Gruplanmış serilerde standart sapma hesabı
|
|
- Esen Erdem
- 11 ay önce
- İzleme sayısı:
Transkript
1 Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az dan az den az Σf ,65 6,891 0, ,65 0,391, ,375 1,891 7, ,375 11,391, ,756 fi.mi 58 X = 3, 65 N 16 1
2 fi ( i m X) 53, = 3,36 1, 83 N ' S = 1,83 3,01 1,
3 Sınıflar f i 0 den az 4 den az dan az den az 5 Σf 16 X X X m i f i. m i m i - (m i - ) f i.(m i ) X = fi.m N fi i ( i m X) = 3,5 1, 87 N 3
4 Düzeltilmiş standart sapma S ' = 1,87 3,3 1,
5 Standart sapma hesabında. yöntem: Basit, frekans ve gruplanmış bütün seriler için kolay yoldan standart sapma hesabı için uygun olan bu formül öncelikle kareli ve aritmetik ortalamaların hesaplanmasını gerektirir. Gruplanmış seriler için bu yolla bulunan standart sapmada da düzeltme yapılması zorunludur. K X K: Kareli Ortalama X : Aritmetik Ortalama 5
6 Basit Seri X i X i X = Σf 306 K X N İ , 14 K X = 7, , 87 6
7 Frekans Serisi X i f i f i. X i X i f i. X i Σf fi.xi 14 X 6, fi 0 K fi.x fi i , 3 6, 73 K X ,, 45, 3 38, 4 6, 9, 6 7
8 Gruplanmış Seri Sınıflar f i m i m i f i. m i 0 den az 3 4 den az dan az den az Σf fi. mi 58 X = fi 16 K fi. m fi i , 5 4, 06 8
9 K X 4, 06 3, 65 16, 5 131, 3, 4 1, 83 S ' = 1, 83 3, 03 1,
10 Aritmetik Ortalama ve Standart Sapma Hesabında Kısa Yol: X X fi. d N i o. X o : Grup orta noktası değerleri içerisinden seçilen keyfi nokta (orijin orta değeri). d i : Grup orta değerlerinden seçilen keyfi noktadan farklarının grup aralığına bölümü [ d=x i X o / s ]. s : Sınıf aralığı. Standart sapmanın çalışma orijininden faydalanılarak hesaplanması sık kullanılan kısa ve kolay bir metottur. Frekans dağılım tablosunun ortalarında yer alan ve tercihen en fazla frekansa sahip bir sınıf başlangıç (orijin) olarak alınır. Orijin olarak seçilen sınıfa sıfır değeri verilir ve orijinden uzaklığa göre sınıflar -1, -, -3, ve +1, +, +3,.. değerlerini alır. Bu değerler (d) ile gösterilir. s Standart Sapma ( = n = Σf i S. S s. f i. d i ( fi. d n 1 i ) / n 10
11 Örnek: Döküm makinası ön flanş sıcaklığı ölçülmüş ve 100 adet veri elde edilmiştir. Standart sapmayı bulunuz? Sınıflar fi
12 Sınıflar f i d i d i.f i d i.f i Toplam
13 Ortalama sıcaklık değeri: X fidi 8 X o. s x N 100 o C Örneklemin Standart Sapması: S s. fi. di ( fi. di) n 1 / n ( 8) 99 / o 8.5 C Anakütlenin Standart Sapması: 5x.87 o 8.47 Ödev : Kısa yoldan çözülen örneği diğer iki yöntemle çözünüz? C 13
14 Örnek: Bir fabrikada üretilen cam eşyadan alınan 194 parçalık örneğin ısıya dayanıklılık ölçümlerinin dağılımları tablodaki gibidir. Dağılımdaki gözlemlerin yüzde kaçının ±1 σ içinde olduğunu hesaplayınız? ısı sınıfları f i m i 90-9 den az den az dan az den az den az den az den az dan az den az dan az 109 Toplam
15 fi. X = / 194 = m fi Standart sapma ( = 3.94 i ( 1 içine giren kısım ve * * /194= %67.47 Gözlemlerin %67.47 si 1 st.sapma içine giriyor den az den az den az den az 1 15
16 Örnek: 74 kişilik bir sınıfta yaşlara göre dağılım aşağıda verilmiştir. Standart sapmayı hesaplayınız. x Serinin standart sapması 1 yaştan daha azdır (0.97). 16
17 Örnek: sınıflar frekans(f i ) m i (m i - ) f i. (m i - ) x x 0 - den az 3 1 6,891 0,673-4 den az 7 3 0,391, dan az 4 5 1,891 7, den az 7 11,391, ,756 x aritmetik ortalama = / ' S 1, 83 3, 03 1,
18 Örnek: Bir grup öğrencinin matematik dersinden aldıkları puanlar verilmiştir. Dağılımın standart sapmasını hesaplayınız? n=30 Σx=1400 x=46,66 Σx²=7550 S= ,33 = ,67 SSx 341,95 9 = SSx 18, 49 18
19 3.Varyans ( ) Standart sapmanın karesine varyans denir. Anakütle için: Xi N X Örneklem için: Xi X S N 1 19
20 Örnek: 0
21 Örnek: Verilen serinin standart sapmasını ve varyansını hesaplayınız. 1
22
23 4. Değişim Katsayısı (D.K. ) Oransal değişkenlik ölçüsü niteliğindeki değişim katsayısı herhangi bir serinin standart sapmasının aritmetik ortalamasına bölünmesi ve 100 ile çarpılması ile elde edilir. Formülde standart sapma aritmetik ortalamanın bir yüzdesi olarak ifade edilmektedir. Diğer bir ifadeyle oransal olmayan değişkenlik ölçülerinin aksine değişim katsayısının ölçü birimi yoktur. Basit, frekans ve gruplanmış bütün seriler için uygun olan bu ölçü; seriler arasındaki cins ve büyüklük farklılığını ortadan kaldırmaktadır. Değişim katsayısı genelde 0 ile 100 arasında değerler alır. Katsayı 0 a yaklaştıkça değişkenlik azalmakta, 100 e yaklaştıkça değişkenlik artmaktadır. Katsayı 100 den büyük çıkarsa standart sapmanın aritmetik ortalamadan büyük çıkması durumu olup; dağılımın fazla olduğunu yani heterojenliğin fazlalığını belirtmektedir. D.K..100 X 3
24 Standart sapma dağılımın yaygınlığını gösteren bir ölçüdür ancak standart sapma ile dağılım hakkında çok fazla bir şey söylemek olanaksızdır. Örneğin; bir dağılımın standart sapması 6 ise bu değer büyük müdür yoksa küçük müdür? Bir karar verebilmek için değişim katsayısını hesaplamak gerekir. Değişim katsayısı, standart sapmanın ortalamaya göre yüzde kaçlık bir değişim gösterdiğini belirtir. 4
25 y Örnek: x serisi için, A. Ortalama = 13 ve σ x =.7386 y serisi için, A. Ortalama = 57 ve σ y = Görüleceği gibi, σ y > σ x dir. Ancak bu sonuç, y serisindeki gözlem değerlerinin x serisine göre daha büyük olmasından kaynaklanmış olabilir. Eğer, sadece standart sapmalarla bu iki seri karşılaştırılırsa, y serisindeki değişkenliğin x serisine göre daha büyük olduğu ifade edilecektir. Eğer karşılaştırılan serilerin standart sapmaları ilişkin oldukları serilerin ortalama değerinin bir yüzdesi olarak ifade edilirse, karşılaştırmalarda ölçü birimlerindeki farklılıklar ve gözlem değerlerinin büyüklüğünden oluşan sakıncalar, giderilebilir. Bu yaklaşımla hesaplanan değişkenlik ölçüsüne, değişim katsayısı adı verilir ve kısaca «D.K.» ile gösterilir. 5
26 D. K..100 X 6
27 Örnek: Büyük anneniz yapacağı yatırım için sizden yardım istemektedir. İki alternatif yatırımdan birini seçmek konusunda kararsız kalmıştır. İsteği riski az olan yatırımı seçebilmektir. Her iki alternatifin geçmiş dönem getirileri şu şekilde gerçekleşmiştir: A Yatırımı : {103/110/115/105/95/15/145} B Yatırımı : {4/1/17/3/5/8/16} 7
28 -gözlemlerin büyüklüğünün standart sapmayı etkilediği biliniyor veya öyle düşünülüyorsa, -gözlemler farklı ölçü birimi ile ifade edilmişlerse, standart sapma yeterli bir değişim ölçüsü olmayıp yanıltıcı sonuçlara neden olabilir. İşte bu gibi durumlarda, yani gözlem değerlerinin büyüklüğünden ileri gelen farklılığı ortadan kaldırmak hem de farklı ölçü birimi ile ifade edilmiş gözlem değerlerini karşılaştırılabilir duruma getirmek için yeni bir değişim ölçüsü kullanılması gerekmektedir. Bu da «varyasyon katsayısı» (değişim katsayısı) olup bu, standart sapmanın ortalamaya oranının yüzle çarpılmasıyla bulunur ve yüzde ile ifade olunur. 8
29 Varyasyon (değişim) katsayısı ne kadar küçük olursa denemenin veya çalışmanın sonucuna olan güvenilirlik o oranda artar. Yalnız biyolojik çalışmalarda bu değerin % 30 un altında olması istenir. Aynı konuda yapılan çalışmalardan hangisinin sonucuna daha çok güvenmemiz hususunda karar vermede yardımcı olan tek kriter varyasyon (değişim) katsayısıdır. Düşük varyasyon katsayılı çalışma, diğerlerine nispetle daha sağlıklı yürütülmüş demektir. 9
30 30
31 Örnek: A işletmesinin 003 yılı aylık satışlarının ortalaması 108. bin TL ve standart sapması 19.7 bin TL dir. Aynı malı satan B işletmesinin ise aynı yıl için aylık satışlarının ortalamasının 465 adet ve standart sapmasının 38.4 adet olduğu belirlenmiştir. Bu dağılımları karşılaştırınız A D. K..100 x100 A X 108. A B 38.4 D. KB..100 x100 X 465 B %18.0 %8.5 (B) işletmesinde (A) işletmesine göre aritmetik ortalama etrafında daha yoğun bir dağılım olduğu görülmektedir. 31
32 Örnek: X =8 ve varyans 9 ise değişim katsayısını hesaplayınız. D.K X 8 = %37,5 Örnek: Verilen basit serilerin değişim aralığını, ortalama sapmasını, standart sapmasını, varyansını ve değişim katsayılarını hesaplayarak sonuçları karşılaştırınız. X i y i
33 33
8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,
İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2
Mühendislikte İstatistik Yöntemler
.0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0
Sapma (Dağılma) ölçüleri. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Sapma (Dağılma) ölçüleri Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sapma (Dağılma) ölçüleri Mutlak Sapma Ölçüleri Değişim aralığı Kartil ve Desil aralığı Ortalama mutlak sapma Standart sapma
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
DAĞILIM (DEĞİŞKENLİK) ÖLÇÜLERİ (MEASURES OF DISPERSION)
BİYOİSTATİSTİK DAĞILIM (DEĞİŞKENLİK) ÖLÇÜLERİ (MEASURES OF DISPERSION) B Doç. Dr. Mahmut AKBOLAT *Bazı serilerin ortalamaları eşit olmakla birlikte dağılımları (değişkenlikleri) farklı olabilir. *Örneğin,
Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.
Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
2.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene
Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri
Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini
Bölüm 3. Tanımlayıcı İstatistikler
Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını
Prof.Dr.İhsan HALİFEOĞLU
Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç
Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.
.4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin
Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler
Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene
ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri
ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 2 Merkezi Eğilim Ölçüleri Basit Seriler Elde edilecek ham verilerin küçükten büyüğe doğru sıralanması ile elde edilen serilere basit seri denir ÖRNEK:
0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere
SÜREKLİ OLASILIK DAĞILIMI
SÜREKLİ OLASILIK DAĞILIMI Normal Olasılık Dağılımı Akülerin dayanma süresi, araçların belli bir zamanda aldığı yol, bir koşuya katılanların bitirme süresi gibi sayılamayacak kadar çok değer alabilen sürekli
BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik
Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan
Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
Merkezi Eğilim ve Dağılım Ölçüleri
Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki
Prof.Dr.İhsan HALİFEOĞLU
Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
Merkezi Yığılma ve Dağılım Ölçüleri
1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
İSTATİSTİK MHN3120 Malzeme Mühendisliği
İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :emre.yalamac@cbu.edu.tr YARDIMCI KAYNAKLAR Mühendiler
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL
BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ
1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar
TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla
TANIMLAYICI İSTATİSTİKLER
TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık
Hipotez Testleri. Mühendislikte İstatistik Yöntemler
Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
YANLILIK. Yanlılık örneklem istatistiği değerlerinin evren parametre değerinden herhangi bir sistematik sapması olarak tanımlanır.
AED 310 İSTATİSTİK YANLILIK Yanlılık örneklem istatistiği değerlerinin evren parametre değerinden herhangi bir sistematik sapması olarak tanımlanır. YANLILIK Yanlı bir araştırma tasarımı uygulandığında,
Doç.Dr.İstem Köymen KESER
Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n
ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK
ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.
BÖLÜM 1 GİRİŞ: İSTATİSTİĞİN MÜHENDİSLİKTEKİ ÖNEMİ
BÖLÜM..AMAÇ GİRİŞ: İSTATİSTİĞİ MÜHEDİSLİKTEKİ ÖEMİ Doğa bilimlerinde karşılaştığımız problemlerin birçoğunda olaydaki değişkenlerin değerleri bilindiğinde probleme kesin ve tek bir çözüm bulunabilir. Örneğin
MATE211 BİYOİSTATİSTİK
MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191
İstatistiksel Yorumlama
İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız
A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?
DERS 7 PORTFÖY RİSK VE GETİRİSİ
DERS 7 PORTFÖY RİSK VE GETİRİSİ Menkul Kıymet Risk ve Getirisi Bir yatırımcının temel beklentisi, menkul kıymeti uygun bir fiyattan almak, uygun görülen bir zamanda daha fazla bir fiyata satmak ve ayrıca
Merkezi Limit Teoremi
Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal
Ölçme ve Değerlendirme
Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi
Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama
GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir
İstatistik ve Olasılık
İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde
İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği
İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe
BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )
4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı
Copyright 2004 Pearson Education, Inc. Slide 1
Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma
Slide 1 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI
İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.
Normal Dağılım ve Puan Dönüşümleri (z ve T puanı)
Normal Dağılım ve Puan Dönüşümleri (z ve T puanı) Normal Dağılım Normal Dağılımın Özellikleri Normal Dağılım Eğrisi Altında Kalan Alan ve Olasılıklar Standart Normal Dağılım Standart Puanlar Z ve T puanları
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
DEĞİŞKENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr. Argun KARACABEY Yrd.Doç.Dr. Fazıl GÖKGÖZ
DAĞILMA YADA DEĞİŞKENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla
ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:
İSTATİSTİK ÖRNEK SORULARI
1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.
istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A
2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve
VERİ SETİNE GENEL BAKIŞ
VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.
İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...
İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
objektif değerlendirilmesini sağlayan bilim - veri arasındaki farkın olup olmadığını tespit
İSTATİST STİK A. G E N E L B İ L G İ A. G E N E L B İ L G İ İstatistik, belli amacla tespit edilen verilerin objektif değerlendirilmesini sağlayan bilim dalıdır. Hedef - verilere anlam kazandırmak - veri
10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08
1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel
İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ
ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla
İstatistik ve Olasılık
İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı
İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER
İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER 2017-2018 Ankara Üniversitesi, SBF SBF Onur Onur Özsoy 1 İşlenecek Konular Merkezi Eğilim Ölçüleri Ortalama, medyan, mod,
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
Verilerin Düzenlenmesi
Verilerin Düzenlenmesi İstatistiksel verileri anlamlı hale getirmenin 5 ayrı yolu: 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Seriler halinde düzenleme 4. Grafiklerle gösterme 5. Bu
İstatistik. Temel Kavramlar Dr. Seher Yalçın 1
İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya
ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları
Ders 4: Rastgele Değişkenler ve Dağılımları
Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla
İSTATİSTİK II. Hipotez Testleri 1
İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler
Nedensel Modeller Y X X X
Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz
3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?
İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON
VERİ KÜMELERİNİ BETİMLEME
BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,
GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY
GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci
ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin
İstatistik ve Olasılık
İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen
Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I
Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin
0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri)
Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) R t : t dönemlik basit getiri P t : t dönemdeki fiyat P t-1 : t dönemden önceki fiyat Örneğin, THYAO hisse senedinin
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014
Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek
BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Genel Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 Ege Üniversitesi Diş
17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo
PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması