SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme"

Transkript

1 SAYISAL ÇÖZÜMLEME 1

2 SAYISAL ÇÖZÜMLEME 4. Hafta DENKLEM ÇÖZÜMLERİ 2

3 İÇİNDEKİLER Denklem Çözümleri Doğrusal Olmayan Denklem Çözümleri Grafik Yöntemleri Kapalı Yöntemler İkiye Bölme (Bisection) Yöntemi Adım Küçülterek Köke Yaklaşma Yöntemi Yer Değiştirme Yöntemi Açık Yöntemler Basit Sabit Noktalı İterasyon Newton-Raphson Yöntemi Kiriş (Secant) Yöntemi 3

4 Denklem Çözümleri Denklemler fizik kanunlarına ve fiziksel parametrelere dayanır. Problemlerin çözümünde ve sistemlere ait bağımlı değişkenlerin tahmin edilmesinde kullanılırlar. Denklemler mühendislikte tasarımda kullanılır. Sayısal analizdeki matematiksel modelleme aşaması denklemler ve denklem çözümlerinden oluşur. 4

5 Sayısal Analizde Denklem Köklerini Bulmada İzlenecek Yol Denklem köklerini aramaya belirli bir başlangıç değeri ya da değer aralığından başlanır. Kökü aramaya doğru bir noktadan başlamak çözüme ulaşmayı hızlandıracaktır. Fonksiyonun girişine değerler vererek, fonksiyonun çıkışı gözlemlenir. Fonksiyonun çıkışını gözlemlemenin kolay yolu, fonksiyonun grafiğini çizdirmektir. Grafik, köke yakın aralığı hızlı ve kolay tespit etmeyi sağlar. Kökü aramaya uygun yerden başlamayı sağlar. 5

6 Grafik Yöntemleri Sayısal analiz ile denklem köklerini hızlı ve kolay bulmayı sağlayan bir yöntemdir. Karmaşık denklem/problemlerin yaklaşık (kabaca) çözümlenmesini sağlar. Grafiksel yöntemlerin dezavantajları Hassas çözüm elde edilemez Bilgisayar kullanmadan grafik çizmek uzun zaman alır Çoğunlukla 3 ya da daha düşük bilinmeyenli denklem çözümü için uygundur. 6

7 Grafik Yöntemleri Örnek: f() = e fonksiyonunun kökünü, grafik yöntemi ile yaklaşık olarak bulunuz? 10 f()

8 Grafik Yöntemleri Örnek: f() = fonksiyonunun kökünü, MATLAB programında çizdireceğiniz grafik üzerinden kabaca bulunuz? 8

9 Denklem Çözümünde Kapalı Yöntemler Fonksiyonlar kök civarında işaret değiştirdikleri için, kökü sağından ve solundan kıskaca alarak bu aralığı gittikçe daraltıp köke ulaşmak mümkündür. Bunun için iki tane başlangıç değeri belirlemek gerekir. Kök, bu iki değerin arasındaki kapalı bölgede olduğu için bu yöntemlere kapalı yöntemler adı verilir. 8 f()>0 f()>0 8 kök 3 3 kök a ü f()< f()< Serhat Yılmaz ın Sunusundan Alınmıştır

10 Denklem Çözümünde Kapalı Yöntemler Doğru kökü hızlı ve sağlıklı olarak bulmak için, arada başka bir kök olmaması gerekir, bundan dolayı aralık mümkün olduğunca dar seçilmelidir. 2. kök (aradığımız) kök kök a ü Serhat Yılmaz ın Sunusundan Alınmıştır. 10

11 Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi Denklem çözümünde kapalı yöntemlerin bir türü olan Bisection, ikiye bölme ya da yarılama olarak ta adlandırılmaktadır. Bisection, sürekli bir fonksiyonun bir sıfırının (kökünün) bulunması için kullanılan sistematik bir tarama tekniğidir. Tekrarlama (tarama) yöntemlerinin en basit ve en anlaşılırıdır. Kökün bulunduğu aralığı yarılayarak (ikiye bölerek) daraltma prensibine dayanır. Bu yöntem, içerisinde bir sıfır bulunan bir aralığın öncelikle tespitine dayanır. Aralık sonunda fonksiyon zıt işarete sahiptir. Sonra aralık iki eşit alt aralığa bölünür ve hangi aralığın bir sıfır değeri içerdiğine bakılır. Sıfır içeren alt aralıklarda hesaplamalara devam edilir. Dezavantajı, yavaş yakınsaması ve bazen tam olarak çalışmaması. 11

12 Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi Bir f() fonksiyonu, [ a, ü ] aralığında bir sıfır noktasına (köke) sahip olduğunu varsayalım. İlk olarak, f() fonksiyonunun belirtilen aralıkta kökü olup olmadığı [ f( a )* f( ü ) < 0 ] kontrol edilir. Şart sağlıyorsa kök vardır. Çünkü fonksiyonlar zıt işaretlidir. [ f( a ) * f( ü ) > 0 ] ise kök yoktur. [ f( a ) * f( ü ) = 0 ] ise kök a ya da ü İlk iterasyonda, belirtilen fonksiyon aralığının orta noktası tespit edilir. a ü o 2 Kök [ a, o ] ya da [ o, ü ] aralığından birisinde olmalıdır f( a )* f( o ) < 0 ise kök [ a, o ] aralığında f( o )* f( ü ) < 0 ise kök [ o, ü ] aralığında f( o )* f( ü ) = 0 ise kök o dur Bir sonraki iterasyonda kök yeni aralıkta aranır ve 2. adımdan itibaren işlemler tekrarlanır. Tekrarlama işlemi a ü 2 s şartı sağlanana kadar devam eder. 12

13 f() f() Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi o a 2 ü f( a ).f( o ) <0 f( a ).f( o ) >0 a ile o farklı bölgelerde a ile o aynı bölgelerde Güncellenecek sınır ü (yeni)= o a (yeni)= o a o ü a o ü! o a!!o ü! kök kök f( o ) -2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5-2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 f( a ). a 2 ü s Kök, a, o arasında Kök, o, ü arasında Serhat Yılmaz ın Sunusundan Alınmıştır. 13

14 Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi Örnek: 2-5=0 fonksiyonunun kökünü δ s =0,13 duyarlılıkla başlangıç aralığınızı [1-3] olacak şekilde bulunuz. 14

15 Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi Örnek: f() =.e fonksiyonunun kökünü δ s =2*10 6 duyarlılıkla bulalım, Not: Grafik yönteminde, [-1,0] aralığı için kabaca sonuç =-0.51 Tablo.4.1. İkiye bölme yöntemiyle fonksiyonun kökünün yaklaşık olarak bulunması n a ü o f( a ).f( o ) a ü = Serhat Yılmaz ın Sunusundan Alınmıştır. 15

16 Kapalı Yöntemler İkiye Bölme (Yarılama, Bisection) Yöntemi Algoritması Başla Başla İlk Değerleri Ata Gelişmiş Algoritması İlk değerleri ve sabitleri ata Verilen Aralıkta Kök Yoktur E f( a ).f( ü )>0? Kökü yaz E < s? E H f( a ).f( ü )=0? H İkiye bölme ile yeni kök tahmini o a 2 ü Kök=a E f( a ) =0? H Kök=ü H o H a ü 2 f( a ).f( o )<0? E H f( a ).f( o )<0? E a=o ü=o a = o ü = o ü - a /2 < s H n=n+1 = Hatayı bul ü a Serhat Yılmaz ın Sunusundan Alınmıştır. 2 E kök= o kök ve tekrar sayısını yazdır n>=n ma? E Maksimum tekrarda yakınsama sağlanamadı H 16

17 Kapalı Yöntemler Adım Küçülterek Köke Yaklaşma Yöntemi Ardışıl yaklaşım yöntemi olarak ta bilinir. Bir başlangıç değerinden başlanarak, adım adım ( h, sabit mesafeler) köke yaklaşılır. Önce büyük adımlar ile başlanır. [ f()* f(+h) > 0 ] şartı sağlandığı sürece Bir adım daha ilerlenir. Adım büyüklüğünde (h) değişiklik yapılmaz. [ f()* f(+h) < 0 ] ise kök geçilmiştir. En son kalınan başlangıç değerinden, adım küçülterek tekrar ilerlemeye devam edilir. Hata sınırlaması sağlanana kadar köke yaklaşmaya devam edilir. h < s 17

18 Kapalı Yöntemler Adım Küçülterek Köke Yaklaşma Yöntemi f() Çalışması h adım Algoritması Başla İlk Değerleri Ata = a,, h, s a k ü H h>= s ve f() ~=0 mı? Kökü yazdır f().f(+h) >0 (yeni)=+h H E f().f(+h)<0? =+h f().f(+h)<0 h(yeni)=h/10 E h=h*0.1 Serhat Yılmaz ın Sunusundan Alınmıştır. 18

19 Kapalı Yöntemler Adım Küçülterek Köke Yaklaşma Yöntemi Örnek: 2-5=0 fonksiyonunun kökünü δ s =0,02 duyarlılıkla başlangıç adım değerini h=0.2 alarak, adım küçültme oranını h/10 olacak şekilde bulunuz. 19

20 ÖDEV f() = e. 2-5 fonksiyonunu [ -1, 1 ] aralığında s = 0.01 hata sınırlamasına göre 20 iterasyonda bisection ve adım küçülterek köke yaklaşma metodunu kullanarak çözünüz? Adım küçülterek yaklaşma metodunda Başlangıç h= 0.1, küçültme oranı h=h/10; 20

21 Kapalı Yöntemler Yer Değiştirme Yöntemi (Regula Falsi) En eski kök bulma yöntemlerinden birisidir. Eğrinin bir doğruyla yer değiştirmesi sonucunda, kökün konumunun yanlış belirlenmesi nedeniyle, latince yanlış nokta anlamında olan Regula Falsi olarak adlandırılır. Regula Falsi yönteminde köke yakınsama yavaş olmasına rağmen, mutlaka yakınsama vardır. Bisection dan hızlı, kiriş yönteminden yavaş f() fonksiyonunun [a, b] aralığında kökü hesaplanmak istensin [a, f(a)] ve [b, f(b)] noktaları arasına bir kiriş (doğru) çizilir. Doğrunun eksenini kestiği noktanın (a 1 ) alt ve üst kısmında iki benzer üçgen oluşur. İki üçgenin benzerliğinden eksenini kestiği nokta (a 1 ) hesaplanır. İstenilen hassasiyet (hata sınırı) sağlanmadıysa yukarıdaki işlemler [a 1, f(a 1 )] ve [b, f(b)] noktaları için tekrar ettirilir. 21

22 Kapalı Yöntemler Yer Değiştirme Yöntemi (Regula Falsi) f ( ü ) Benzer Üçgenler a r f ( a ) ü f ( ü ( f ( ü ) a ü f ü ) ) ( f ( ) Serhat Yılmaz ın Sunusundan Alınmıştır. a ü ü r a ü r ü a r ü f ( ) f ( ) 22 a ü

23 f() Kapalı Yöntemler Yer Değiştirme Yöntemi (Regula Falsi) f() r ü f ( ) ü a ü f ( ) f ( ) a ü f( a ).f( r ) < 0 a ile r farklı bölgelerde f( a ).f( r ) > 0 a ile r aynı bölgelerde Güncellenecek sınır ü (yeni)= r a (yeni)= r a r ü a r ü kök kök -2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5-2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 f( a ). % a s Kök, a, r arasında Serhat Yılmaz ın Sunusundan Alınmıştır. Kök, r, ü arasında 23

24 Kapalı Yöntemler Yer Değiştirme Yöntemi (Regula Falsi) Örnek : f()= denkleminin [1,2] aralığındaki kökünü yer değiştirme yöntemini kullanarak 2 iterasyon için çözünüz. r ü f ( ) ü a ü f ( ) f ( ) a ü 24

25 ÖDEV-2 f()= fonksiyonunu [1, 2] aralığında δ s = 10-5 hata sınırlamasına göre bisection metodunu kullanarak çözünüz? 25

26 KAYNAKLAR Serhat YILMAZ, Bilgisayar İle, Kocaeli Üniv. Yayınları Cüneyt BAYILMIŞ, Sayısal Analiz Ders Notları, Sakarya Üniversitesi. Mehmet YILDIRIM, Sayısal Analiz Ders Notları, Sakarya Üniversitesi İlyas ÇANKAYA, Devrim AKGÜN, MATLAB ile Meslek Matematiği Seçkin Yayıncılık İrfan Karagöz, Sayısal Analiz ve Mühendislik Uygulamaları Vipaş Yayıncılık 26

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ asondas@kocaeli.edu.tr 0262-303 22 58 1 SAYISAL ÇÖZÜMLEME 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözüm aşamasında kullanılan sayısal

Detaylı

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

Denklem Çözümünde Açık Yöntemler

Denklem Çözümünde Açık Yöntemler Denklem Çözümünde Bu yöntem, n yalnızca başlangıç değer kullanılan ya da kökü kapsayan br aralık kullanılması gerekmez. Açık yöntemler hızlı sonuç vermesne karşın, başlangıç değer uygun seçlmedğnde ıraksayablr.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU Mesleki Terminoloji DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK Sayısal Analiz MEHMET EMRE ÖNDER - 12011061 DOĞAÇ CEM İŞOĞLU - 11011074 Sayısal Analiz Nedir? Sayısal analiz, yada diğer adıyla numerik analiz,

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

NEWTON RAPHSON YÖNTEMİ

NEWTON RAPHSON YÖNTEMİ NEWTON RAPHSON YÖNTEMİ Genel olarak ff(xx) 0 gerek şartını sağlamak doğrusal olmayan ifadelerde oldukça zordur ve bu sebeple çözümler zor olabilir. Newton-Raphson yöntemi, doğrusal olmayan denklemlerin

Detaylı

Denklemdeki E ve F değerleri kökün aranacağı ÒEßFÓ sınır değerleri veya ilk değerler olarak tanımlanabilir. Denklem (1.12) de kök

Denklemdeki E ve F değerleri kökün aranacağı ÒEßFÓ sınır değerleri veya ilk değerler olarak tanımlanabilir. Denklem (1.12) de kök 1.. RGULA-FALSI veya SKANT YÖNTMİ u yöntem regula-falsi, sekant veya kiriş yöntemi olarak adlandırılmaktadır. Yöntem, öteleme işlemleri sonucunda kök değerine yani fonksiyonu sıfır yapmaya çalışan değere

Detaylı

eğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının

eğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının eğim Doğrunun eğimi Eğim konusunu koordinat sistemine ve doğrunun eğimine taşımadan önce kareli zemindeki doğru parçalarının eğimini bulmaya çalışalım. Koordinat sisteminde bulunan AB doğru parçasının

Detaylı

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız?

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız? MAK 05 SAYISAL ÇÖZÜMLEME S Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R S Ġ T E S Ġ M Ü H E N D Ġ S L Ġ K F A K Ü L T E S Ġ M A K Ġ N A M Ü H E N D Ġ S L Ġ Ğ Ġ B Ö L Ü M Ü I. öğretim II. öğretim A şubesi B

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS ENDÜSTRİ MÜH. İÇİN SAYISAL YÖNTEMLER FEB-321 3/ 2.YY 3+0+0 3 3 Dersin Dili

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FEB-311 3/ 1.YY 2+0+0 2 3 Dersin Dili Dersin Seviyesi

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ 1 SAYISAL ANALİZ 3. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ 2 İÇİNDEKİLER 1. de Problem Çözümünde İzlenilecek Adımlar 2. Matematiksel Modelleme 3. de Hata Kavramı 4. de Hataların

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı

SAYISAL ANALİZ. 2. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ

SAYISAL ANALİZ. 2. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ SAYISAL ANALİZ 2. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ 1 İÇİNDEKİLER 1. de Problem Çözümünde İzlenilecek Adımlar 2. de Hata Kavramı 3. de Hataların Sebepleri 4. Sayısal Hata ve Hata Türleri

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emre DEMİRCİ 1 4.1: Aşağıdaki verilen fonksiyonun belirten aralıklarda

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ. mkocak

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ.  mkocak Nümerik Kök Bulma Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ http://www2.ogu.edu.tr/ mkocak Mahmut KOÇAK, March 28, 2008 Newton Metodu - p. 1/7 f( )=0 denklemini nümerik olarak çözelim. Tahmini bir

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin Temel ödevler Temel ödevler, konum değerlerinin bulunması ve aplikasyon işlemlerine dair matematiksel ve geometrik hesaplamaları içeren yöntemlerdir. öntemlerin isimleri genelde temel ödev olarak isimlendirilir.

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

METASEZGİSEL YÖNTEMLER

METASEZGİSEL YÖNTEMLER METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer FİZİK İÇİN MATEMATİK tyuiopasdfghjklzxcvbnmqwerty --------------------------------------- uiopasdfghjklzxcvbnmqwertyui

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FM-223 2 / 2.YY 2 2+0+0 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans

Detaylı

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları Doğrusal Denklem Sistemlerinin Çözümleri BÖLÜM 04 Test 0. y = y = 6 denklem sisteminin çözüm kümesi aşağıdakilerden A) {(, 4)} B) {(, )} C) {(, 4)} D) {( 4, )} E) {(, )}./ y = / y = 6 5 = 5 = = için y

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

Doç. Dr. Metin Özdemir Çukurova Üniversitesi

Doç. Dr. Metin Özdemir Çukurova Üniversitesi FİZİKTE SAYISAL YÖNTEMLER Doç. Dr. Metin Özdemir Çukurova Üniversitesi Fizik Bölümü 2 ÖNSÖZ Bu ders notları Fizik Bölümünde zaman zaman seçmeli olarak vermekte olduǧum sayısal analiz dersinin hazırlanması

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası :

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası : Adı ve Soyadı : İmzası : Öğrenci Numarası : SORU 1 Fiziki bir sistem yandaki işaret akış grafiği ile temsil edilmektedir.. a. Bu sistemin transfer fonksiyonunu Mason genel kazanç bağıntısını kullanarak

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon (Devam)

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon (Devam) OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon (Devam) Tek Değişkene İndirgenmiş Arama Yöntemleri Doğrudan Yöntemler: Powell Yöntemi Türev İçeren Yöntemler: En Dik Tırmanış Yöntemi En Dik İniş Yöntemi Doğrudan

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

Sayısal Yöntemler (COMPE 350) Ders Detayları

Sayısal Yöntemler (COMPE 350) Ders Detayları Sayısal Yöntemler (COMPE 350) Ders Detayları Ders Adı Sayısal Yöntemler Ders Kodu COMPE 350 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 2 2 0 3 5.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Teori ve Örneklerle. Doç. Dr. Bülent ORUÇ

Teori ve Örneklerle. Doç. Dr. Bülent ORUÇ Teori ve Örneklerle JEOFİZİKTE MODELLEME Doç. Dr. Bülent ORUÇ Kocaeli-2012 İÇİNDEKİLER BÖLÜM 1 Sayısal Çözümlemeye Genel Bakış 1 1.2. Matris Gösterimi. 2 1.2. Matris Transpozu. 3 1.3. Matris Toplama ve

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. . HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2- İTERATİF YÖNTEMLER Doğrusal denklem sistemlerinin çözümünde

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

Bölüm 2. Bir boyutta hareket

Bölüm 2. Bir boyutta hareket Bölüm 2 Bir boyutta hareket Kinematik Dış etkenlere maruz kalması durumunda bir cismin hareketindeki değişimleri tanımlar Bir boyutta hareketten kasıt, cismin bir doğru boyunca hareket ettiği durumların

Detaylı

Sayısal Yöntemler (MFGE 301) Ders Detayları

Sayısal Yöntemler (MFGE 301) Ders Detayları Sayısal Yöntemler (MFGE 301) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Yöntemler MFGE 301 Güz 2 2 0 3 4 Ön Koşul Ders(ler)i MATH 275 Lineer

Detaylı

d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0

d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0 Koordinat sistemi Orijinden geçen doğrular Aşağıda koordinat sisteminde orijinden geçen doğruyu inceleyelim. Tanım: Orijinden geçen doğrular eksenlere dokunmaz. Orijin bir nokta olduğu için sonsuz doğru

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 7 6 6.. Yönlü

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI Ders içerik bilgisi TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI 1. İç değişken kavramı 2. Uç değişken kavramı MEKANİK SİSTEMLERİN MODELLENMESİ ELEKTRİKSEL SİSTEMLERİN

Detaylı

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C 01. BÖLÜM: FONKSİYONLARLA İLGİLİ UYGULAMALAR - 1 1-E 2-D 3-C 4-E 5-B 6-C 7-C 8-B 9-C 10-D 11-C - 2 1-D 2-E 3-C 4-D 5-E 6-E 7-C 8-D 9-E 10-B - 3 1-E 2-A 3-B 4-D 5-A 6-E 7-E 8-C 9-C 10-C 11-C 1-A 2-B 3-E

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

CEVAP ANAHTARI 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B

CEVAP ANAHTARI 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B 1. BÖLÜM: TEMEL KAVRAMLAR - 3 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B 1-D 2-B 3-B 4-E 5-C 6-D 7-C 8-E 9-B 10-A 11-C 12-E 13-C 14-D 15-E 16-D 1-A 2-B 3-A 4-E 5-A

Detaylı

Makine Öğrenmesi 2. hafta

Makine Öğrenmesi 2. hafta Makine Öğrenmesi 2. hafta Uzaklığa dayalı gruplandırma K-means kümeleme K-NN sınıflayıcı 1 Uzaklığa dayalı gruplandırma Makine öğrenmesinde amaç birbirine en çok benzeyen veri noktalarını aynı grup içerisinde

Detaylı

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2 8 ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 8 7. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı 8 cm Buna göre CEB üçgeninin

Detaylı

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir.

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir. 37 Newton-Raphson Yöntemi İle Çözüme Ulaşma Bu yöntem özellikle fonksiyonun türevinin analitik olarak elde edilebildiği durumlarda kullanışlıdır. Fonksiyonel ilişkinin ifade edilmesinde daha uygun bir

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

10. SINIF. No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK SAYMA VE OLASILIK Sıralama ve Seçme

10. SINIF. No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK SAYMA VE OLASILIK Sıralama ve Seçme 10. SINIF No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK Ders Saati Ağırlık (%) 10.1. SAYMA VE OLASILIK 8 38 18 10.1.1. Sıralama ve Seçme 6 26 12 10.1.2. Basit Olayların Olasılıkları 2 12 6 SAYILAR

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir. Kök Yer Eğrileri Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performansını tahmin etmek

Detaylı

ARASINAV SORULARI. EEM 201 Elektrik Devreleri I

ARASINAV SORULARI. EEM 201 Elektrik Devreleri I Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 2017-2018 EĞĠTĠM- ÖĞRETĠM YILI YAZ OKULU ARASINAV SORULARI EEM 201 Elektrik Devreleri I Tarih: 04-07-2018 Saat: 11:45-13:00 Yer: Merkezi Derslikler

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 0.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 0.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) VERİ, SAYMA VE OLASILIK

Detaylı