Web Madenciliği (Web Mining)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Web Madenciliği (Web Mining)"

Transkript

1 Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 1

2 Denetimli Öğrenmenin Temelleri Denetimli (gözetimli) öğrenme, makine öğrenmesinde sınıflandırma veya tümevarımlı (inductive) öğrenme şeklinde ifade edilir. Denetimli öğrenmede hedef değerler (targets) ile giriş değerleri (inputs) birlikte eğitim kümesi (training set) olarak sağlanır. Öğrenme işleminde bir kayıt kümesi kullanılır ve özellikler kümesi olarak gösterilir. A = {A 1, A,, A A } Burada, A kümedeki eleman sayısını gösterir. 3 Denetimli Öğrenmenin Temelleri Bir veri kümesi aynı zamanda hedef C özelliğine de (sınıf) sahip olabilir. C A = dir ve aşağıdaki gibi ifade edilir: C = {c 1, c,, c C }, C Verilen bir D veri kümesi için öğrenmedeki amaç, A daki özellikler ile C deki sınıflar arasındaki ilişkiyi gösteren bir sınıflandırma/tahmin fonksiyonu oluşturmaktır. Elde edilen bu fonksiyon, sınıflandırma modeli, tahmin modeli veya sınıflandırıcı olarak adlandırılır. 4

3 Örnek Denetimli Öğrenmenin Temelleri Bir kredi uygulamasına yönelik veri kümesi aşağıda verilmiştir. 5 Denetimli Öğrenmenin Temelleri Bir veri kümesi ile öğrenen bir model geliştirip gelecekteki yeni müşterilere ait verilerde kullanılabilir. Bu şekilde sınıf etiketlerinin de verildiği öğrenmeye denetimli (supervised) öğrenme denilir. Öğrenme sürecinde kullanılan veri kümesine eğitim verisi (training data), öğrenmeden sonraki değerlendirme sürecinde kullanılan veri kümesine ise test verisi denilmektedir. Eğitim verisinin de test verisinin de tüm sistemi temsil etme kapasitesine sahip olması gerekir. Test verisi eğitim sürecinde görülmemiş veri (unseen data) olarak oluşturulmalıdır. 6 3

4 Denetimli Öğrenmenin Temelleri Geliştirilen modelin doğruluk değeri (accuracy), test verisinde doğru sınıflandırma sayısıyla belirlenir. Öğrenme süreci training ve test aşamalarından oluşur. 7 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 8 4

5 Karar Ağaçları Sınıflandırma problemleri için yaygın kullanılan yöntemdir. Sınıflandırma doğruluğu diğer öğrenme metotlarına göre çok etkindir. Öğrenmiş sınıflandırma modeli ağaç şeklinde gösterilir ve karar ağacı (decision tree) olarak adlandırılır. ID3 ve C4.5, entropiye dayalı sınıflandırma algoritmalarıdır. Twoing ve Gini, CART (Classification And Regression Trees) sınıflandırma ve regresyon ağaçlarına dayalı sınıflandırma algoritmalarıdır. CART algoritmalarında her düğümde bir kritere göre ikili bölünme yapılır. 9 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 5

6 Entropi Entropi, rastgele değere sahip bir değişken veya bir sistem için belirsizlik ölçütüdür. Enformasyon, rastsal bir olayın gerçekleşmesi halinde ortaya çıkan bilgi ölçütüdür. Bir süreç için entropi, tüm örnekler tarafından içerilen enformasyonun beklenen değeridir. Eşit olasıklı durumlara sahip sistemler yüksek belirsizliğe sahiptirler. Shannon, bir sistemdeki durum değişikliğinde, entropideki değişimin enformasyon boyutunu tanımladığını öne sürmüştür. Buna göre bir sistemdeki belirsizlik arttıkça, bir durum gerçekleştiğinde elde edilecek enformasyon boyutu da artacaktır. 11 Entropi Shannon bilgiyi bitlerle ifade etttiği için, logaritmayı tabanında kullanmıştır ve enformasyon formülünü aşağıdaki gibi vermiştir. P(x), x olayının gerçekleşme olasılığını gösterir. Shannon a göre entropi, iletilen bir mesajın taşıdığı enformasyonun beklenen değeridir. Shannon entropisi H, aşağıdaki gibi ifade edilir: 1 6

7 Örnek Entropi Bir paranın havaya atılması olayı rastsal X sürecini göstersin. Yazı ve tura gelme olasılıkları eşit olduğundan elde edilecek enformasyon, 1 1 I( X ) log log log 1 P( X ) 0,5 olur. Bu olayın sonucunda 1 bitlik bilgi kazanılmıştır. Entropi değeri ise 1 olarak bulunur. 13 Entropi Örnek Aşağıdaki 8 elemanlı S kümesi verilsin. S = {evet, hayır, evet, hayır, hayır, hayır, hayır, hayır} evet ve hayır için olasılık, 6 p ( evet) 0,5 p ( hayir) 0, Entropi değeri, H ( S) p( evet)log 0,5.log 0,81 1 0,5 1 p( hayir)log p( evet) 0,75.log 1 0,75 1 p( hayir) 14 7

8 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 15 ID3 Algoritması ID3 (Iterative Dichotomiser 3) algoritması sadece kategorik verilerle çalışmaktadır. Karar ağaçları çok boyutlu veriyi belirlenmiş bir niteliğe göre parçalara böler. Her adımda verinin hangi özelliğine göre ne tür işlem yapılacağına karar verilir. Oluşturulabilecek tüm ağaçların kombinasyonu çok fazladır. Karar ağaçlarının en az düğüm ve yaprak ile oluşturulması için farklı algoritmalar kullanılarak bölme işlemi yapılır. 16 8

9 ID3 Algoritması Karar ağacında entropi Bir eğitim kümesindeki sınıf niteliğinin alacağı değerler kümesi T, her bir sınıf değeri C i olsun. T sınıf değerini içeren küme için P t sınıfların olasılık dağılımı C1 C Ck Pt,,..., T T T şeklinde ifade edilir. T sınıf kümesi için ortalama entropi değeri ise H( T) n i1 p i log ( p i ) şeklinde ifade edilir. 17 ID3 Algoritması Karar ağaçlarında bölümlemeye hangi düğümden başlanacağı çok önemlidir. Uygun düğümden başlanmazsa ağacın içerisindeki düğümlerin ve yaprakların sayısı çok fazla olacaktır. Bir risk kümesi aşağıdaki gibi tanımlansın. C 1 = var, C = yok RISK = {var, var, var, yok, var, yok, yok, var, var, yok} C 1 = 6 C = 4 p 1 = 6/ = 0,6 p = 4/ = 0,4 P RISK 6 4, n H( RISK) p i log ( p i ) log log i1 4 0,

10 ID3 Algoritması Dallanma için niteliklerin seçimi Öncelikle sınıf niteliğinin entropisi hesaplanır. H( T) n i1 p i log ( p i ) Sonra özellik vektörlerinin sınıfa bağımlı entropileri hesaplanır. H( X k ) n Ti X Ti log X i1 k k Son olarak sınıf niteliğinin entropisinden tüm özellik vektörlerinin entropisi çıkartılarak her özellik için kazanç ölçütü hesaplanır. Kazanç( X, T ) H ( T ) H ( X, T ) H( X, T) En büyük kazanca sahip özellik vektörü o iterasyon için dallanma düğümü olarak seçilir. n k1 X k H( X X k ) 19 Örnek ID3 Algoritması Aşağıdaki tablo için karar ağacı oluşturulsun. n H( T) H( RISK) p i log ( p i ) log log i

11 ID3 Algoritması H H 3 ) log log ( BORÇ YÜKSEK 5 ) log 7 5 log ( BORÇ DUSUK H ( BORÇ, RISK) 3 H ( 3 (0) Kazanç( BORÇ, RISK ) 1 0,64 0,36 0 0,863 7 BORÇYÜKSEK ) H 7 (0,863) 0,64 ( BORÇ DUSUK ) 1 ID3 Algoritması H H ) log 5 3 log ( GELIR YÜKSEK 3 ) log 5 3 log ( GELIR DUSUK H ( GELIR, RISK) 5 H ( GELIR 5 (0,971) YÜKSEK 5 Kazanç( GELIR, RISK) 1 0,971 0,09 0,971 0,971 ) 5 H ( GELIR (0,971) 0,971 DUSUK ) 11

12 ID3 Algoritması H H 3 ) log 5 3 log ( STATU ISVEREN 3 ) log 5 3 log ( STATU DUSUK H ( STATU, RISK) 5 H ( STATU 5 (0,971) 5 YÜKSEK Kazanç( STATU, RISK) 1 0,971 0,09 0,971 0,971 ) 5 (0,971) 0,971 H ( STATU DUSUK ) İlk dallanma için uygun seçim BORÇ niteliğidir. 3 ID3 Algoritması 4 1

13 ID3 Algoritması Karar ağacından elde edilen kurallar 1.EĞER (BORÇ = YÜKSEK) İSE (RİSK = KÖTÜ).EĞER (BORÇ = DÜŞÜK) VE (GELİR = YÜKSEK) İSE (RİSK = İYİ) 3.EĞER (BORÇ = DÜŞÜK) VE (GELİR = DÜŞÜK) VE (STATÜ = ÜCRETLİ) İSE (RİSK = İYİ) 4.EĞER (BORÇ = DÜŞÜK) VE (GELİR = DÜŞÜK) VE (STATÜ = İŞVEREN) İSE (RİSK = KÖTÜ) 5 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 6 13

14 C4.5 Algoritması C4.5 ile sayısal değerlere sahip nitelikler için karar ağacı oluşturmak için Quinlan tarafından geliştirilmiştir. ID3 algoritmasından tek farkı münerik değerlerin kategorik değerler haline dönüştürülmesidir. En büyük bilgi kazancını sağlayacak biçimde bir eşik değer belirlenir. Eşik değeri belirlemek için tüm değerler sıralanır ve ikiye bölünür. Eşik değer için [v i, v i+1 ] aralığının orta noktası alınabilir. t i v i v Nitelikteki değerler eşik değere göre iki kategoriye ayrılmış olur. i1 7 Örnek C4.5 Algoritması Nitelik = {65, 70, 75, 80, 85, 90, 95, 96} için eşik değer (80+85)/ = 83 alınmıştır. 8 14

15 C4.5 Algoritması 9 C4.5 Algoritması 5 H SINIF) log log ( H NITELIK1a ) log 5 3 log ( 4 H NITELIK1b ) log 4 5 H ( NITELIK1, SINIF) H ( NITELIK1a ) 14 Kazanç 4 0 log ( 3 H NITELIK1c ) log 5 3 log ( , ( NITELIK 1, SINIF ) 0,940 0,694 0,940 0, , H ( NITELIK1 ) 0,971 0,694 0,46 b 5 14 H ( NITELIK1 ) c 30 15

16 C4.5 Algoritması 7 7 H( NITELIKek ) log log H NITELIKb) log log ( 0,765 0, H ( NITELIK, SINIF) H ( NITELIKek ) H ( NITELIK1b ) ,765 0,971 0, Kazanç( NITELIK, SINIF ) 0,940 0,836 0,4 31 C4.5 Algoritması 3 H NITELIK3d ) log log ( 6 H NITELIK3y ) log 8 6 log ( 1 0, H ( NITELIK3, SINIF) H ( NITELIK3d ) H ( NITELIK3 y ) ,811 0, Kazanç( NITELIK 3, SINIF ) 0,940 0,89 0,048 Kazanç( NITELIK 3, SINIF ) Kazanç( NITELIK, SINIF ) Kazanç( NITELIK 1, SINIF ) 3 16

17 C4.5 Algoritması 33 C4.5 Algoritması Karar ağacından elde edilen kurallar 1.EĞER (NİTELİK1 = a) VE (NİTELİK = Eşit veya Küçük) İSE (SINIF = Sınıf1).EĞER (NİTELİK1 = a) VE (NİTELİK = Büyük) İSE (SINIF = Sınıf) 3.EĞER (NİTELİK1 = b) İSE (SINIF = Sınıf1) 4.EĞER (NİTELİK1 = c) VE (NİTELİK3 = yanlış) İSE (SINIF = Sınıf1) 5.EĞER (NİTELİK1 = c) VE (NİTELİK3 = doğru) İSE (SINIF = Sınıf) 34 17

18 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 35 Twoing Algoritması Twoing algoritmasında eğitim kümesi her adımda iki parçaya ayrılarak bölümleme yapılır. Aday bölünmelerin sağ ve sol kısımlarının her birisi için nitelik değerinin ilgili sütundaki tekrar sayısı alınır. Aday bölünmelerin sağ ve sol kısımlarındaki her bir nitelik değeri için sınıf değerlerinin olma olasılığı hesaplanır. Her bölünme için uygunluk değeri en yüksek olan alınır. B ( B d) T sol B sag T n j1 Tsinif abs B sol Burada, T eğitim kümesindeki kayıt sayısını, B aday bölünmeyi, d düğümü, Tsinif j ise j.sınıf değerini gösterir. j Tsinif B sag j 36 18

19 Örnek Twoing Algoritması 37 Twoing Algoritması Aday bölünmeler aşağıdaki gibidir

20 Twoing Algoritması MAAŞ = NORMAL için B 1 sol Psol 0,09 1 T 11 Tsinif EVET 1 P( EVET/ t ) 0 sol B 1 sol P Tsinif 0 1 HAYIR ( HAYIR/ t ) sol Bsol 39 Twoing Algoritması MAAŞ = {DÜŞÜK, YÜKSEK} için P sag B sag T 0,91 11 P Tsinif EVET 6 ( EVET/ t ) 0,6 sag B 4 sag P Tsinif B 4 HAYIR ( HAYIR/ t ) sag sag 0, 40 0

21 Twoing Algoritması Uygunluk değeri (1. aday bölünme için) B B n Tsinif Tsinif sol sag (1 ) j j d abs T T j1 B sol Bsag (0,09)(0,91)[ 1 0,6 0 0,4 ] 0,13 41 Twoing Algoritması Aynı işlemler ALT DÜĞÜM için tekrarlanır. 4 1

22 Twoing Algoritması Sonuç karar ağacı. 43 Twoing Algoritması Karar ağacından elde edilen kurallar 1. EĞER (GÖREV = YÖNETİCİ) İSE (MEMNUN = EVET). EĞER (GÖREV = UZMAN) VE (MAAŞ = NORMAL) İSE (MEMNUN = EVET) 3. EĞER (GÖREV = UZMAN) VE (MAAŞ = DÜŞÜK VEYA MAAŞ = YÜKSEK) VE (DENEYİM=YOK) İSE (MEMNUN = EVET) 4. EĞER (GÖREV = UZMAN) VE (MAAŞ = DÜŞÜK VEYA MAAŞ = YÜKSEK) VE (DENEYİM = ORTA VEYA DENEYİM = İYİ) İSE (MEMNUN = HAYIR) 44

23 Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing Algoritması Gini Algoritması 45 Gini Algoritması Gini algoritmasında nitelik değerleri iki parçaya ayrılarak bölümleme yapılır. Her bölünme için Gini sol ve Gini sağ değerleri hesaplanır. Gini sol k Tsinif k i Tsinif 1 1 Ginisag i1 Bsol i1 Bsag i Burada, Tsinif i soldaki bölümdeki her bir sınıf değerini, Tsinif i sağdaki bölümdeki her bir sınıf değerini, B sol sol bölümdeki tüm değer sayısını, B sağ sağ bölümdeki tüm değer sayısını gösterir. Ginij 1 T n sol Gini Her bölümlemeden sonra Gini değeri en küçük olan seçilir. sol T sag Gini sag 46 3

24 Örnek Gini Algoritması 47 Örnek Gini Algoritması EĞİTİM için Gini Gini sol sag ,444 0,

25 Örnek Gini Algoritması YAŞ için Gini Gini sol sag ,78 49 Örnek Gini Algoritması CİNSİYET için Gini Gini sol sag ,444 0,

26 Gini Algoritması Örnek Gini değerleri Gini Gini Gini EGITIM YAS 3(0,444) 5(0,30) 0,367 8 (0) 6(0,78) 0,09 8 3(0,444) 5(0,30) 0,367 8 CINSIYET İlk bölünme YAŞ niteliğine göre yapılacaktır. 51 Örnek Gini Algoritması Aynı işlemler ALT DÜĞÜM için tekrarlanır. 5 6

27 Örnek Gini Algoritması 53 Gini Algoritması Karar ağacından elde edilen kurallar 1. EĞER (YAŞ = GENÇ) İSE (SONUÇ = HAYIR). EĞER (YAŞ = ORTA VEYA YAŞ = YAŞLI) VE (CİNSİYET = ERKEK) İSE (SONUÇ = EVET) 3. EĞER (YAŞ = ORTA VEYA YAŞ = YAŞLI) VE (CİNSİYET = KADIN) VE (YAŞ = YAŞLI) İSE (SONUÇ = EVET) 4. EĞER (YAŞ = ORTA VEYA YAŞ = YAŞLI) VE (CİNSİYET = KADIN) VE (YAŞ = ORTA) İSE (SONUÇ = HAYIR) 54 7

28 Ödev 1- Karar ağaçları ile doküman sınıflandırma hakkında bir araştırma ödevi hazırlayınız. - Twoing ve Gini algoritmalarını birbiryle karşılaştırıp avantajlarını ve dezavantajlarını içeren bir araştırma ödevi hazırlayınız. 55 8

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Karar Ağacı Öğrenmesi(Decision Tree Learning)

Karar Ağacı Öğrenmesi(Decision Tree Learning) Karar Ağacı Öğrenmesi(Decision Tree Learning) Bu yazımızda karar ağacı öğrenmesini inceleyeceğiz. Öncelikle karar ağacı öğrenmesi danışmanlı öğrenmenin, danışmanlı öğrenme de makine öğrenmesinin bir alt

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Veri Madenciliği Karar Ağacı Oluşturma

Veri Madenciliği Karar Ağacı Oluşturma C4.5 Algoritması Veri Madenciliği Karar Ağacı Oluşturma Murat TEZGİDER 1 C4.5 Algoritması ID3 algoritmasını geliştiren Quinlan ın geliştirdiği C4.5 karar ağacı oluşturma algoritmasıdır. ID3 algoritmasında

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Karar Ağacı Öğrenmesi(Decision Tree Learning)

Karar Ağacı Öğrenmesi(Decision Tree Learning) Karar Ağacı Öğrenmesi(Decision Tree Learning) Bu yazımızda karar ağacı öğrenmesini inceleyeceğiz. Öncelikle karar ağacı öğrenmesi danışmanlı öğrenmenin, danışmanlı öğrenme de makine öğrenmesinin bir alt

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Gözetimli & Gözetimsiz Öğrenme

Gözetimli & Gözetimsiz Öğrenme Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir.

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir. Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Birliktelik Kurallarının Tanımı Destek ve Güven Ölçütleri Apriori Algoritması Birliktelik Kuralları (Association

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ - 150110046 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Birliktelik Kuralları Birliktelik Kurallarının Temelleri Support ve Confidence Apriori Algoritması

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

tree) nedir? Karar Ağacı (Decision Decisiontree

tree) nedir? Karar Ağacı (Decision Decisiontree Karar Ağacı (Decision Decisiontree tree) nedir? Bir işletme yönetimi tarafından tercihlerin, risklerin, kazançların, hedeflerin tanımlanmasında yardımcı olabilen ve birçok önemli yatırım alanlarında uygulanabilen,

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

KARAR AĞAÇLARI SÜMEYYE ÖZKAN BAHAR BAKAR İZEL KOLCU

KARAR AĞAÇLARI SÜMEYYE ÖZKAN BAHAR BAKAR İZEL KOLCU KARAR AĞAÇLARI SÜMEYYE ÖZKAN 21323994 BAHAR BAKAR 21323573 İZEL KOLCU 21323918 NEDİR? Karar ağaçları ve karar ağaç algoritmaları Karar ağaçları; sınıflandırma ve tahmin için sıkça kullanılan ağaç şekilli

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

BAYES ÖĞRENMESİ BİLECİK ÜNİVERSİTESİ. Araş. Gör. Nesibe YALÇIN. Yapay Zeka-Bayes Öğrenme

BAYES ÖĞRENMESİ BİLECİK ÜNİVERSİTESİ. Araş. Gör. Nesibe YALÇIN. Yapay Zeka-Bayes Öğrenme BAYES ÖĞRENMESİ Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ Yapay Zeka-Bayes Öğrenme 1 İÇERİK Bayes Teoremi Bayes Sınıflandırma Örnek Kullanım Alanları Avantajları Dezavantajları Yapay Zeka-Bayes Öğrenme

Detaylı

VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA

VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA Endüstri Mühendisliði Dergisi Cilt: 5 Sayý: 3-4 Sayfa: (-19) Makale VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA Aslı ÇALIŞ, Sema KAYAPINAR*,

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

ARAZİ ÖRTÜSÜNÜN BELİRLENMESİNDE TORBALAMA-KARAR AĞAÇLARI YÖNTEMİNİN KULLANIMI THE USE OF BAGGED-DECISION TREE METHOD FOR DETERMINATION OF LAND COVER

ARAZİ ÖRTÜSÜNÜN BELİRLENMESİNDE TORBALAMA-KARAR AĞAÇLARI YÖNTEMİNİN KULLANIMI THE USE OF BAGGED-DECISION TREE METHOD FOR DETERMINATION OF LAND COVER ARAZİ ÖRTÜSÜNÜN BELİRLENMESİNDE TORBALAMA-KARAR AĞAÇLARI YÖNTEMİNİN KULLANIMI Ümit Haluk ATASEVER 1,Coşkun ÖZKAN 1 1 Erciyes Üniversitesi, Harita Mühendisliği Bölümü, 38039, Melikgazi, Kayseri, {uhatasever@erciyes.edu.tr,

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Karar Ağaçları İle Uydu Görüntülerinin Sınıflandırılması: Kocaeli Örneği

Karar Ağaçları İle Uydu Görüntülerinin Sınıflandırılması: Kocaeli Örneği Harita Teknolojileri Elektronik Dergisi Cilt: 2, No: 1, 2010 (36-45) Electronic Journal of Map Technologies Vol: 2, No: 1, 2010 (36-45) TEKNOLOJĠK ARAġTIRMALAR www.teknolojikarastirmalar.com e-issn: 1309-3983

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Çok Yollu Ağaçlar (Multi-Way Trees)

Çok Yollu Ağaçlar (Multi-Way Trees) Çok Yollu Ağaçlar (Multi-Way Trees) B-Trees B*-Trees B+-Trees Yrd.Doç.Dr. M. Ali Akcayol Çok Yollu Ağaçlar (Multi-Way Trees) Disk üzerindeki bilgilerin elde edilmesinde kullanılır. 3600 rpm ile dönen bir

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri BLM2881 2015-1 DR. GÖKSEL Bİ R İ C İ K goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 16.09.2015 Tanışma, Ders Planı, Kriterler, Kaynaklar, Giriş Latex

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜMEVARIM ÖĞRENME TEKNİKLERİNDEN C4.5 İN İNCELENMESİ. Müh. Savaş YILDIRIM

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜMEVARIM ÖĞRENME TEKNİKLERİNDEN C4.5 İN İNCELENMESİ. Müh. Savaş YILDIRIM İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜMEVARIM ÖĞRENME TEKNİKLERİNDEN C4.5 İN İNCELENMESİ YÜKSEK LİSANS TEZİ Müh. Savaş YILDIRIM Anabilim Dalı: Fen Bilimleri Enstitüsü Programı: Savunma

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

Twoing Algoritması ile Sınıflandırma : Kalp Hastalığı Uygulaması

Twoing Algoritması ile Sınıflandırma : Kalp Hastalığı Uygulaması Akademik Bilişim 14 - XVI. Akademik Bilişim Konferansı Bildirileri 5-7 Şubat 2014 Mersin Üniversitesi Twoing Algoritması ile Sınıflandırma : Kalp Hastalığı Uygulaması Mehmet Akif Ersoy Üniversitesi, Çavdır

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Veri Madenciliği Yöntemleri. Dr. Yalçın ÖZKAN

Veri Madenciliği Yöntemleri. Dr. Yalçın ÖZKAN Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞĠTĠM Bilgisayar Sis. San. ve Tic. A.ġ. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 7 Doç. Dr. Yuriy Mishchenko PLAN Azure ML hizmeti kullanılmasına bir pratik giriş 2 3 MS AZURE ML 4 MS AZURE ML Azure Microsoft tarafından sağlanan bulut hesaplama hizmetleri

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

MEH535 Örüntü Tanıma. Karar Teorisi

MEH535 Örüntü Tanıma. Karar Teorisi MEH535 Örüntü Tanıma 2. Karar Teorisi Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Karar Teorisi

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa;

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Şartlı Olasılık Bir olayın (A ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Pr[A A 2 Pr A A Pr A A = Pr[A A 2 2 2 Pr[A Pr[A 2 2 A A 2 S Pr[A A 2 A 2 verildiğinde (gerçekleştiğinde)

Detaylı

MAKALE HAKKINDA. Geliş : Ocak 2012. Kabul: Mart 2012. Namık İçeli a ABSTRACT

MAKALE HAKKINDA. Geliş : Ocak 2012. Kabul: Mart 2012. Namık İçeli a ABSTRACT MBD 2012, 1(1): 18 37 MAKALE HAKKINDA Geliş : Ocak 2012 Kabul: Mart 2012 VERİ MADENCİLİĞİ YÖNTEMİ İLE DİVRİĞİ NURİ DEMİRAĞ MESLEK YÜKSEKOKULU ÖĞRENCİLERİNİN TEMEL BİLGİSAYAR DERSİNE AİT BAŞARI ANALİZİ

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Çok Yollu Ağaçlar: B*-Trees B*-Trees

Çok Yollu Ağaçlar: B*-Trees B*-Trees Çok Yollu Ağaçlar: B*-Trees B*-Trees B-tree lerde bir node dolunca bölme işlemi yapılmaktadır Bölme sonucunda oluşan iki node da yarı yarıya doludur B*-tree lerde bölme işlemi geciktirilerek node ların

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması

2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması 2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması Bu örnek uygulamada bir önceki yazımda Oracle SQL Developer a yüklediğim Data Miner Repository ile gelen hazır bir sigorta şirketi veri setini

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT ufirat@yahoo.com Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama

Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama Betül Yazıcı 1, Fethiye Yaslı 1, Hande Yıldız Gürleyik 2, Umut Orçun Turgut

Detaylı

Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama

Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama Betül Yazıcı 1, Fethiye Yaslı 1, Hande Yıldız Gürleyik 2, Umut Orçun Turgut

Detaylı

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları 1 Veri Tabanı, Veri Ambarı, Veri Madenciliği Bilgi Keşfi Aşamaları Apriori Algoritması Veri Madenciliği Yöntemleri Problemler Veri Madenciliği Uygulama Alanları 2 Bir bilgisayarda sistematik şekilde saklanmış,

Detaylı

VERİ MADENCİLİĞİNİN GÖREVLERİ

VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ Classification (Sınıflandırma) Karakterizasyon (Betimleme) Regression (İlişki Çıkarımı) Clustering (Kümeleme) Association (İlişki Analizi) Forecasting

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü Karınca Koloni Algoritması Bilim adamları, böcek davranışlarını inceleyerek

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet htakci@gmail.com http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda

Detaylı

İLİŞKİSEL VERİ MODELİ

İLİŞKİSEL VERİ MODELİ İLİŞKİSEL VERİ MODELİ Tablolar ile Gösterim Her İlişki iki boyutlu bir tablo olarak gösterilir. Tablonun her sütununa bir nitelik atanır. Tablonun her satırı ise bir kaydı gösterir. Bilimsel kesimde daha

Detaylı

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI. BiR UYGULAMA YÜKSEK LİSANS TEZİ HÜLYA YILMAZ

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI. BiR UYGULAMA YÜKSEK LİSANS TEZİ HÜLYA YILMAZ T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI RANDOM FORESTS YöNTEMiNDE KAYIP VERi PROBLEMiNiN incelenmesi VE SAĞLIK ALANINDA BiR UYGULAMA YÜKSEK LİSANS

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Kontrol Yapıları if Seçme Deyimi if... else Seçme Deyimi while Tekrar

Detaylı

Olasılık: Klasik Yaklaşım

Olasılık: Klasik Yaklaşım Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 3. Denetimli Öğrenme Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Örneklerden

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı