DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI"

Transkript

1 DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI Pazartesi, Saat: ;Korelasyon ve Regresyon Uygulaması Cuma, Saat: ; Bilgisayarda İstatistik Çözümlemeler 1. KORELASYON ve REGRESYON UYGULAMASI Regresyon, iki ve daha fazla değişken arasındaki matematiksel bağıntıyı denklemlerle ifade etmek ve değişkenin birbirlerinden etkilenme biçimini ve büyüklüğünü ortaya koymak için yararlanılan bir istatistiksel yöntemdir Korelasyon, değişkenler arasındaki ilişkinin yönünü, derecesini ve önemini ortaya koyan istatistiksel yöntemdir. 1.1.Basit Doğrusal Regresyon Analizi Y bağımlı ve X bağımsız değişken olmak üzere iki değişken arasındaki sebep-sonuç ilişkisini matematiksel model olarak ortaya koyan maddelere regrasyon denir. İki değişken arasındaki ilişki düzeyini ve yönünü belirtmeye yarayan yönteme Korelasyon analizi denir. ÖRNEK: 9 bireyin günlük içtikleri sigara sayısı(giss) ve sistolik kan basınçları(skb) olarak aşağıdaki gibi verilmiştir. GİSS ile SKB arasındaki denklemi bulunuz. İki değişken arasındaki ilişkiyi bulunuz ve ilişkinin önemliliğini test ediniz. GİSS SKB ÇÖZÜM: 1.Veri giriş sayfasında SKB ve GİSS adlı iki değişken oluşturularak, altına değerleri aşağıdaki şekilde girilir. 1

2 2.Analyze > Regrasyon > Linear seçenekleri aşağıdaki şekilde tıklanır. 3.Gelen pencerede dependet SKB Independet GİSS aşağıdaki şekilde Taşınır. 4. tıklanır. 5. Gelen Regrasyon analizi çıktı tablosundan; Sum of Squares REGRASYON ANALİZİ Model df 1 Regressio n Residual 5,086 7,727 Total 27,556 8 a Predictors: (Constant), GISS Mean Square F Sig. 22, ,469 30,923,001(a) 2

3 b Dependent Variable: SKB Bu tabloda regrasyon karşısındaki değerler kullanılır. Regrasyon karşısındaki değerlerden f= p=0,001 ve df=1;7 bulunur. 6. Test Kalıbı [f=30.923, ve df=1;7, P=0,001] olarak yazılır. 7. Karşılaştırma: P=0.001<P=0.001 olduğu görülür. 8. Yorum: 0.001<0.001 olduğundan günlük içilen sigara sayıları bireylerin kan basınçlarını önemli oranda etkilemektedir. yorumu yapılır. 1.2.Basit Doğrusal Korelasyon Analizi İki değişken arasındaki ilişki düzeyini ve yönünü belirtmeye yarayan yönteme Korelasyon analizi denir. Örnek: 10 x hastasının serum fosfat düzeyleri ile serum protein düzeyleri aşağıda verilmiştir. Protein: 1; 1.05; 1.73; 1.65; 1.53; 2.89; 3.04; 3.09; 3.36; 1.73 Fosfat : 2.02; 3.83; 4.44; 6.52; 7.13; 11.83; 13.31; 11.03; 11.29; ÇÖZÜM: SPSS te Korelasyon analizi yapmak için; 1.Veri giriş sayfasında Protein ve Fosfat adlı iki değişken oluşturularak, altına değerleri aşağıdaki şekilde girilir. 2.Analyze>Correlate>Bivariate seçeneği aşağıdaki şekilde tıklanır. 3. Gelen Pencerede Variable alanına değişkenler aşağıdaki şekilde taşınır. 3

4 4.Test of Significance alanında two-tailed olasılık seçeneği tıklanır. 5. tıklanır. 6. Gelen Korelasyon analizi çıktı tablosundan; KORELASYON ANALİZİ PROTEIN FOSFAT PROTEIN Pearson Correlation 1,771(**) Sig. (2-tailed).,009 N FOSFAT Pearson Correlation,771(**) 1 Sig. (2-tailed),009. N ** Correlation is significant at the 0.01 level (2-tailed). 7. Test Kalıbı [r=0.771, ve n=10, P=0,009] olarak yazılır. 8. Karşılaştırma: P=0.009<P=0.01 olduğu görülür. 9. Yorum: 0.009<0.01 olduğundan İlişki çok anlamlı bulunmuştur. Yani İki değişken arasında pozitif yönde bir ilişki vardır yorumu yapılır. UYGULAMA: 20 y hastasının serum fosfat düzeyleri ile serum protein düzeyleri ölçülmüştür. Veriler aşağıdaki tabloda verilmiştir. Y hastalarında serum-protein düzeyi ile serum-fosfat düzeyleri arasındaki ne düzeyde ilişki vardır? iki değişken arasındaki ilişki önemli midir.? Protein Fosfat

5 2.Mc-Nemar KHİ Kare Testi Mc Nemar testi ikili biçimde sınıflandırılan ve test öncesi ve test sonrası değişimleri içeren tabloları analiz etmeye yarayan bir eşleştirilmiş örnek testidir. Mc Nemar testi iki kategorili bağımlı iki örneklem kikare testidir. Bir grup deney biriminin X denemesinde elde edilen ikili cevaplarına karşı belirli bir zaman sonra tekrarlanan X denemesindeki cevapları arasında uyumluluk olup olmadığı test etmek için yararlanılan bir testtir. Mc Nemar testi önce olumlu oldukları halde sonra olumsuz olan çiftler ile önce olumsuz oldukları halde sonra olumlu olan çiftlerin sayısını (önceki sonuçları sonraki uygulamada değişme gösterenler) dikkate alarak analiz yapan bir kikare testidir. 2*2 tablosunda ; A= Önce olumlu iken sonra olumsuz olan birim sayı ya da A= Önce (1) kodlu iken sonra (2) kodlu olan birim sayısı, B = Önce olumsuz iken sora olumlu olan birim sayısı ya da B = Önce (2) kodlu iken sonra (1) kodlu olan birim sayısı olarak alınır. Örnek: 30 bireyin önteste vermiş oldukları olumlu ve olumsuz cevap dağılımının belirli bir eğitim aldıktan sonra değişimini incelemek istiyoruz. Veriler aşağıdaki şekilde verilmiştir. Öntest sonuçlarının sontest de değişmesi önemli midir? Öntest puanları Son test puanları Olumlu(1) Olumsuz(2) Toplam Olumlu(1) Olumsuz(2) Toplam Çözüm: 1-Ön test, son test ve frekans adlı üç değişken oluşturulur ve altına değerleri girilir. (ön test olumlu 1, ön test olumsuz 2, son test olumlu 1, son test olumsuz 2) 2-frekans sütunu Data> Weight cases tanımlanır. seçeneğinde ağırlık olarak 5

6 3- Analiz > Nonparametric Tests> 2- Related Samples seçeneği tıklanır. 4- Gelen pencerede Test Pair(s) List alanına on test ve son test değerleri girilir. 5- Test Type seçeneklerinden Mc-Nemar işaretlenir ve OK işaretlenir. 6

7 6- Sonuç tablosu elde edilir. 7- Bu çıktıya göre test sonucunda P=0,791>0,05 olarak elde edilir. Öntest sonuçlarının sontest te değişmesi önemli değildir. 3. İşaret(Sign) Testi İşaret testi, n birimlik bir veri dizisinde değerlerin ortanca değerin altında ve üstünde olan değerlerin binom olasılığına göre gözlenme sıklığını değerlendiren bir testtir. İşaret testinde aynı anda birden fazla seri verildiğinde her bir değişkenin verilen ortanca değere göre işaret testleri yapılarak aynı anda sonuçlar alınabilir. 7

8 Örnek: fen bilimleri eğitimi alan bireyler ile sosyal bilimler eğitimi alan bireylerin toplumsal sorunlara eğilimleri arasında farklılık bulunduğu ve sosyal bilim eğitimi alan bireylerin toplumsal sorunlara daha fazla ilgi duydukları savı ileri sürülmektedir. Bu savı denetlemek amacıyla toplumdan ikiz olarak doğan ve ikizlerden birinin fen bilimleri eğitimi aldığı, 12 çift seçiliyor. Bu çiftlerin sosyal sorunlara bakış açılarını değerlendiren bir test yardımı ile sosyal sorunları değerlendirme puanları belirleniyor. Bulgular aşağıdaki şekilde verilmiştir. Fen bilim eğitimi ile sosyal bilim eğitimi bakış açısını önemli düzeyde etkilemekte midir? İkiz no Fen bilim Sosyal bilim Çözüm: 1- fen ve sosyal adlı iki değişken oluşturulur ve altına değerleri girilir. 2- Analiz> Nonparametric Tests>2-Related Samples seçeneği tıklanır. 3- Gelen pencerede Test (pairs) List alanına iki değişken taşınır. 4- Test type seçeneklerinden sing seçeneği işaretlenir ve OK tıklanır. 8

9 5- Gelen sonuç tablosuna bakılır. 6- Testin sonucunda P=0,388>0,05 olduğundan Fen Bilimleri eğitimi ile Sosyal Bilimler eğitimi toplusal sorunlara bakış açısından önemli farklılık yaratmamaktadır. 4.Kolmogorov Smirnov (K-S ) Testi Kikare uygunluk testinin uygulamasının sorunlu olduğu durumlarda uygulanan bir uygunluk testidir. Bir frekans dağılımının belirli ya da herhangi bir dağılıma uygunluk gösterip göstermediğini test etmek için yararlanılan bir testtir. özelilikle az sayıda gözleme dayalı tablolarda sıraya da sütun 9

10 birleştirmesi yapmadan, belirli dağılım varsayımları kullanmadan uygulanan testi yapmak için baş vurulan bir testtir. Kikare uygunluk testinde gözlerdeki torik frekansların 5 ten büyük olması ya da en iyimser yaklaşımla toplam sınıf sayısının k*.20 sine kadar 5 ten küçük frekans bulunması koşulu getirilmektedir. Eğer 5 ten küçük frekans içeren sınıf çok ise birleştirmelere gidilmesi gerekmektedir. Birleştirme bilgi kaybına yol açmaktadır. Özellikle az sayıda birimlerin X frekans dağılımlarında önemli sorular yaşanmaktadır. KS testi, tek örnek ve iki örnek olarak uygulanır Tek Örnek K-S Testi Tek örnek K-S testinde n 1 hacimli bir örneğin yığılımlı frekans dağılımının teorik belirli bir ya da herhangi bir teorik yığılımlı olasılık dağılımına uygunluğunu test eder. Örnek: 10 tifolu hastanın hastanede kalma gün sayıları aşağıdaki şekilde verilmiştir. Bireyin tifoya yakalanma günlerine göre dağılımlarında önemli farklılık var mıdır? Birey sayısı Hast. Kal. Gün sayısı Çözüm: 1- hkg( hasta kalma gün sayısı ) ve birey adı altında değişken oluşturulur ve altına değerleri girilir. Birey değişkeni, Data > Weight case yapılır. 2- Analiz >Nonparametric Tests> 1-Sample K-S seçeneği tıklanır. 10

11 3- Gelen pencerede Test Variable alanına hkg değişkeni atanır. 4- Test Distrubition seçeneklerinde Normal, Uniform, Poisson ve Exponential seçilebilir ve OK tıklanır. 5- Tek örnek Kolmogorov- Smirnov test sonuçları Normal e, Uniforma, Poisson ve Exponential a sırasıyla sonuçlar elde edilir. 11

12 12

13 6-Bu çıktıya göre her bir dağılıma göre yorum ayrı ayrı yapılabilir. Biz burada sadece Normal dağılıma göre yorum yaparsak; P=0.953>0,05, Kolmogrow Smirov değer=.953 elde edilir. Buna göre bireylerin tifoya yakalanma günlerine göre dağılımlarında önemli bir farklılık yoktur İki Örnek K-S Testi İki örnek K-S testi ise, n 1 ve n 2 hacimli iki örnekten elde edilen yığılımlı frekans dağılımlarının aynı teorik yığılımlı olasılık dağılımdan alınmış iki örneklem dağılımı olup olmadıklarını test eder. Örnek: Bir sınıftan rasgele 10 kız ve 10 erkek alınmış, bu öğrencilere 10 soru içeren Biyoistatistik testi uygulanmıştır. Test sonunda sorularda yapılan hatalar geliştirilen kompozit bir ölçekle belirlenmiştir.veriler aşağıdaki şekilde verilmiştir. Kız ve erkek öğrencilerin hata puanlarına göre dağılımları uyumlu mudur? Kız ve erkek öğrencilerin hata puanları dağılımları benzer midir? 13

14 Hata Puanı f K f E Çözüm: 1- Erkek ve kız öğrencilerin hata puanları ardışık olarak ek sütununa girilir ve bu değerlerin grup kodları grup sütununa girilir. Ve ek sutunu data > Weight Case yapılır. 2- Analiz >Nonparametric Tests >2 independent Samples seçeneği işaretlenir. 14

15 3- Gelen pencerede Test Variable List alanına ek değişkeni, Grouping Variable alanına grup değişkeni taşınır ve Define Groups tıklanır. 4- Group 1 e 1 ve group 2 ye 2 yazdıktan sonra Continue tıklanır. 15

16 5- Test Type seçeneklerinden Kolmogorov-Smirnov Z işaretlenir ve OK tıklanır. 6- İki yönlü Kolmogorov- Smirnov test sonucuna bakılır. 16

17 7- Bu çıktıya göre P=0.988>0,05, Kolmogrow Smirov değeri=0.447 sonucu elde edilir. Buna göre kız ve erkek öğrencilerin hata puanlarına göre dağılımlarında önemli bir farklılık yoktur. 4.KAYNAKLAR: [1] ÖZDAMAR, K., Paket Programlar ile İstatistiksel Veri Analizi I-II, Kaan Kitabevi, ESKİŞEHİR, [2] ÖZDAMAR, K., SPSS ile Biyoistatistik, Kaan Kitabevi, ESKİŞEHİR, [3] HAYRAN, M., ÖZDEMİR, O., Bilgisayar İstatistik ve Tıp, HYB, MEDAR, ANKARA, [4] SPSS Base 7.5 Applications Guide [5] CHARLES R.H., Deney Düzenlemede İstatistiksel Yöntemler. [6] SÜMBÜLOĞLU, K., SÜMBÜLOĞLU, V., Biyoistatistik [7] KAN, İ., Biyoistatistik [8] ÖZDAMAR, K., Biyoistatistik. [9] SPSS, SPSS Base 7.5 Applications Guide [10] SPSS, SPSS Interactive Graphics 10.0 [11] BÜYÜKÖZTÜRK, Ş., Veri Analizi El Kitabı, Pegema Yayıncılık, ANKARA, [12] Tonta, Y., Regresyon Analizi Ders Notları, H.Ü. BBY 17

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

KORELASYON VE REGRESYON UYGULAMASI

KORELASYON VE REGRESYON UYGULAMASI KORELASYON VE REGRESYON UYGULAMASI (BİLGİSAYARDA İSTATİSTİK ÇÖZÜMLEMELER) Yrd.Doç.Dr. İsmail YILDIZ Biyoistatistik AD Öğretim üyesi iyildiz@dicle.edu.tr 1 REGRESYON ve KORELASYON ANALİZİ Bağımlı değişkenin

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

KIMYA BÖLÜMÜ ÖĞRENCİLERİNİN ENDÜSTRİYEL KİMYAYA YÖNELİK TUTUMLARI VE ÖZYETERLİLİK İNANÇLARI ARASINDAKİ İLİŞKİ; CELAL BAYAR ÜNİVERSİTESİ ÖRNEĞİ

KIMYA BÖLÜMÜ ÖĞRENCİLERİNİN ENDÜSTRİYEL KİMYAYA YÖNELİK TUTUMLARI VE ÖZYETERLİLİK İNANÇLARI ARASINDAKİ İLİŞKİ; CELAL BAYAR ÜNİVERSİTESİ ÖRNEĞİ KIMYA BÖLÜMÜ ÖĞRENCİLERİNİN ENDÜSTRİYEL KİMYAYA YÖNELİK TUTUMLARI VE ÖZYETERLİLİK İNANÇLARI ARASINDAKİ İLİŞKİ; CELAL BAYAR ÜNİVERSİTESİ ÖRNEĞİ Öğr. Gör. Gülbin KIYICI Arş.Gör.Dr. Nurcan KAHRAMAN Prof.

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN (14 Eylül 2017) 08:30-09:00 Kurs Kayıt Açılış Konuşması 09:00-10:00 Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesio Çok Değişkenli İstatistiksel Yöntemlere Giriş o Basit Doğrusal

Detaylı

Nicel Veri Analizi ve İstatistik Testler

Nicel Veri Analizi ve İstatistik Testler Nicel Veri Analizi ve İstatistik Testler Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/spring2009/bby208/ SLIDE 1 Nicel Analiz Olguları tanımlamak ve açıklamak için

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

Data View ve Variable View

Data View ve Variable View SPSS i çalıştırma 0 SPSS İlk Açılışı 1 Data View ve Variable View 2 Değişken Tanımlama - 1 3 Değişken Tanımlama - 2 4 Boş Veri Sayfası 5 Veri Girişi - 1 6 Veri Girişi - 2 7 Dosya Kaydetme 1 2 3 8 File

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER

BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER DÖNEM III Yrd.Doç.Dr. Ġsmail YILDIZ Biyoistatistik ve Tıbbi BiliĢim AD Öğretim üyesi 1 FRĠEDMAN ĠKĠ YÖNLÜ VARYANS ANALĠZĠ TESTĠ: Friedman testi, iki yönlü varyans analizinin

Detaylı

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ, İZLEME VE DEĞERLENDİRME DAİRE BAŞKANLIĞI TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ

Detaylı

(saat/hafta) (saat/hafta) Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar

(saat/hafta) (saat/hafta) Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar BİYOİSTATİSTİK Dersin Adı Kodu Yarıyıl Teori Laboratuar AKTS Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar Dersin dili Dersin Türü Yok Türkçe Seçmeli Dersin öğrenme ve öğretme Teorik Dersler teknikleri

Detaylı

Non-Parametrik İstatistiksel Yöntemler

Non-Parametrik İstatistiksel Yöntemler Non-Parametrik İstatistiksel Yöntemler Dr. Seher Yalçın 27.12.2016 1 1. Tek Örneklem Kay Kare Testi 2. İki Değişken İçin Kay Kare Testi 3. Mann Whitney U Testi 4. Kruskal Wallis H Testi ortanca testine

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

İki ortalama arasındaki farkın önemlilik testi

İki ortalama arasındaki farkın önemlilik testi Örnek: Kalple ilgili bir çalışmada 5 yaşındaki 4 erkek ve 40 yaşındaki 30 erkeğin sistolik kan basınçları ölçülmüştür. Elde edilen verilere göre 0.05 anlamlılık düzeyinde yaşlı erkeklerin genç erkeklere

Detaylı

BEZAYAĞI ÖRGÜDE PAMUKLU KUMAŞLARDA KUMAŞ GRAMAJININ REGRESYON ANALİZİ İLE BELİRLENMESİ *

BEZAYAĞI ÖRGÜDE PAMUKLU KUMAŞLARDA KUMAŞ GRAMAJININ REGRESYON ANALİZİ İLE BELİRLENMESİ * BEZAYAĞI ÖRGÜDE PAMUKLU KUMAŞLARDA KUMAŞ GRAMAJININ REGRESYON ANALİZİ İLE BELİRLENMESİ * Determination of the Fabric Weight of Cotton Plain Woven Fabrics Using Regression Analyses Füsun DOBA KADEM Tekstil

Detaylı

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ HEDEFLER Bu üniteyi çalıştıktan sonra; Araştırma türlerini öğreneceksiniz. Araştırmaları zamana, yere ve veri toplama şekline göre sınıflandırabileceksiniz. Araştırma

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek Temel Araştırma Düzenleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek İstatistik, toplumdan kurallara uygun olarak,

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri

Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi. BBY 606 Araştırma Yöntemleri Veri Toplama, Verilerin Özetlenmesi ve Düzenlenmesi BBY 606 Araştırma Yöntemleri 1 SPSS in açılması 2 SPSS programı 3 Veri giriş ekranı 4 Değişken giriş ekranı 5 Veri toplama Kayıtlardan yararlanarak Örneğin

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

Sağlık Hizmetlerinde Araştırma Ve İstatistiksel Yöntemler

Sağlık Hizmetlerinde Araştırma Ve İstatistiksel Yöntemler Sağlık Hizmetlerinde Araştırma Ve İstatistiksel Yöntemler Sağlık Yönetimi Tezsiz Yüksek Lisans Programı Sağlık Hizmetlerinde Araştırma Ve İstatistiksel Yöntemler Prof. Dr. Ahmet Tevfik SUNTER 1 Sağlık

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Parametrik Olmayan Testler

Parametrik Olmayan Testler Araştırma Yöntemleri Parametrik Olmayan Testler Parametrik Olmayan Testler Verilerin normal dağılmış olması gerekmiyor Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak Ya da eşit aralıklı

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Doi: 10.17932/IAU.IAUD.m.13091352.2016.8/29.67-77 Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Murat ÇİMEN 1 Özet Veriler normal olarak dağıldığında Tek örnek T- Testi

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

Bağımsız örneklem t-testi tablo okuması

Bağımsız örneklem t-testi tablo okuması Bağımsız örneklem t-testi tablo okuması İki bağımsız grubu karşılaştırmada kullanılır; Normal dağılım (her bir grup için n>30) [Uygulamada daha küçük sayılar da kullanılmaktadır] Sürekli bağımlı değişken

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI ve RUH SAĞLIĞI DERS KURULU DERS NOTLARI. Yrd.Doç.Dr.İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI ve RUH SAĞLIĞI DERS KURULU DERS NOTLARI. Yrd.Doç.Dr.İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI ve RUH SAĞLIĞI DERS KURULU DERS NOTLARI Yrd.Doç.Dr.İsmail YILDIZ 31.01.014 Cuma, Saat:09.30-10.0: Non-parametrik testlere Giriş 31.01.014 Cuma, Saat:10.0-1.30: Mann

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ GİRİŞ Önceki bölümlerde saha çalışmlarında toplanan verilerin analize hazır hale getirlmesi ve nicel analiz tekniklerinin sınıflandırılması üzerinde durulmuştu.

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı