Bu yayýnýn her hakký saklýdýr. Tüm

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012 YGS Seti www.pianalitikyayinlari.om YGS Matematik Soru Bankası Copyright Sürat Basým Reklamýlýk ve Eðitim Araçlarý San. Ti. AÞ Bu kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin ön eden

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI EBOB İkisi birden sıfır olmayan a ve b tam sayılarının ikisini birden bölen en büyük pozitif tam sayıya bu sayıların en bü yük ortak böleni (EBOB -eski OBEB-) denir ve EBOB(a,b)=x biçiminde gösterilir.

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

2017 YGS MATEMATİK. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2

2017 YGS MATEMATİK. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2 SORULARI 1. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2 işleminin sonucu kaçtır? A) 2 B) 1 C) 1 D) 2 E) 3 olduğuna göre, a nın en küçük değerinin rakamları çarpımı? A)6 B)7

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

ŞAH VE MAT. Satrancın ilk kez M.S. 570 yıllarında Hindistan'da oynandığını biliyoruz. Bunu nerden biliyoruz?

ŞAH VE MAT. Satrancın ilk kez M.S. 570 yıllarında Hindistan'da oynandığını biliyoruz. Bunu nerden biliyoruz? ŞAH VE MAT Satrancın ilk kez M.S. 570 yıllarında Hindistan'da oynandığını biliyoruz. Bunu nerden biliyoruz? O tarihlerde yazılmış olan pek çok evrakta satranç oyunundan söz ediliyor. Daha önce Çin'de de

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY ERSHNELERÝ SINIF ÝÇÝ ERS NLTIM FÖYÜ ERSHNELERÝ Konu ers dý lüm Sýnv F No. MTEMTÝK - II TRÝGNMETRÝ - V MF TM LYS1 ers nltým fleri ðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Sodý :... u kitpçýðýn

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

10. SINIF MATEMATİK KONU ÖZETİ

10. SINIF MATEMATİK KONU ÖZETİ 2012 10. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1.ÜNİTE: POLİNOMLAR n doğal sayı ve katsayılar gerçek sayıyı göstermek üzere, P(x) = a n x n + a n-1 x n-1 + a n-2 x n-2 +... + a 1 x

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın.08.0 ta rih ve sa yı lı ka ra rı ile ka bul edi len ve 0-0 Öğ re tim Yı lın dan iti ba ren uy gu lana cak olan prog ra ma gö re

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

ISBN Sertifika No: 11748

ISBN Sertifika No: 11748 ISN - 978-0--- Sertifika No: 78 GENEL KOORDİNTÖR: REMZİ ŞHİN KSNKUR REDKTE: REMZİ ŞHİN KSNKUR SERDR DEMİRCİ - SRİ ŞENTÜRK SERVET SVŞ ÇETİN as m Yeri: UMUT MTCILIK - MERTER / STNUL u kitab n tüm bas m ve

Detaylı

DOĞAL SAYILARLA İŞLEMLER

DOĞAL SAYILARLA İŞLEMLER bilgi Üslü Doğal Sayılar DOĞAL SAYILARLA İŞLEMLER Bir bardak suda kaç tane molekül vardýr? Dünya daki canlý sayýsý kaçtýr? Ay ýn Dünya ya olan uzaklýðý kaç milimetredir? Tüm evreni doldurmak için kaç kum

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A AKDENİZ ÜNİVERSİTESİ 16. ULUSAL ANTALYA MATEMATİK OLİMPİYATLARI BİRİNCİ AŞAMA SORULARI A A A A A A A SINAV TARİHİ VESAATİ:16 NİSAN 2011 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

ÇEMBERÝN ANALÝTÝÐÝ - I

ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. a, b, c birbirinden farklý rakamlardýr. 2a + 3b - 4c ifadesinin alabileceði

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I ÝRY RSHNLRÝ SINI ÝÇÝ RS UYGULM ÖYÜ (M-TM) RSHNLRÝ LYS GOMTRÝ - 1 ÜÇGN LN - I ers nltým föyleri öðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Soydý :... u kitpçýðýn her hkký sklýdýr. Tüm hklrý bry

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Aþaðýdaki tablodaki sayýlarýn deðerlerini bulunuz. Deðeri 0 veya 1 olan sayýlarýn bulunduðu kutularý boyayýnýz. b. ( 3) 4, 3 2, ( 3) 3, ( 3) 0

Aþaðýdaki tablodaki sayýlarýn deðerlerini bulunuz. Deðeri 0 veya 1 olan sayýlarýn bulunduðu kutularý boyayýnýz. b. ( 3) 4, 3 2, ( 3) 3, ( 3) 0 Tam Sayýlarýn Kuvveti Sýfýr hariç her sayýnýn sýfýrýncý kuvveti e eþittir. n 0 = (n 0) Sýfýrýn (sýfýr hariç) her kuvvetinin deðeri 0 dýr. 0 n = 0 (n 0) Bir sayýnýn birinci kuvveti her zaman kendisine eþittir.

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS BÝYOLOJÝ - 23 KALITIM - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS BÝYOLOJÝ - 23 KALITIM - I ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF) DERSHNELERÝ LYS ÝYOLOJÝ - 23 KLITIM - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. KLITIM - I dý Soyadý :... u kitapçýðýn

Detaylı

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM 7. SINIF COÞMAYA SORULARI 1. BÖLÜM DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? 2 1 1 2 A) B) C) D) 3 2 3

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

MATEMAT K SORU BANKASI

MATEMAT K SORU BANKASI LYS MATEMAT K SORU BANKASI 14 KONU ÖZET 118 KONU TEST TOPLAM 2320 SORU TEŞEKKÜR Kitaba emeği geçen değerli Zafer Dershaneleri öğretmenlerine ve de dizgisinden baskısına kadar kitaba emek veren tüm çalışanlara

Detaylı

ÇARPANLAR VE KATLAR ÖRNEK. 8 Sayılar ve İşlemler. 2 x x 2 x 6. 2 x 2 x 2 x 9

ÇARPANLAR VE KATLAR ÖRNEK. 8 Sayılar ve İşlemler. 2 x x 2 x 6. 2 x 2 x 2 x 9 ÇARPANLAR VE KATLAR POZİTİF TAM SAYILARIN ÇARPANLARI Her pozitif tam sayı, iki doğal sayının çarpımı olarak yazılabilir. Bu iki doğal sayıdan her birine o sayının çarpanı denir. Bir sayının çarpanı aynı

Detaylı

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÇÖZÜMLER. a b ve b a a b, a, b a b a b ve b c a c olduğundan a b ve c d ise a c b d olmayabilir. ve 5., ve olduğundan sonsuz çözüm vardır...9.9

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - I TEMEL KAVRAMLAR - I MF TM YGS LYS1 01 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. 3 2x +1 = 27 olduðuna göre, x kaçtýr? A) 0 B) 1 C) 2 D) 3 E) 4 4. Yukarýda

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı