Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH"

Transkript

1 BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web:

2 Olasılık Hatırlatma

3 Olasılık teorisi, rasgele deneylerin sonuçlarına olasılıklar atamak için matematiksel kurallar sağlar. Rasgele Deney Olay A Her bir alt küme Tüm mümkün sonuçlar Örnek Uzay S Her nokta ayrık küme Birleşimleri örnek uzayı oluşturmalı P(A) Olasılık yasası: Olasılıkların olaylara matematiksel olarak tutarlı (1-3 sağlanacak) bir şekilde atanması 1) P A 0, her A için 2) P S = 1 3) P AUB = P A + P B, A ve B ayrık

4 Örnek Uzay X rasgele değişkeni, örnek uzay üzerinde tanımlanan Reel değerli bir fonksiyondur. 0 1 Reel eksen Bazen bir deneyin sonuçlarının bir fonksiyonuyla ilgileniriz, yani iki zarı attığımızda örnek uzay elemanları (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) ile değil de üst yüze gelen sayılarının toplamının 7 olması gibi olaylarla ilgileniriz. Başka bir örnek 3 zarın atılması deneyinde 3 tane yazı gelmesiyle ilgileniriz.

5 Üç zarın atılması deneyinde örnek uzay S={(YYY),(YYT),(YTY),(TYY),(YTT),(TYT),(TTY),(TTT)} Üç yazı gelme olasılığı ile ilgileniyorsak, X rasgele değişkeni: üç atışta yazı gelme sayısı S={(YYY),(YYT),(YTY),(TYY),(YTT),(TYT),(TTY),(TTT)} X= P(X=3)=1/8 P(X=1)=3/8 P(X=2)3/8 P(X=0)=1/8 (YYY) (YYT) (YTY) (TYY) (YTT) (TYT) (TTY) (TTT)

6 Sayılabilir bir kümede değerler alıyorsa X rasgele değişkeni Sayılamaz bir kümede değerler alıyorsa Kesikli p(x) olasılık dağılım fonksiyonu: P(X=a)= p(a), X deki her a elamanı için 1) p a 0 X deki her a elamanı için 2) p x = 1 Sürekli f(x) olasılık yoğunluk fonksiyonu: P(a X b) = 1) f x 0 x (, ) 2) f x dx = 1 f(x) a b f x dx x (, )

7 Soru 1. Bağımsız ve Ayrık Olay A, B ve C olayları A: hastanın periodontitis olması B: hastanın çürüğünün olması C: kök kanal tedavisine ihtiyacı olması ve olasılıkları P (A) = 0,25, P (B) = 0,45 ve P (C) = 0,60 olduğunu varsayalım. a) Bu olaylar birbirini ayrık olaylar mıdır? b) Eğer bu üç olay bağımsızsa P(A B C)=?

8 a) Eğer olaylar ayrık ise olasılıkları toplamı 1 olmalıdır. P(A)+P(B)+P(C)= 0,25+0,45+0,60=1,3>1 olaylar ayrık değildir. Olaylardan en az bir çifti aynı anda gerçekleşiyor demektir. b) P(A B C)=P(A)+P(B)+P(C)-P(A).P(B)-P(A).P(C)- P(B).P(C)+P(A).P(B).P(C) =0,25+0,45+0,60-0,25*0,45-0,25*0,60-0,45*0,60+0,25*0,45*0,60 =0,835

9 Soru 2. İmplant Bir diş hekiminin kliniğindeki bir kutuda 6 adet implant vidası bulunmaktadır. Bu vidaların sağlam olma olasılığı %85 olduğuna göre en az 4 vidanın sağlam olma olasılığını bulunuz. Soru binom dağılımı kullanılarak çözülür. X = Sağlam vida sayısı p = 0,85 başarı olasılığı tüm deneylerde eşittir. n = 6 deney sayısı Deneyin iki sonucu: vida sağlam, vida sağlam değil

10 P X = x = n x px q n x X~B n = 6, p = 0,85 P X 4 = P X = 4 + P X = 5 + P X = 6 = 6 4 0,85 4 0, ,85 5 0, ,85 6 0, = 0, , ,377 = 0,952 0,95 6 vidanın en az 4 ünün sağlam olması olasılığı yaklaşık %95 tir.

11 Soru 3. Kalp Krizi 8 kalp krizi hastasının kalp krizinden ölme olasılığı %3 tür. Bu hastalardan en az ikisinin yaşaması olasılığı kaçtır? Soru binom dağılımı kullanılarak çözülür. X = Ölüm sayısı p = 0,03 ölüm olasılığı tüm hastalarda eşittir. n = 8 deney sayısı Deneyin iki sonucu: ölüm gerçekleşti, ölüm gerçekleşmedi

12 P X = x = n x px q n x X~B n = 8, p = 0,03 P X 6 = P X = 0 + P X = 1 + P X = 6 P X 6 = 8 0 0,030 0, ,031 0, ,036 0,97 2 =0,784+0,194+0,021+ 0,00 = 0, kalp krizi hastasının en az 2 sinin yaşaması olasılığı %99 dur.

13 3. Sorunun Devamı Veya yaşama olasılığından gidilirse; Soru binom dağılımı kullanılarak çözülür. X = Yaşayan kişi sayısı p = 0,97 yaşam olasılığı tüm hastalarda eşittir. n = 8 deney sayısı Deneyin iki sonucu: yaşam gerçekleşti, yaşam gerçekleşmedi

14 P X = x = n x px q n x X~B n = 8, p = 0,97 P X 2 = 1 P X = 0 + P X = 1 P X 2 = ,970 0, ,971 0,03 7 = 1 6, , = 0, kalp krizi hastasının en az 2 sinin yaşaması olasılığı %99 dur.

15 Soru 5. Normal Dağılım X rasgele değişkeni ortalaması μ = 30, standart sapması σ = 4 olan normal dağılım göstermektedir. Buna göre aşağıdaki olasılıkları hesaplayınız. a) P(X<40) b) P(X>21) c) P(30<X<35)

16 Soru 5. Normal Dağılım μ = 30, σ = 4 Sorunun çözümü için standart dağılım tablosu kullanılmalıdır z = x μ σ a) P(X<40) z = = 2,5 P(X<40)=P(Z<2,5)

17 Standart Normal Dağılım Tablosu Kullanma

18 44 Her tabloda üst kısımda şekildeki taralı alan ile hesaplanan alan verilir. Bu tabloya göre; P 0 < Z < 0,53 = 0,2019 P Z > 0,53 = 0,5 0,2019 = 0,2981 P Z < 0,53 = 0,2981 P Z < 0,53 = 0,5 + 0,2019

19 1 X μ = 30, σ = 4 İstenilen Alan Tablonun verdiği alan z = 2, 5 z = 2, 5 2 P Z < 2,5 = 0,5 + P 0 < Z < 2,5 =

20

21 1 X μ = 30, σ = 4 İstenilen Alan Tablonun verdiği alan z = 2, 5 z = 2, 5 2 P Z < 2,5 = 0,5 + P 0 < Z < 2,5 = 0,5 + 0,4938 = 0,9938

22 Soru 5. Normal Dağılım μ = 30, σ = 4 Sorunun çözümü için standart dağılım tablosu kullanılmalıdır z = x μ σ a) P(X<40) z = = 2,5 P(X<40)=P(Z<2,5)=0, b) P(X>21) z = = 2,25 P(X>21)=P(Z>-2,25)=0,5+P(-2,25<Z<0) 4 =0,5+0,4878=0, c) P(30<X<35) z 1 = = 0 4 P(30<X<35)=P(0<Z<1,25)=0, z 2 = = 1,25 4

23 Soru 6. Yüksek atlamacı Olimpik bir yüksek atlamacı ortalaması μ = 2,45m, standart sapması σ = 0,7 olan normal dağılım gösteren yükseklikleri atlamaktadır. Buna göre a) Bu sporcunun 2,35m üzerinde atlaması olasılığı nedir? b) Sporcunun atlayışlarının %5 inde geçtiği yükseklik nedir? X = Yükseklik μ = 2,45, σ = 0,7 a) P(X>2,35)=? b) P(X>w)=0,05 w=?

24 a) P X > 2,35 = P Z > 0,14 = 0,5 + P 0,14 < Z < 0 = 0,5 + 0,0557 = 0,5557 z = 2,35 2,45 0,7 = 0,14 b) P X > w = 0,05 P Z > (w 2,45)/0,7 = 0,05 0,5 P 0 < Z < (w 2,45)/0,7 = 0,05 P 0 < Z < (w 2,45)/0,7 = 0,45 z = w 2,45 = 1,645 0,7 w = 3,6

25 a) Şıkkı tabloya nasıl baktık?

26 1,64 1,65 b) Şıkkı tabloya nasıl baktık? (1,64+1,65)/2=1,645

27 Genel Tekrar

28 Soru 1. Aşağıdaki ifadelerden Doğru olduğunu düşündüğünüzü X ile işaretleyiniz. a) İstatistik, insan ve toplum sağlığı için bilgi edinme yöntemleri topluluğudur. Doğru Yanlış b) Deney ve kontrol gruplarının randomize edildiği çalışmalarda, randomizasyon gruplar arasında farklılığa neden olabilecek diğer faktörleri dengelemek amacıyla yapılmaktadır. Doğru Yanlış c) Çalışma için seçilen bir gruptan, belirli bir kısa zaman diliminde ya da o anda elde edilen verilerin analiz edildiği çalışmalara kesitsel çalışmalar denir. Doğru Yanlış ç) Bir sonucun varlığı ve yokluğu ile başlayıp, zamanda geriye doğru gidilerek olası sebepler ya da risk faktörlerinin incelendiği çalışmalara kohort çalışmalar denir. Doğru Yanlış

29 d) Örnekleme için ilk adım uygun kitlenin belirlenmesidir. Doğru Yanlış e) Bir cam fabrikasında üretilen bardakların kırılganlığını test etmek için kitle ile çalışılması uygundur. Doğru Yanlış f) Ege Üniversitesi Diş Hekimliği Fakültesi öğrencilerinin ağız bakım alışkanlıkları incelenecektir. Ancak zaman kısıtlı olduğundan örnekleme yapılacaktır. Bu durumda her sınıfın kendi içinde homojen olduğu düşünülerek küme örneklemesi yapılması uygundur. Doğru Yanlış g) Sürekli bir değişkene ait değerler arasındaki farklılık arttıkça standart sapma büyür. Doğru Yanlış

30 h) Belirli bir hasta grubunda gerçekleştirilen klinik bir araştırmada hastaların yaşı, boy uzunluğu, ağırlığı gibi ölçülen özelliklerin her biri aralık ölçekte olan sürekli değişkenlerdir. Doğru Yanlış ı) Simetrik olmayan dağılımlarda ortalama ve medyan (ortanca) farklı değerleri alırlar. Doğru Yanlış

31 Soru 2. Her şıkta Doğru olduğunu düşündüğünüz cevabı işaretleyiniz. a) Aşağıdakilerden hangisi Olgu-kontrol çalışmalarının özelliklerinden birisi değildir? a) Büyük çalışmaların planlanma aşamasında ön bilgi edinmek amacıyla kullanılabilir. b) Tek kör çalışma düzenine uygundur. c) Kontrol grubunun seçimi önemlidir. d) Düşük maliyetle tamamlanabilir. b) Aşağıdakilerden hangisi binom deneyinin bir özelliği değildir? a. Deney, n tane özdeş deneme dizisinden oluşur. b. Her sonuç bir başarı ya da başarısızlık olarak ifade edilebilir. c. İki sonucun olasılıkları bir denemeden diğerine değişebilir. d. Denemeler birbirinden bağımsızdır.

32 Puanlar Öğrenci Sayısı c) Verilen frekans tablosu yandaki grafikle gösterilmiştir. Buna göre aşağıdakilerden hangisi doğrudur? a) Eksen isimleri uygun şekilde adlandırılmıştır. b) Frekans tablosu için çubuk grafiği çizilmelidir. c) Dikey eksenin [0-40] aralığında çizilmesi uygundur. d) Grafik seçimi uygun olmasına rağmen çubuk genişlikleri eşit çizilmemiştir.

33 ç) Sürekli rastgele bir değişken için x, olasılık yoğunluk fonksiyonu f (x) aşağıdakilerden hangisini temsil eder? a. Belirli bir x değerindeki olasılığı b. x noktasının sol tarafına ait f(x) eğrisinin altındaki alan c. x noktasının sağ tarafına ait f(x) eğrisinin altındaki alan d. x noktasındaki f(x) in değeri

34 Frekans Öğrencilerin Boyu Boy (cm) d) Yukarıdaki grafik için aşağıdaki ifadelerden hangisi söylenemez? a) Grafik adı ve eksen isimleri verildiğinden anlaşılması kolaydır. b) Verilerin ortalaması ortanca değerinden büyüktür. c) Sola çarpıktır. d) [ ] aralığına göre düşünüldüğünde, sınıfın çoğunluğu uzun boyludur. Grafik adresinden alınmıştır.

35 Soru 3. Aşağıdaki tabloda kemik grefti uygulanan 15 maksiller sinüse yerleştirilen implantların ömrü ay olarak verilmiştir. İmplant No Ömür (ay) a) Verilerin aritmetik ortalama, mod, medyan, standart sapma ve varyans değerlerini hesaplayınız. b) Bu hesapladığınız değerleri kullanarak dağılım şekli hakkında yorum yapınız. c) Yukarıdaki tablodan yararlanarak sınıf sayısı 5 olacak şekilde frekans tablosunu oluşturunuz. d) Oluşturduğunuz frekans tablosunu kullanarak aritmetik ortalama, varyans, standart sapma değerlerini bulunuz.

36 a) Verilerin aritmetik ortalama, mod, medyan, standart sapma ve varyans değerlerini hesaplayınız. İmplant no Ömür (ay) Mod=36 Medyan= 33 X = 115 X i 15 = = 28,5 X i X i X (X i X) ,5 812, ,5 342, ,5 156, ,5 72, ,5 42, ,5 42, ,5 20, ,5 20, ,5 56, ,5 56, ,5 56, ,5 110, ,5 156, ,5 272, ,5 380, Toplam 2595,75 28,5 Ort. Var. 185,41 Varyans: s 2 = 115 (X i X) 2 14 Standart Sapma: s = s 2 = 13,62 = 185,41

37 b) Bu hesapladığınız değerleri kullanarak dağılım şekli hakkında yorum yapınız. Mod>Medyan>Ortalama 36>33>28,5 => sola çarpık

38 c) Yukarıdaki tablodan yararlanarak sınıf sayısı 5 olacak şekilde frekans tablosunu oluşturunuz. Minimum=0 Maksimum=48 Değişim aralığı=48-0=48 Sınıf aralığı=48/5=9,6 10 Frekans Tablosu Sınıflar f i Toplam 15

39 d) Oluşturduğunuz frekans tablosunu kullanarak aritmetik ortalama, varyans, standart sapma değerlerini bulunuz. Sınıflar X i f i f i X i X i X (X i X) 2 f i (X i X) ,5 1 4,5-24,5 600,25 600, , ,5 210,25 420, , ,5 20, , ,5 5,5 30,25 151, , ,5 15,5 240,25 720,75 Toplam ,5 1973,75 Ortalama: X = 1k f i X i = 437,5 k f i 15 1 = 29,17 29 Varyans: s 2 = 1k f i (X i X) 2 n 1 = 1973,75 14 = 140,98 Standart Sapma: s = s 2 = 11,87

40 SINAVINIZDA BAŞARILAR DİLİYORUM! Hesap makinası Formül kağıdı Öğrenci kimliği UNUTMAYIN!

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Ödev Çözümleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Ödev 1 Çözümleri 2 1. Bir sonucun

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Genel Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 Ege Üniversitesi Diş

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Bir çalışmada elde edilen

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

3.Ders Rasgele Değişkenler

3.Ders Rasgele Değişkenler 3.Ders Rasgele Değişkenler Tanım:,U, P bir olasılık uzayı ve X : R X olmak üzere, a R için, : X a U oluyorsa X fonksiyonuna bir rasgele değişken denir. a R için X, a : X a U özelliğine sahip bir X rasgele

Detaylı

SÜREKLİ OLASILIK DAĞILIMI

SÜREKLİ OLASILIK DAĞILIMI SÜREKLİ OLASILIK DAĞILIMI Normal Olasılık Dağılımı Akülerin dayanma süresi, araçların belli bir zamanda aldığı yol, bir koşuya katılanların bitirme süresi gibi sayılamayacak kadar çok değer alabilen sürekli

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

TEK BOYUTLU RASSAL DEĞİŞKENLER

TEK BOYUTLU RASSAL DEĞİŞKENLER TEK BOYUTLU RASSAL DEĞİŞKENLER Rassal değişken: S örnek uzayının her bir basit olayını yalnız bir gerçel değere dönüştüren fonksiyonuna rassal (tesadüfi) değişken denir. İki para birlikte atıldığında üste

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1 3. Olasılık Hesapları ve Olasılık Dağılımları 3.3. Sayma Teknikleri Olasılık hesapları ve istatistikte birçok problem, verilen küme elemanlarının sayılmasını veya sıralanmasını gerektirir. Eğer bir olayın

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

Ders 8: Verilerin Düzenlenmesi ve Analizi

Ders 8: Verilerin Düzenlenmesi ve Analizi Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)

Detaylı

Biyoistatistik. Uygulama 1

Biyoistatistik. Uygulama 1 Biyoistatistik Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi,Tıp Fakültesi,Biyoistatistik ve Tıbbi Bilişim A.D. Web: www.biyoistatistik.med.ege.edu.tr 1 DİŞ MACUNU-TEMDİŞ TEMPA Temizlik

Detaylı

BAYES KURAMI. Dr. Cahit Karakuş

BAYES KURAMI. Dr. Cahit Karakuş BAYES KURAMI Dr. Cahit Karakuş Deney, Olay, Sonuç Küme Klasik olasılık Bayes teoremi Permütasyon, Kombinasyon Rasgele Değişken; Sürekli olasılık dağılımı Kesikli - Süreksiz olasılık dağılımı Stokastik

Detaylı

SÜREKLİ( CONTINUOUS) OLASILIK

SÜREKLİ( CONTINUOUS) OLASILIK SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Ders 6: Sürekli Olasılık Dağılımları

Ders 6: Sürekli Olasılık Dağılımları Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 6: Kesikli Olasılık Dağılımları

Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin

Detaylı

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

Veri Analizi. Isınma Hareketleri. Test İstatistikleri. b) En çok tekrar eden: 7 (mod) c) Açıklık = En büyük En küçük = 10 1 = 9. d)

Veri Analizi. Isınma Hareketleri. Test İstatistikleri. b) En çok tekrar eden: 7 (mod) c) Açıklık = En büyük En küçük = 10 1 = 9. d) Isınma Hareketleri 1 Aşağıda verilenleri inceleyiniz. Test İstatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Aritmetik ortalama Tepe değer (mod) Ortanca (medyan) Merkezi Dağılım (Yayılma) Ölçüleri Açıklık

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

b) Aşağıda verilen tanımlamalardan herhangi 5 adeti yazılabilir. Aritmetik Ortalama: Geometrik Ortalama:

b) Aşağıda verilen tanımlamalardan herhangi 5 adeti yazılabilir. Aritmetik Ortalama: Geometrik Ortalama: C S D Ü M Ü H E N D İ S L İ K F A K Ü L E S İ - M A K İ N A M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü MAK-307 OM317 Müh. İstatistiği İstatistik ÖĞRENCİNİN: ADI - SOADI ÖĞREİMİ NOSU İMZASI 1.Ö 2.Ö A B Soru -

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar 0..07 EME 37 SISTEM SIMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Deney Dizaynı ve Veri Analizi Ders Notları

Deney Dizaynı ve Veri Analizi Ders Notları Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı