5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ"

Transkript

1 5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ Fatih Pehlivan * Arif Ankaralı Karabük Üniversitesi Karabük Üniversitesi Karabük Karabük Özet Bu çalışmada, öncelikle 5 serbestlik derecesine sahip ve ticari olarak temin edilebilen AL5A robot kolunun ters ve düz kinematik denklemleri elde edilmiştir. Ters ve düz kinematik denklemlerin elde edilmesinde geometrik yaklaşım kullanılmıştır. Verilen bir uç yörüngesi için, izlenmesi gereken eklem yörüngeleri elde edilen ters kinematik denklemlerle hesaplanmıştır. Uç elemanın verilen yörüngeyi izlemesinde, PID kontrolcü kullanılarak yörünge hassas bir şekilde izletilmeye çalışılmıştır. PID kontrolü ile gerçekleşen yörünge ve referans yörünge arasında oluşan hatalar simülasyonlarla irdelenmiştir. Düz kinematik, robotu oluşturan eklemlere verilen açılara karşı robot kolunun nerde olduğunu ifade etme şeklidir. Ters kinematik, robot kolunun uç kısmının belli bir noktada olması için eklemlere verilmesi gereken açıları ifade etme şeklidir. Bu çalışmada yukarıda değinilen, beş serbestlik derecesine sahip AL5A robot kolunun öncelikle geometrik yaklaşım ile ters kinematiği ile her bir motorun dönme açıları hesaplanmaktadır. Anahtar kelimeler: Geometrik yaklaşım, PID kontrol, Ters ve Düz Kinematik. Abstract In this study, forward and inverse kinematic equations of the commercially available AL5A robot arm consisting of 5 degrees of freedom are obtained. Geometric approach has been used to obtain the forward and inverse kinematic equations. Joint trajectories of each link for a reference cartesian trajectory of the robot are computed by the inverse kinematic equations obtained. A PID controller is used to control the position of the end effector to trace the given trajectory precisely. Errors occurring between the reference and achieved trajectory are discussed by simulations. Keywords: Geometric approach, Forward and Inverse Kinematic, PID controller. I. Giriş Robot kolu, dönel veya kayar eklemlerle birbirine bağlanmış uzuv adı verilen katı cisimlerden meydana gelen açık çevrimli bir zincirdir. Zincirin bir ucu bir desteğe bağlanmış, diğer ucu ise serbesttir. Eklemler birbirlerine bağlı uzuvların izafi hareketine izin vermektedir [1].Bu hareketlerin matematiksel modellenmesi ve çözümü ele alındığı zaman ilk gereksinme duyulan hususlardan biri, robot kolun kinematik modelinin oluşturulmasıdır. Bu kinematik hesabında ise ileri yön (düz) ve ters kinematik olmak üzere iki yol izlenmektedir: * Şekil. 1. AL5A Robot Kolu II. Robot Kolunun Ters Kinematik Denklemleri, Matematik Modeli ve PID Kontolü Bir robot kola ilişkin iş planlaması, yörünge planlaması, dinamik, ve kontrol problemleri ele alındığı zaman ilk gereksinme duyulan hususlardan biri, bu robot kolun kinematik modelinin oluşturulması ve buna dayanarak gerekli kinematik ilişkilerin elde edilmesidir [2]. A. Ters Kinematik Denklemleri Ters kinematik hesabı ile her bir uzvu hareket ettiren motorların dönme açıları hesaplanabilir. Bu hesap için, aşağıdaki gibi her bir uzvun uzunlukları, elin son konum açısı ve robot kolunun uç noktasının bulunduğu kartezyen koordinantları bilinmelidir. Taban yüksekliği, Arka kol uzunluğu, Ön kol uzunluğu, El uzunluğu, 1

2 Tutucu uzunluğu, El açısı,γ (eğer açı Şekil 2. deki kesikli kırmızı çizginin üstünde ise açı pozitif, aksi durumda ise negatif alınmalıdır) x, y ve z kartezyen koordinantları (mm) Burada robotun lazer kesim gibi taşınan parçanın oryantasyonun yeniden ayarlanmasına ihtiyaç duyulmayan işlerde kullanıldığı düşünülerek, tutucu motorunun açısal konumunun sabit olduğu ve değişmediği kabul edilecektir. Şekil 4 de görüleceği üzere taban motorunun dönmesi ile x, y ve z ekseni haricinde yeni bir eksen (m) oluşturulmuştur. arctan (1) Burada taban motorunun dönme açısıdır. m x y (2) Burada m robot kolunun en alt noltası yani orijin ile uç nokta arasındaki m ekseni boyunca oluşan mesafedir. Şekil. 2. Bilinmesi Gereken Değerler Şekil. 5. Robot Kolunun mz Düzlemindeki Görüntüsü c z sinγ 3 c m cosγ 4) c (5) βarctan (6) Şekil. 3. Robot Kolunun Harekete Başlamadan Önceki Konumu α arccos (7) Robot kolunun ilk konumu Şekil.3 de gösterilmiştir. Taban elemanının alt merkezi orijin olarak kabul edilirse, aşağıdaki şekillerde de gösterildiği gibi her bir uzvun kartezyen koordinatlardaki konumu kullanılarak her bir motorun dönme açıları bulunur: Şekil. 6. OmuzAçısı, θ θβα (8) Burada θ omuz motorunun dönme açısıdır. Şekil. 4. Robot kolunun üstten görünüşü 2

3 Aşağıdaki tabloda her bir uzvun uzunluğu[3] ve yapılan çalışma için kullanılan değerler gösterilmiştir. Şekil. 7. Dirsek Açısı, φ φ arccos (9) Burada φ dirsek motorunun dönme açısıdır. Bilek motorunun dönme açısını bulmak için, çokgenin iç açı teoremi kullanılır. a c n 2π(1) Burada a c çokgenin iç açıları toplamı, n ise çokgenin kenar sayısını gösterir. Yörüngedeki z t+2 değerleri Yörüngedeki x 1+[25cos(2πt)/1] değerleri Yörüngedeki y 1+[25sin(2πt)/1] değerleri Zaman, t -1 s El açısı, γ 1 Taban yüksekliği, 69 mm Arka kol uzunluğu, 94 mm Ön kol uzunluğu, 18 mm El uzunluğu, 58 mm Tutucu uzunluğu, 3 mm TABLO 1. Robot Kolunun Parametreleri ve Yapılan Çalışmada Kullanılan Değerler Tablolardaki alınan değerler ve yukarıda gösterilmiş olan ters kinematik denklemlerikullanılarakaşağıdaki şekilde de görüleceği üzere her bir motorun dönme açıları teker teker hesaplanmıştır. Aşağıdaki şekilde de görüleceği üzere 5 kenarı olan çokgenin iç açılarından bilek açısı,δ13 numaralı denklemdeki gibi bulunur. Şekil. 9. Motorların Dönme Açılarının Hesaplanması Şekil. 8. BilekAçısı, δ a c 5 2π 3π(11) 3π θ+ φ +δγ (12) B. DC Motor Modelleme ve PID Kontrolü Herbir eklemin açısal konum kontrolü ayrı ayrı servomotorlarla sağlanmıştır. Bunun için önce DC motorun matematiksel modeli elde edilmiş ve PID kontrolcü ile kontrol edilecek şekilde geri beslemeli kontrol modeli Şekil 1 da verildiği gibi oluşturulmuştur. PID kontrolcünün oransal, integral ve türevsel kazanç değerleri optimum olacak şekilde ayarlanmıştır.çalışmada robot kolunun değişen dinamiği ihmal edilmiş, her bir ekleme gelen maksimum atalet kuvvetleri ayrı ayrı hesaplanmış ve dişli kutusu oranları da dikkate alınarak matematiksel modellere ilave edilmiştir. İlgili hesaplamalar Tablo 3 te verilmiştir. δπθφγ(13) 3

4 DC motor sisteminde oluşacak denklemlerden ilki motor torku (T) armatür akımı (i ilişkisidir. Bu parametreler birbirleriyle doğru orantılıdır. Bu ilişki aşağıdaki gibi formülize edilir: TK i(15) Şekil. 1. DC Motorun Konum Kontrolü [4] B1. Bir DC Motorun Modellenmesi Aşağıdaki şekilde dc motorun elektromekanik modeli gösterilmiştir. Armatür döndükçe armatüre bağlı şaftın açısal hızıyla (θ doğru orantılı olarak bir ters emk gerilimi oluşur. Ters emk geriliminin (e) formülü aşağıdaki gibidir: ek θ (16) tork sabiti ile ters emk sabiti eşit olduğu düşünülürek ( ), Newton ve Kirchoff kanunları kullanılarak aşağıdaki denklemler elde edilir: Jθ bθ Ki(17) Şekil. 11. DC Motorun Elektromekanik Modeli Model parametrelerinin tanımları ve değerleri tablodaki gibi verilmiştir. L RiVKθ (18) BuradaV motorun armatürüne uygulanan voltajdır. Elde edilen denklemlerile aşağıdaki şekildeki gibi bir dc motorun matematikmodeli oluşturulur: Atalet momenti(motor) J m =.52 kg.m 2 Sürtünme sabiti b =.1 N.ms Ters emk sabiti K b =.235 Nm/A Tork sabiti K t =.235 Nm/A Endüvi direnci R = 2. ohm Endüvi endüktans L =.23 H TABLO 2. DC Motorların Değerleri [5] Tablo 2 de gösterilen atalet momenti sadece motor rotorunun atalet momentidir. Sistemin dinamik hesabı için ise robot kolunun ilk konumunun ataletini, J l eklenmiştir. Bu ataletlerin her bir motor üzerindeki değerleri ve toplam oluşacak sistem ataletleri (J) 14 numaralı denklem kullanılarak Tablo 3 deki gibi hesaplanmıştır. Motorlardaki redüksiyon oranı Taban motoru üzerindeki Omuz motoru üzerindeki Dirsek motoru üzerindeki El motoru üzerindeki Tutucu motoru üzerindeki n =.16 J J m J l n 2 (14) J taban =.35 kg.m 2 J omuz =.446kg.m 2 J dirsek =.37 kg.m 2 J el =.771kg.m 2 J tutucu =.55kg.m 2 TABLO 3. Her Bir Motor Üzerindeki Toplam Atalet Momenti Şekil. 12. DC Motorun Matematik Modeli [6] B2. DC Motorun PID Denetleyici İle Kontrolü PID kontrol döngüsü yöntemi, yaygın endüstriyel kontrol sistemlerinde kullanılan genel bir kontrol döngüsü geri bildirim mekanizmasıdir. Bir PID denetleyici ölçülü bir süreç içinde değişen ve istenilen ayar noktası ile arasındaki farkı olarak bir hata değerini hesaplar. Kontrolör proses kontrol girişini ayarlayarak hatayı en aza indirerek istenilen ayar değerine ulaşmak için çalışır[7]. PID kontrolcününgenel denklemi ve transfer fonksiyonu sırasıyla aşağıdaki gibidir: 4

5 de( t) u(t) K Pe(t) K I e( t) dt K (19) D dt Buradaut kontrol değişkeni, e(t) toplama noktası, K oransal kazanç, K integral kazancı ve K türevsel kazançtır. t Cs K K s K s(2) Hem sistemin hem de PID kontrolcünün transfer fonksiyonları elde edildikten sonra her bir motorun ayrı ayrı açı kontrolü aşağıdaki grafiklerde de görüleceği üzere elde edilmiştir. Taban motorunun dönme açısı ( ) Tutucu motorunun dönme açısı ( ) Şekil. 17. TutucuMotorunun Açı Kontrolü III. Robot Kolunun Düz Kinematik Denklemleri ve Kartezyen Yörünge Kontolü PID kontrol sonucu elde edilen her bir motorun dönme açıları kullanılarak her bir uzvun kartezyen yörüngedeki koordinatları bilinebilir. Bunun için geometrik yaklaşım ile elde edilecekdüz kinematik denklemler kullanılmıştır Şekil. 13.TabanMotorunun Açı Kontrolü Omuz motorunun dönme açısı ( ) Şekil. 14. OmuzMotorunun Açı Kontrolü Dirsek motorunun dönme açısı ( ) El motorunun dönme açısı ( ) Şekil. 15. DirsekMotorunun Açı Kontrolü Şekil. 16. ElMotorunun Açı Kontrolü Şekil. 18. Uzuvların Kartezyen Koordinatları x 21 y 22 z 23 x 1 24 y 1 25 z 1 26 x 2 cosθ 2 9 cosθ 1 x 1 27 Buradaθ 1 veθ 2 sırasıyla kontol sonucunda oluşan taban ve omuz açılarıdır. y 2 cosθ 2 9 sinθ 1 y 1 28 z 2 sinθ 2 9 z 1 29 x 3 cosθ 2 θ 3 cosθ 1 x 2 3 Burada θ 3 kontol sonucunda oluşan dirsek açılasıdır. y 3 cosθ 2 θ 3 sinθ 1 y

6 z 3 sinθ 2 θ 3 z 2 32 x 4 cosγcosθ 1 x 3 33 y 4 cosγsinθ 1 y 3 34 z 4 sinγ z 3 35 x cosγcosθ 1 x 4 36 y cosγsinθ 1 y 4 37 z sinγ z 4 38 z (mm) Ters kineamtik ve PID kontrol sonucu oluşan her bir motorun açı değerleri ile yukarıda gösterilmiş olan düz kinematik denklemler kullanılarak elde edilen yörünge ile referans yörüngenin grafikleri aşağıdaki gösterilmiştir y (mm) Şekil. 22. ve nin yz Düzlemindeki Grafiği Yörüngedeki hata miktarlarını gösteren grafik de aşağıdaki gösterilmiştir x eksenindeki hata oranı y eksenindeki hata oranı z eksenindeki hata oranı z (mm) y (mm) x (mm) Şekil. 19. ve nin Grafiği 125 Hata yüzdesi (%) Şekil. 23. Yörüngedeki Yüzde Hata Miktarlarını IV. Sonuçlar y (mm) x (mm) Şekil. 2. ve nin Xy Düzlemindeki Grafiği z (mm) x (mm) Şekil. 21. ve nin Xz Düzlemindeki Grafiği Bu çalışmada öncelikle, ticari olarak temin edilebilen beş serbestlik derecesine sahip AL5A robot koluna ait ters ve düz kinematik analizler yapılmıştır. Verilen ve tutucunun izlemesi gereken kartezyen yörünge için gerçeklenmesi gereken eklem yörüngeleri, ters kinematik analizde elde edilen denklemler kullanılarak hesaplanmıştır. Çalışmada, robotun toplam değişen dinamiği ihmal edilerek, motorların sabit atalet momentine sahip yükleri hareket ettirdiği kabul edilmiştir. Fiziksel modeli, matematiksel modeli ve Simulink modeli Şekil 11 ve Şekil 12 de verilen DC servo motorların PID kontrolcülerle kontrol edildiği bir benzetim sistemi tasarlanmıştır. Robotun her bir eklemi, ayrı ayrı geri beslemeli kontrol yöntemi kullanılarak kontrol edilmiş ve ters kinematik analizle hesaplanan eklem yörüngelerinin izlenmesi sağlanmıştır. Burada temel amaç, robotun tutucusu için öngörülen kartezyen yörüngenin izlenme performansının gözlenmesidir. Bunun için motorların gerçeklediği açısal konum değerleri düz kinematik denklemlerde yerine konularak gerçeklenen uç nokta yörüngesi hesaplanmış ve referans değerlerle karşılaştırılmıştır. Yapılan benzetim çalışmaları sonucu elde edilen, referans yörüngenin izlenme başarısı Şekil 19 te ve kartezyen eksenler doğrultusunda oluşan hata değerleri de Şekil 23 te verilmiştir. 6

7 Robotun kartezyen koordinatlarda tanımlı referans yörüngesinin izlenmesinde elde edilen kinematik denklemler başarılı bir şekilde kullanılmış, DC motorlar PID kontrolcü ile hassas bir şekilde kontrol edilmiştir. Benzetim çalışmalarında gözlenen hata oranlarının verilen grafiklerden de görüleceği üzere kabul edilebilir seviyede olduğunu ifade etmek gerekir. Kaynakça [1] Mühürcü A., Durmuş B. Beş eklemli bir robot koluna ait ileri kinematik hesaplama yönteminin YSA ile çözümü. III.Otomasyon Sempozyumu ve Sergisi, Denizli, Kasım 25 [2] Özgören M.K., Robot kolların düz ve ters kinematiği. Elektrik Mühendisliği Dergisi, Cilt 38, Sayı 391, s.11-2, 1993 [3] Pehlivan F., Dinç A.E. Laboratory experiences and 3D measurements with AL5A Robot Arm, Yüksek Lisans Tezi, Politecnico di Milano, Milan, Temmuz 211 [4] Mekatronik ve Bilim, Mekanik Elektronik ve Yazılım, Erişim tarihi: 1 Ocak 215 [5] Ch Rabi Kumar, Dr. K R Sudha, D V Pushpalatha. Modelling and control of 5DOF Robot Arm using Neuro- Fuzzy. International Journal of Engineering Research & Technology (IJERT), Cilt 1, Sayı 7, Eylül 212 [6] Control Tutorials for MATLAB and Simulink (CTMS), orposition&section=simulinkmodeling, Erişim tarihi: 15 Ocak 215 [7] Wikimedia Foundation Inc. Makine teorisi ve dinamiği. Erişim tarihi: 2 Ocak

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

G( q ) yer çekimi matrisi;

G( q ) yer çekimi matrisi; RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi aytacaltan@hitit.edu.tr

Detaylı

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları Contents Doğrusal sistemler için kontrol tasarım yaklaşımları DC motor modelinin matematiksel temelleri DC motor modelinin durum uzayı olarak gerçeklenmesi Kontrolcü tasarımı ve değerlendirilmesi Oransal

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Solution of Forward Kinematic for Five Axis Robot Arm using ANN A. Mühürcü 1 1 Sakarya University, Electrical-Electronical

Detaylı

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören H04 Mekatronik Sistemler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04 Aktüatörler ve ölçme

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin Temel ödevler Temel ödevler, konum değerlerinin bulunması ve aplikasyon işlemlerine dair matematiksel ve geometrik hesaplamaları içeren yöntemlerdir. öntemlerin isimleri genelde temel ödev olarak isimlendirilir.

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Sakarya Üniversitesi - Bilgisayar Mühendisliği

Sakarya Üniversitesi - Bilgisayar Mühendisliği Dr. Seçkin Arı Giriş Seçkin Arı M5 415 ari@sakarya.edu.tr Kitap J.J. Craig, Introduction to Robotics, Prentice Hall, 2005 B. Siciliano,, RoboticsModelling, Planning, andcontrol, Springer, 2009 Not %12

Detaylı

MEKANİZMA TEKNİĞİ (1. Hafta)

MEKANİZMA TEKNİĞİ (1. Hafta) Giriş MEKANİZMA TEKNİĞİ (1. Hafta) Günlük yaşantımızda çok sayıda makina kullanmaktayız. Bu makinalar birçok yönüyle hayatımızı kolaylaştırmakta, yaşam kalitemizi artırmaktadır. Zaman geçtikce makinalar

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ Geç teslim edilen raporlardan gün başına 10 puan kırılır. Raporlarınızı deneyden en geç bir hafta sonra teslim etmeniz gerekmektedir. Raporunuzu yazarken föyde belirtilmeyen ancak önemli gördüğünüz kısımların

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr.

ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr. 1. Giriş ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr.Özgür ÜSTÜN Dünyamızda gerçekleşen ve hızla ilerleyen teknolojik

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç Kayma Kipli Kontrol Yöntemi İle Dört Rotorlu Hava Aracının Kontrolü a.arisoy@hho.edu.tr TOK 1 11-13 Ekim, Niğde M. Kemal BAYRAKÇEKEN k.bayrakceken@hho.edu.tr Hava Harp Okulu Elektronik Mühendisliği Bölümü

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ Makine Elemanları 2 DİŞLİ ÇARKLAR I: GİRİŞ 1 Bu bölümden elde edilecek kazanımlar Güç Ve Hareket İletim Elemanları Basit Dişli Dizileri Redüktörler Ve Vites Kutuları : Sınıflandırma Ve Kavramlar Silindirik

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Otomatik Kontrol. Otomatik kontrol sistemleri ve sınıflandırılması

Otomatik Kontrol. Otomatik kontrol sistemleri ve sınıflandırılması Otomatik Kontrol Otomatik kontrol sistemleri ve sınıflandırılması H a z ı r l aya n : D r. N u r d a n B i l g i n Temel Kontrol Çeşitleri 1. Açık Çevrim (Open Loop) Kontrol Trafik Işıkları Çamaşır makinası,

Detaylı

GÜÇ-TORK. KW-KVA İlişkisi POMPA MOTOR GÜCÜ

GÜÇ-TORK. KW-KVA İlişkisi POMPA MOTOR GÜCÜ Bu sayfada mekanikte en fazla kullanılan formülleri bulacaksınız. Formüllerde mümkün olduğunca SI birimleri kullandım. Parantez içinde verilenler değerlerin birimleridir. GÜÇ-TORK T: Tork P: Güç N: Devir

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Elektrikli Araçlar İçin Çift Çevrim Destekli DA Motor Kontrol Uygulaması

Elektrikli Araçlar İçin Çift Çevrim Destekli DA Motor Kontrol Uygulaması Elektrikli Araçlar İçin Çift Çevrim Destekli DA Motor Kontrol Uygulaması A. M. Sharaf 1 İ. H. Altaş 2 Emre Özkop 3 1 Elektrik ve Bilgisayar Mühendisliği Bölümü, Ne Brunsick Üniversitesi, Kanada 2,3 Elektrik-Elektronik

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

BULANIK MANTIK KONTROLLÜ ÇİFT EKLEMLİ ROBOT KOLU. Göksu Görel 1, İsmail H. ALTAŞ 2

BULANIK MANTIK KONTROLLÜ ÇİFT EKLEMLİ ROBOT KOLU. Göksu Görel 1, İsmail H. ALTAŞ 2 Fırat Üniversitesi-Elazığ BULANIK MANTIK KONTROLLÜ ÇİFT EKLEMLİ ROBOT KOLU Göksu Görel 1, İsmail H. ALTAŞ 2 1 Elektrik ve Enerji Bölümü Çankırı Karatekin Üniversitesi goksugorel@karatekin.edu.tr 2 Elektrik-Elektronik

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 5 EKSENLİ ROBOT KOLUNUN YÖRÜNGE PLANLAMASI ve DENEYSEL UYGULAMASI Kenan KILIÇASLAN DOKTORA SEMİNERİ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI YÖNETİCİ Yrd.Doç.Dr.

Detaylı

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU B. HACIBEKİROĞLU, Y. GÖKÇE, S. ERTUNÇ, B. AKAY Ankara Üniversitesi, Mühendislik

Detaylı

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1-

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- Mekanizma Tekniği Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- 2 Mek. Tek. DERSİN İÇERİĞİ DERSİN AMACI Mekanizma Tekniğinde Ana Kavramlar Eleman Çiftleri Kinematik Zincirler Serbestlik Derecesi Üç Çubuk Mekanizmaları

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Makine Elemanları Dersi Bilgisayar ile buluşuyor: Dişli Çarkların 3D Modeli ve Kinematik Analizi (Taslak)

Makine Elemanları Dersi Bilgisayar ile buluşuyor: Dişli Çarkların 3D Modeli ve Kinematik Analizi (Taslak) Makine Elemanları Dersi Bilgisayar ile buluşuyor: ın 3D Modeli ve Kinematik Analizi (Taslak) Prof. Dr. İrfan KAYMAZ Erzurum Teknik Üniversitesi Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü

Detaylı

Kıyıcı Beslemeli DA Motorun Oransal İntegral ve Bulanık Mantık Oransal İntegral Denetleyicilerle Hız Kontrolü Karşılaştırılması

Kıyıcı Beslemeli DA Motorun Oransal İntegral ve Bulanık Mantık Oransal İntegral Denetleyicilerle Hız Kontrolü Karşılaştırılması Kıyıcı Beslemeli DA Motorun Oransal İntegral ve Bulanık Mantık Oransal İntegral Denetleyicilerle Hız Kontrolü Karşılaştırılması Erhan SESLİ 1 Ömür AKYAZI 2 Adnan CORA 3 1,2 Sürmene Abdullah Kanca Meslek

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

DİŞLİ ÇARKLAR I: GİRİŞ

DİŞLİ ÇARKLAR I: GİRİŞ DİŞLİ ÇARKLAR I: GİRİŞ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Dişli Çarklar Bu bölüm sonunda öğreneceğiniz konular: Güç ve Hareket İletim Elemanları Basit Dişli Dizileri

Detaylı

PROSES KONTROL DENEY FÖYÜ

PROSES KONTROL DENEY FÖYÜ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA TEORİSİ, SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI LABORATUARI PROSES KONTROL DENEY FÖYÜ 2016 GÜZ 1 PROSES KONTROL SİSTEMİ

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

HİDROLİK SİSTEMLERİN TASARIMINDA PAKET PROGRAM VE HİDROLİK MODÜLLER KULLANILARAK KOLAY BENZETİM YAPILMASI

HİDROLİK SİSTEMLERİN TASARIMINDA PAKET PROGRAM VE HİDROLİK MODÜLLER KULLANILARAK KOLAY BENZETİM YAPILMASI 49 HİDROLİK SİSTEMLERİN TASARIMINDA PAKET PROGRAM VE HİDROLİK MODÜLLER KULLANILARAK KOLAY BENZETİM YAPILMASI Tuna BALKAN M. A. Sahir ARIKAN ÖZET Bu çalışmada, hidrolik sistemlerin tasarımında hazır ticari

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

MKT 2134 ENDÜSTRİYEL ROBOTLAR

MKT 2134 ENDÜSTRİYEL ROBOTLAR MKT 2134 ENDÜSTRİYEL ROBOTLAR Robotun Tanımı : Amerika Robot Enstitüsü (1979) robotu, malzemeleri, araçları, parçaları hareket ettirmek için dizayn edilmiş programlanabilen çok fonksiyonlu manipülatörler

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

5 serbestlik dereceli robot kolunun modellenmesi ve kontrolü. Modelling and control of 5 dof robotic arm

5 serbestlik dereceli robot kolunun modellenmesi ve kontrolü. Modelling and control of 5 dof robotic arm SAÜ. Fen Bil. Der. 17. Cilt, 1. Sayı, s. 155-16, 213 SAU J. Sci. Vol 17, No 1, p. 155-16, 213 5 serbestlik dereceli robot kolunun modellenmesi ve kontrolü Nurettin Gökhan Adar 1, Hüseyin Ören 1, Recep

Detaylı

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ 12. Motor Kontrolü Motorlar, elektrik enerjisini hareket enerjisine çeviren elektromekanik sistemlerdir. Motorlar temel olarak 2 kısımdan oluşur: Stator: Hareketsiz dış gövde kısmı Rotor: Stator içerisinde

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ * Deneyden sonra bir hafta içerisinde raporunuzu teslim ediniz. Geç teslim edilen raporlar değerlendirmeye alınmaz. ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID)

Detaylı

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Sistemin İşlevsel Kalitesi Kapalı Çevrim Kontrol Sistemin İşlevsel

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ MEKATRONİK EĞİTİMİ BÖLÜMÜ BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR

SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ MEKATRONİK EĞİTİMİ BÖLÜMÜ BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR Step (Adım) Motorlar Elektrik enerjisini açısal dönme hareketine çeviren motorlardır. Elektrik motorlarının uygulama alanlarında sürekli hareketin (fırçalı

Detaylı

ROBOTİK EĞİTİMİ İÇİN GÖRSEL BİR ARA YÜZ

ROBOTİK EĞİTİMİ İÇİN GÖRSEL BİR ARA YÜZ ROBOTİK EĞİTİMİ İÇİN GÖRSEL BİR ARA YÜZ 1 Önder DEMİR 2 Cengiz ŞAFAK 3 Volkan TUNALI 4 Elif Pınar HACIBEYOĞLU 1,2,3 Marmara Üniversitesi Teknik Eğitim Fakültesi, Elektronik Bilgisayar Eğitimi Bölümü, Göztepe

Detaylı

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi Robotik AKTUATÖRLER Motorlar: Çalışma prensibi 1 Motorlar: Çalışma prensibi Motorlar: Çalışma prensibi 2 Motorlar: Çalışma prensibi AC sinyal kutupları ters çevirir + - AC Motor AC motorun hızı üç değişkene

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ TEORİK BİLGİ: BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ 1. Deneyin Amacı Bu deneyde, bir fiziksel sistem verildiğinde, bu sistemi kontrol etmek için temelde hangi adımların izlenmesi gerektiğinin kavranması amaçlanmaktadır.

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

Makina Dinamiği. Yrd. Doç. Dr. Semih Sezer.

Makina Dinamiği. Yrd. Doç. Dr. Semih Sezer. Yrd. Doç. Dr. Semih Sezer Makina Dinamiği sezer@yildiz.edu.tr Dersin İçeriği : Makinaların dinamiğinde temel kavramlar, Kinematik ve dinamik problemlerin tanımı, Mekanik sistemlerin matematik modeli, Makinalarda

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. DC Motor Hız Kontrolü Proje No: 1

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. DC Motor Hız Kontrolü Proje No: 1 YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ DC Motor Hız Kontrolü Proje No: 1 Proje Raporu Cemre ESEMEN 12068033 16.01.2013 İstanbul

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ Öğr. Gör. RECEP KÖKÇAN Tel: +90 312 267 30 20 http://yunus.hacettepe.edu.tr/~rkokcan/ E-mail_1: rkokcan@hacettepe.edu.tr

Detaylı

SBA/ANR 2016 Spor Biyomekaniği ( Bahar) Ders 3: Açısal Kinematik

SBA/ANR 2016 Spor Biyomekaniği ( Bahar) Ders 3: Açısal Kinematik SBA/ANR 2016 Spor Biyomekaniği (2016-2017 Bahar) Ders 3: Açısal Kinematik Arif Mithat AMCA amithat@hacettepe.edu.tr 1 Hareket Türleri Doğrusal Hareket Düz bir çizgi ya da eğri üzerinde olan harekettir.

Detaylı

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ İMALAT DALI MAKİNE LABORATUVARI II DERSİ TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ DENEY RAPORU HAZIRLAYAN Osman OLUK 1030112411 1.Ö. 1.Grup DENEYİN AMACI Torna tezgahı ile işlemede, iş parçasına istenilen

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

CAV kontrolörlerine ait ser vomotorlar

CAV kontrolörlerine ait ser vomotorlar Modülasyon (oransal) servomotorları. X XModülasyon (oransal) servomotorları testregistrierung CAV kontrolörlerine ait ser vomotorlar Modülasyon (oransal) servomotorları İklimlendirme sistemlerinde değişken

Detaylı