YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI"

Transkript

1 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA ÖZET: YÜZME HAVUZUU AYARLI SIVI SÖÜMLEYİCİ OLARAK PERFORMASI A. Bozer Yrd. Doç. Dr., İşaat Müh. Bölümü, uh aci Yazga Üiveritei, Kayeri Bu çalışmada ayarlı ıvı öümleyici TLD olarak çatı katıa yerleştirilecek yüzme havuzu kullaılmaı düşüülmüştür. Bu itemde u havuzuu yaal hareketie bağlı olarak uyu çalkalamaıyla u yüzeyide bir dalga hareketi oluşmaktadır. Bu dalga havuzu hareketie ter yöde etki ederek bağlı olduğu yapıda ayarlı kütle öümleyici TMD ye bezer şekilde öüm yaratmaktadır. Suyu çalkalamaı problemii çözümü içi Houer i öerdiği eşdeğer mekaik model kullaılmış böylece TLD ler içi optimal çözüm yötemleri TMD ler içi kullaıla optimal çözüm yötemlerie idirgeebilmiştir. AAHTAR KELİMELER: Ayarlı Sıvı Söümleyici TLD, Ayarlı Kütle Söümleyici TMD, Optimal Çözüm. İRİŞ Depreme dayaıklı yapı taarımıda yük taşıya elemaları yeterli dayaıma ahip olduğu ve deprem eeriii platik şekil değiştirmeler ile yutup öümledirdiği kuvvet-bazlı geleekel yaklaşımı yerie harici öümledirme itemleri gibi yeilikçi yaklaşımlar giderek daha çok uygulama alaı bulmaktadır. Harici öümleyici itemleri bir öreği olarak Ayarlı Kütle Söümleyiciler TMD yapıdaki eeri akışıı ikicil bir itemi titreşimi ile egeller. Özüde, ayarlı kütle öümleyiciler veya titreşim oğurucular kütle-yay-amortiör itemleridir ve mote edildikleri yapıı belirli bir titreşim modua ayarlaırlar. Diamik etkiler altıda TMD aa yapı ile ayı titreşim frekaıda fakat farklı fazda hareket ederek girdi eeriii aa yapıda kedi üzerie yöledirir. Moder Ayarlı Kütle Söümleyici kavramı ilk olarak De Hatog u 956 öümleyici parametrelerii ideal eçimi içi geliştirmiş olduğu temel preipler ile ortaya çıkmış fakat kedii bu çalışmalarda aa yapıdaki öüm etkilerii göz öüe almamıştır. Buu üzerie Mcamara977 aa yapıdaki öüm etkilerii de göz öüe ala çalışmalar yapmış ve buu takibe Warburto 98 oldukça geiş çalışmaıda tek erbet dereceli yapıları hem kuvvet hem de ivme etkii olarak harmoik ve ratgele yükler altıda öüm parametrelerii elde etmiştir. Ayarlı Kütle Söümleyicilerii optimum parametrelerii elde etmek içi çalışmalar yapa çok ayıda araştırmacıı içide başlıcaları olarak Tai ve Li 994, Abe ve Igua 995, Sadek vd. 997, Hoag vd. 8 ıralaabilir. Bütü bu araştırmacılar, eğer düzgü bir şekilde ayarlaıra TMD i yapıı hakim titreşimii azaltma yöüde çok etkili olduğu huuuda hemfikirdir, öte yada yapıı hakim periyodudaki heaplama hataları veya TMD i üretim hatalarıa bağlı olabilecek ebeplerde dolayı yalış ayar yapılmışa TMD i etkiliği oldukça azalmaktadır. Bu ebeple u ve Igua 99 tarafıda dağılımlı titreşim frekaıa ahip Çoklu Ayarlı Kütle Söümleyiciler MTMD öerilmiştir. Bu itemde aa yapıya adet TMD üitei mote edilmekte ve TMD üitelerii doğal titreşim frekaları belirli bir freka aralığıda eşit dağılacak şekilde ayarlamaktadır. Yazarlar bu çalışmalarıda eşdeğer kütleli Çoklu Ayarlı Kütle Söümleyicileri tek bir Ayarlı Kütle Söümleyicide daha iyi performaa ahip olduğuu götermişlerdir. Bu çalışmadaki e çarpıcı

2 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA ouçlarda biride MTMD itemide ki TMD üitelerii düşük öüm eviyeleride daha etki çalışmaı olmaktadır, böylece ayarlı ıvı öümleyici TLD itemleride uyu çalkalamaı oucu oluşa düşük öüme bağlı olarak TLD itemlerii çoklu olarak kullaılmaı daha uygu olmaktadır. Daha ora freka aralığı, öüm oraı ve toplam TMD ayıı gibi faktörleri MTMD üzerideki etkileri Yamaguchi ve Harporchai 993 tarafıda araştırılmıştır. Park ve Reed kütlei ve frekaı düzgü dağılımı yerie değişke dağılımıı etkilerii icelemiş. MTMD itemii optimum parametrelerii heabı taba kuvvetleri altıda Johi ve Jagid 997 tarafıda ve zemi ivmei altıda Li tarafıda araştırılmıştır. TMD her e kadar yapıları deprem cevabıı kotrol etmekte etkili ola da yapıya büyük bir kütlei yerleştirilmeie ihtiyaç duyar. Öreği Joh Hacock Biaı a Boto,USA x3 toluk kütle ve Citycorp Biaı a ewyork,usa 373 toluk kütle TMD olarak mote edilmiştir. Öte yada Hakyu Chayamachi Biaı da Oaka, Japoya olduğu gibi bu kütlei daha akıllıca kullaımı mümküdür. Bu örekte hareketli kütle olarak helikopter piti kullaılmıştır. Bu çalışmada ayarlı ıvı öümleyici TLD olarak çatı katıa yerleştirilecek yüzme havuzu kullaılmaı düşüülmüştür. Bu itemde u havuzuu yaal hareketie bağlı olarak uyu çalkalamaıyla u yüzeyide bir dalga hareketi oluşmaktadır. Bu dalga havuzu hareketie ter yöde etki ederek bağlı olduğu yapıda TMD ye bezer şekilde öüm yaratmaktadır. Suyu çalkalamaı problemii çözümü ıır şartlarıı ağlaya kımi diferaiyel deklemleri çözümüü gerektirmektedir yalız Houer 954 yaklaşık bir eşdeğer mekaik model öeriide bulumuştur. Bu yötemde bir takı içideki u kütleii alıım yapa kımı kütle-yay modeli olarak temil edilmiş, durağa kımı ie taka riit bağlı bir kütle olarak temil edilmiştir. Böylece TLD ler içi optimal çözüm yötemleri TMD ler içi kullaıla optimal çözüm yötemlerie idirgeebilmektedir. Dalga hareketii doğal frekaı içide buluduğu havuzu geometrii, boyutları ve ıvı deriliğie bağlı olduğuda TLD yi mote edildiği yapıı titreşim frekaıa ayarlamak mümkü olmaktadır.. ÇOKLU AYARLI KÜTLE SÖÜMLEYİCİ MTMD MTMD-Yapı itemii hareket deklemi aşağıdaki şekilde yazılabilir: m x c c x cx k k x kx F t [ k x x ] [ c x x ] m x, Burada, altimge aa yapıyı, altimge MTMD itemideki ici TMD üiteii temil etmektedir. Yapıya etkiye yük Ft ile; kütle,riitlik ve öüm katayıları ıraıyla m,k,c ile; aa yapıı zemie göre göreli deplamaı x ile, ici TMD i zemie göre göreli deplamaı x ile göterilmiştir. Aşağıdaki taımlamalar yapıldığıda: m c c ; ; ζ ; ζ ; k / m ; k / m, m m m Deklem ve Z L[zt] şeklide taımlaa Laplace Döüşümü ayeide freka alaıda aşağıdaki şekilde ifade edilir:

3 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA 3 m F / ζ ζ ζ, 3 [ ] [ ] ζ, 4 Deklem 3 ve 4 ü matri formda ifadei aşağıdaki şekildedir: [ ] [ ] [ ] [ ] [ ] x x x x x m F diag B B A / 5 Burada: A ζ ζ ζ B, ζ, şeklide taımlamıştır. Deklem 5 çözülerek aa yapıı Trafer Fokiyou B A m TF deklemi ile elde edilir. Trafer Fokiyou da i döüşümü yapılarak ve [ ] i TF ifadei heaplaarak Diamik Büyütme Faktör ü DBF buluabilir. ici TMD üiteii doğal titreşim frekaıı C 7 deklemiyle heaplamak mümküdür. Burada, C MTMD itemideki her TMD üiteii doğal frekalarıı ortalamaı ola merkezi freka, Δ ie freka aralığıdır ve / C ifadeiyle heaplamaktadır. TMD üitelerii değişke frekaları, riitliği ve öüm katayııı abit tutup kütleyi değişke kılarak ağlamaktadır. Bu durumda itemi toplam kütle oraıı μ kabul ederek ıraıyla TMD üitelerii riitliği, her bir TMD üiteie ait kütle ve öüm oraı aşağıdaki gibi buluabilir. Johi ve Jagid 997

4 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA k TMD i m TMD, i / m k, ζ c / m c / k 8 TMD TMD TMD MTMD itemi içi ortalama öüm oraı ζ T ζ c 9 C TMD ktmd ifadei ile verilmektedir. MTMD itemide freka aralığı, Δ, ve ortalama öüm oraı, ζ T, içi optimum parametreler makimum gelikleri miimumu miimum-maximum amplitude procedure adlı bir ümerik arama yötemi ile bulumaktadır. Bu yötemde < Δ <.3 ve < ζ T <.5 aralığıda her bir Δ, ζ T çiftie karşılık gele Diamik Büyütme Faktör üü makimum geliği heaplaır ve kayıt edilir. Heaplaa bu makimum değerler kümei içideki e küçük değere karşılık gele Δ, ζ T çifti araıla optimum değeri vermektedir.. AYARLI SIVI SÖÜMLEYİCİ TLD Yaal çalkalama kımi dolu bir u takıı maruz kaldığı alııma bağlı olarak u yüzeyide oluşa dalga hareketidir. Su takı yaal ivmelere maruz kaldığıda u yüzeyi takı bir tarafıda yükelirke diğer tarafıda alçalarak dalga hareketi oluşturur, daha ora yükek kıım alçalarak ve alçak kıımda yükelerek bu hareketliliği ürdürür. Oluşa dalga hareketii tak geometrii ve boyutları, u deriliğie ve yerçekimi ivmeie bağlı olarak doğal titreşim periyodu vardır. Takı bu ileri geri hareketi ıraıda ıvıya ait diamik model alıım yapa kımı kütle yay modeli ile temil edildiği, durağa kımı ie taka riit bağlı kütle ile temil edildiği eşdeğer bir mekaik model ile ifade edilebilir. Bu mekaik modeli grafikel temili Şekil de göterilmiştir. Suyu çalkalamaı problemii çözümü ıır şartlarıı ağlaya kımi diferaiyel deklemleri çözümüü gerektirmektedir yalız Houer 954 i öerdiği eşdeğer mekaik model, kımı diferaiyel deklemleri çözümüde kaçıarak problemi bait kapalı form çözümlere idirgemeyi mümkü kılmaktadır. Öerile metot elatiitedeki Rayleigh-Ritz metoduyla bezeşmektedir ve heaplaa u kuvvetleri her zama güveli tarafta kalmaktadır. Şekil. Çalkalama Problemi içi Mekaik Model Houer 954 4

5 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA R yarıçaplı daireel bir ıvı takı, h deriliğide ıvı ve yerçekimi ivmei g içi durağa ıvı kütlei M, alıım yapa ıvı kütlei M ve doğal çalkalama frekaı Houer 954 tarafıda verilmiş aşağıdaki deklemlerde heaplaabilir: 3R / h M tah M 3R / h, 7 R 7 h tah g 7 7 h M M, tah h R R 8 8 R Yukarıdaki deklemler heapladıkta ora eşdeğer yay riitliği K kolayca heaplaabilir: K M Deklem adece h.6 R içi geçerlidir. Sıvı takı uzadıkça ve daraldıkça h.6r eviyeii altıda kala ıvıı tak ile birlikte riit hareket ettiği kabul edilmelidir. 3. ÜMERİK SİMÜLASYO Ayarlı Kütle Söümleyiciler çalışma preibi dolayııyla biaları çatı katıa büyük kütleleri yerleştirilmeii gerekli kılmaktadır. Bu türde atıl bir kütlei Hakyu Chayamachi Biaı da Oaka, Japoya kullaıla helikopter piti gibi yapıı mimari bir parçaı olarak değerledirilmei şüpheiz fokiyoellik açııda büyük avatadır. Bu çalışmada da bezer şekilde ayarlı ıvı öümleyici TLD itemii biaı çatı katıa yerleştirilecek yüzme havuzu şeklide kullaılıp kullaılamayacağıı değerledirilmei yapılmıştır. ümerik imülayolar içi Citicorp Ceter ew York,USA biaı örek eçilmiş ve bu biaya ait yapıal parametreler aşağıda verilmiştir. Soog ve Darguh 997 Kat Ölçüleri m 49x49 Kat Alaı m 4 Bia Yükekliği m 8 Bia Modal Kütlei to ici mod periyodu 6.5 Yapıal öüm oraı % Ayarlı ıvı öümleyici TLD itemi içi düşüüle havuz ölçüleri üzerie mote edileceği biaı doğal titreşim frekaıyla çakışacak şekilde eçilmiştir. Bua göre Deklem ve çözüldüğüde.65m lik u deriliği içi havuz yarıçapı R 7.5m, durağa ıvı kütlei M 35,3 to, alıım yapa ıvı kütlei M, to ve eşdeğer yay riitliği K 3 k/m olarak heaplaır. Bu durumda toplam TLD kütleii aa yapıı kütleie oraı μ küçük olacağıda yeterli kütleyi ağlamak içi ya yaa üç havuz koulmaı plalamıştır. Bu havuzları toplam kütlei tek bir kütle olarak düşüülüre Deklem 6 da verile trafer fokiyou içi çözüldüğüde makimum gelikleri miimumu yötemi miimum-maximum amplitude procedure kullaılarak freka oraı,,,973 olarak heaplaır. Bu freka oraıa göre her havuzu yeide heaplaa parametreleri havuz yarıçapı R 7,5m, durağa ıvı kütlei M 35,8 to, alıım yapa ıvı kütlei M 7,3 to ve eşdeğer yay riitliği K 3,5 k/m olarak buluur. 5

6 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA Şekil.de aa yapıı Diamik Büyütme Faktörü DBF göterilmiştir. özlemleebileceği gibi yapı cevabıda öemli orada düşüş vardır. TLD olmaya çözümde makimum DBF 45,3 ike TLD kullaıla çözümde makimum DBF i 7,4 olduğu görülmektedir. Yie de bu optimal bir çözüm değildir çükü uyu çalkalamaıa bağlı olarak kabul edile TLD öüm oraı % civarlarıdadır halbuki optimum çözüm içi gerekli ola öüm oraı % olarak heaplamıştır w/o TLD TLD / Şekil. Aa Yapıya ait Diamik Büyütme Faktörü,973, μ,36 Daha iyi bir çözüm Çoklu Ayarlı Kütle Söümleyici MTMD çözümüyle elde edilebilir çükü bu çözümde her bir Ayarlı Sıvı Söümleyici TLD üitei içi gerekli öüm oraı uyu çalkalamaıyla oluşa öüm oralarıa daha yakı olacaktır. Her bir TLD üiteii öümüü % kabul ederek elde edile optimal parametreler freka oraı, C /, içi,99 ve freka aralığı, Δ, içi,7 olarak heaplamıştır. Deklem 7 de, her bir havuza ait frekalar,9,,995, 3,79 şeklide buluur. Bu frekalara göre her havuz içi heaplaa parametreler Tablo de özetlemiştir. Tablo.,97,,994, 3,8 içi havuz parametreleri Havuz # Havuz # Havuz #3 R m 7,3 7,3 7,3 h m,35,65, M to 9, 35,7 43, M to 3, 6,,7 K k/m 8, 3,4 46, Şekil 3. icelediğide Ayarlı Sıvı Söümleyici TLD içi ola çözümde iki tepe oktaı görülmektedir çükü üç havuzda ayı diamik parametrelere ahip olduğuda tek bir havuz gibi çalışmakta ve bu durumda makimum DBF 7,4 olmaktadır. Öte yada Çoklu Ayarlı Sıvı Söümleyici MTLD içi ola çözümde her 6

7 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA havuzu ayrı diamik parametreleri olduğuda dört tepe oktaı gözlemlemektedir. Bu durumda DBF 3,9 olarak heaplamıştır. 3 5 TLD MTLD / Şekil 3. Aa Yapıya ait Diamik Büyütme Faktörü,99, μ,36 4. SOUÇLAR Bu çalışmada ayarlı ıvı öümleyici TLD olarak çatı katıa yerleştirilecek yüzme havuzu kullaılmaı düşüülmüştür. ümerik imülayolar içi Citicorp Ceter ew York, USA biaı örek eçilmiş ve heaplaa optimum freka oraıa bağlı olarak havuz ebatları bulumuştur. Tek bir havuz içi alıım yapa ıvı kütleii biaı modal kütleie oraı küçük olduğuda ya yaa üç havuz kullaılmaı düşüülmüş ve aşağıdaki ouçlar elde edilmiştir:. Üç havuzu ebatları ve u deriliği ayı eçilire, her bir havuz içi alıım yapa ıvı kütlei ve doğal titreşim frekaı ayı olmakta dolayııyla üç havuz tek bir ayarlı ıvı öümleyici gibi davramaktadır. Bu tür bir çözüm içi gerekli ola öüm oraı uyu varayıla öüm oraıda çok daha yükek olduğuda çözüm optimal değildir. Yie de ümerik imülayolar oucu ayarlı ıvı öümleyici kullaıldığıda Aa Yapıya ait Diamik Büyütme Faktörü de %4 düşüş gözlemlemiştir.. Daha iyi bir çözüm Çoklu Ayarlı Kütle Söümleyici MTMD çözümüyle elde edilmiştir çükü bu çözümde her bir Ayarlı Sıvı Söümleyici TLD üitei içi gerekli öüm oraı uyu çalkalamaıyla oluşa öüm oralarıa daha yakı olacaktır. Bu çözümde Aa Yapıya ait Diamik Büyütme Faktörü de %69 düşüş gözlemlemiştir. 7

8 . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA KAYAKLAR De Hartog, J.P Mechaical Vibratio, 4th ed., Mcraw-Hill, ew York, U.S.A. Mcamara, R. J Tued Ma Damper for Buildig. Joural of the Structural Diviio, ASCE 39, Warburto,. B. 98. Optimum aborber parameter for variou combiatio of repoe ad excitatio parameter. Earthquake Egieerig ad Structural Dyamic, Tai, H.C. ve Li,. C Explicit formulae for optimum aborber parameter for force excited ad vicouly damped ytem. Joural of Soud ad Vibratio 765, Abe, M. ve Igua, T Tued ma damper for tructure with cloely paced atural frequecie. Earthquake Egieerig ad Structural Dyamic 4, Sadek, F., Mohraz, B., Taylor, A.W. ve Chug, R.M A Method of Etimatig the Parameter of Tued Ma Damper for Seimic Applicatio. Earthquake Egieerig ad Structural Dyamic 6, Hoag,., Fuio, Y. ve Waritchai, P. 8. Optimal tued ma damper for eimic applicatio ad practical deig formula. Egieerig Structure 3, u, K. ve Igua, T. 99. Dyamic characteritic of multiple ubtructure with cloely paced frequecie. Earthquake Egieerig ad Structural Dyamic, Yamaguchi, H. ve Harporchai, Fudametal characteritic of multiple tued ma damper for uppreig harmoically forced ocillatio. Earthquake Egieerig ad Structural Dyamic, 5-6. Park, J. ve Reed, D.. Aalyi of uiformly ad liearly ditributed ma damper uder harmoic ad earthquake excitatio. Egieerig Structure 3, Johi, A.S. ve Jagid, R.S Optimum Parameter of Multiple Tued Ma Damper for Bae-Excited Damped Sytem. Joural of Soud ad Vibratio 5, Li, C.. Performace of multiple tued ma damper for atteuatig udeirable ocillatio of tructure uder the groud acceleratio. Earthquake Egieerig ad Structural Dyamic 9, Houer,. W Earthquake preure o fluid cotaier. EightTechical Report uder Office of aval Reearch, CALTECH, Paadea, Califoria, U.S.A. Soog, T. T. ve Darguh,. F. 997 Paive Eergy Diipatio Sytem i Structural Egieerig, Joh Wiley&So, Wet Suex, İgiltere. 8

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

BİR FAZLI PARALEL AKTİF GÜÇ FİLTRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONTROLÜ

BİR FAZLI PARALEL AKTİF GÜÇ FİLTRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONTROLÜ Gazi Üiv. Müh. Mim. Fak. Der. J. Fac. Eg. Arch. Gazi Uiv. Cilt 6, No, 3-3, 0 Vol 6, No, 3-3, 0 BİR FAZLI PARALEL AKİF GÜÇ FİLRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONROLÜ İlhami ÇOLAK, Orha KAPLAN Gazi Üiveritei

Detaylı

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedilik Mimarlık Fakültei İşaat Mühediliği Bölümü E-Pota: ogu.ahmet.topcu@gmail.com We: http://mmf.ogu.edu.tr/atopcu Bilgiayar Detekli Nümerik Aaliz Der otları 014 Ahmet

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

LOGARİTMİK ORTAM FİLTRELERİNİN SİSTEMATİK SENTEZİ

LOGARİTMİK ORTAM FİLTRELERİNİN SİSTEMATİK SENTEZİ .C. PAMUKKALE ÜNİERSİESİ FEN BİLİMLERİ ENSİÜSÜ LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Şaziye SURA YLMAZ Yükek Lia ezi DENİZLİ 5 LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Pamukkale Üiveritei Fe Bilimleri

Detaylı

DİFERANSİYEL DENKLEMLER ve UYGULAMALARI

DİFERANSİYEL DENKLEMLER ve UYGULAMALARI Ercie Üiveritei Mühedilik Fakültei Makia Mühediliği Bölümü DİFERANSİYEL DENKLEMLER ve UYGULAMALARI (DERS NOTLARI) Doç.Dr. Sebahatti ÜNALAN Kaeri, Elül BÖLÜM I. GİRİŞ. ROBLEM ve DİFERANSİYEL ÇÖZÜM Mühedilik

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU Oka KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi Karaelmas Fe ve Mühedislik Dergisi / Karaelmas Sciece ad Egieerig Joural 3 (2), 43-47, 2013 Karaelmas Sciece ad Egieerig Joural Joural home page: http://fbd.beu.edu.tr Araştırma Makalesi El Hareketii Takip

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI 1. Ulusal Makie Teorisi Sempozyumu UMTS005 HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI Sadetti KAPUCU, Mahmut KAPLAN Gaziatep Üiversitesi,

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

DİKGEN FREKANS BÖLMELİ ÇOĞULLAMA SİSTEMLERİNDE PİLOT TON TABANLI SENKRONİZASYON TEKNİĞİ ÖZET

DİKGEN FREKANS BÖLMELİ ÇOĞULLAMA SİSTEMLERİNDE PİLOT TON TABANLI SENKRONİZASYON TEKNİĞİ ÖZET Erciye Üiveritei Fe Bilimleri Etitüü Dergii (1-) 75-8 (006) http://fbe.erciye.edu.tr/ ISSN 101-354 DİKGEN FREKANS BÖMEİ ÇOĞUAMA SİSTEMERİNDE PİOT TON TABANI SENKRONİZASYON TEKNİĞİ M. Nuri SEYMAN a, Necmi

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

Zemine gömülü bir borunun dinamik analizi

Zemine gömülü bir borunun dinamik analizi Zemie gömülü bir boruu diamik aalizi Dyamic aalysis of a buried pipe Müge Balkaya, Meti O. Kaya, Ahmet Sağlamer İstabul Tekik Üiversitesi, İstabul, Türkiye ÖZET: Bu çalışmada, zemie gömülü bir boruyu temsil

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ HARMONİK DİSORSİYONUNUN ÖLÇÜM NOKASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ Celal KOCAEPE Oktay ARIKAN Ömer Çağlar ONAR Mehmet UZUNOĞLU Yıldız ekik Üiversitesi Elektrik-Elektroik Fakültesi Elektrik

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

denklemini x=0 adi nokta civarında çözünüz.

denklemini x=0 adi nokta civarında çözünüz. dklmii = adi okta ivarıda çözüüz. Rküra bağıtıı DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN y +y +( /6y= ( dklmi içi = oktaıı düzgü tkil okta olduğuu götri, İdi dklmii köklrii bulu v çözü. P( = = = = tkil okta

Detaylı

GELENEKSEL TÜRK SANAT MÜZİĞİ DERSİNDE UYGULANAN DİZGELİ ÖĞRETİM YÖNTEMİNİN ÖĞRENCİ ERİŞİSİNE VE KALICILIĞA ETKİSİ

GELENEKSEL TÜRK SANAT MÜZİĞİ DERSİNDE UYGULANAN DİZGELİ ÖĞRETİM YÖNTEMİNİN ÖĞRENCİ ERİŞİSİNE VE KALICILIĞA ETKİSİ Mutafa Kemal Üiveritei Soyal Bilimler Etitüü Dergii Mutafa Kemal Uiverity Joural of Social Sciece Ititute Yıl/Year: 2012 Cilt/Volume: 9 Sayı/Iue: 17,. 359-375 GELENEKSEL TÜRK SANAT MÜZİĞİ DERSİNDE UYGULANAN

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım.

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım. 1.. Karışıın özkütleini bulalı. d K 6 v v v d 9 3v (1) 6 kütleli ıvının özkütleini bulalı. O noktaına göre oent alırak şekildeki T niceliğinin büyüklüğünü bulabiliriz. 7P. = P.1 + T.4 Bu ifade yardııyla

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

AKIŞKANLAR. 8. 1 Giriş 8. 2 Basınç, Basıncın Derinlikle Değişimi

AKIŞKANLAR. 8. 1 Giriş 8. 2 Basınç, Basıncın Derinlikle Değişimi 8 AKIŞKANLAR 8. 1 Giriş 8. Baınç, Baıncın Derinlikle Değişimi 8. Archimede Prenibi ve Kaldırma Kuvveti 8. 4 ikozluk 8. 5 Süreklilik Denklemi 8. 6 Yüzeyel Gerilim Akışkan ortam; durgun halde iken veya ideal

Detaylı

GENEL YÜK VEKTÖRLERİ İLE ÇOK MODLU İTME ANALİZİ (GENEL İTME ANALİZİ)

GENEL YÜK VEKTÖRLERİ İLE ÇOK MODLU İTME ANALİZİ (GENEL İTME ANALİZİ) . Türkiye Deprem Mühedisliği ve Sismoloi Koferası - Ekim ODTÜ ANKARA ÖZET: GENEL YÜK VEKTÖRLERİ İLE ÇOK MODLU İTME ANALİZİ (GENEL İTME ANALİZİ) F.S. Alıcı, K. Kaatsız ve H. Sucuoğlu Araştırma Görevlisi,

Detaylı

Gayrimenkul Değerleme Esasları Dönem Deneme Sınavı I

Gayrimenkul Değerleme Esasları Dönem Deneme Sınavı I 1) I. Bia türü II. Bia yaşı III. Bia sııfı IV. İşaat evi V. Yıprama oraı Türkiye de bia metrekare ormal işaat maliyet bedelleri yukarıdakilerde hagilerie göre belirleir? A) Yalız II B) Yalız III C) II

Detaylı

SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI

SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI XIX. ULUSAL MEKANİK KONGRESİ 4-8 Ağustos 5, Karadeiz Tekik Üiversitesi, Trabzo SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI Ciha BAYINDIR Işık

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ T.C. DENİZ HARP OKULU DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ ELEKTRİK VE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI İLETİŞİM BİLİM DALI SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:134-4141 Makie Tekolojileri Elektroik Dergisi 28 (3) 41-48 TEKNOLOJĐK ARAŞTIRMALAR Makale Düşük Sıcak Kayaklı Isı Pompaları Eerji Maliyet Aalizi Özet Murat KAYA Hitit

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

DENEY 5 İkinci Dereceden Sistem

DENEY 5 İkinci Dereceden Sistem DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

DİELEKTRİK ÖZELLİKLER

DİELEKTRİK ÖZELLİKLER 0700 ENEJİ HATLAINDA ÇAPAZLAMA! zun meafeli enerji taşıma hatlarında iletkenler belirli meafelerde (L/) çarazlanarak direğe monte edilirler! Çarazlama yaılmadığı durumlarda: Fazların reaktan ve kaaiteleri

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİ 3

OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİ 3 The Joural of Academic Social Sciece OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜİK EĞİTİMİ 3 ÖET Ece KARŞAL 1 Tüli MALKOÇ 2 Bu çalışmada, Okul öcesi döem işitme egelli çocuklara müzik eğitimi verilmiş

Detaylı

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : -3 : 141-146

Detaylı

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ

GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ İtanbul Ticaret Üniveritei Fen Bilimleri Dergii Yıl: 6 Sayı:12 Güz 2007/2. 67-79 GÜVENİLİR OLMAYAN SİSTEMLER İÇİN ARALIK ÇİZELGELEMESİ PROBLEMİ Deniz TÜRSEL ELİİYİ, Selma GÜRLER ÖZET Bu çalışmada, her

Detaylı

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ Sıra No Parametre 1 Kişisel Soluabilir Tozları Kosatrasyou 2 İşyeri Ortamı

Detaylı

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III GAZİ ÜNİVERSİTESİ MÜHENİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KM 482 Kimya Mühedisliği Laboratuarı III eey No : 2-a eeyi adı : Kesikli istilasyo eeyi amacı : a) Kolodaki basıç kaybıı belirlemek,

Detaylı

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINI ONU ANATII 5. ÜNİTE: DAGAAR ETİNİ e TEST ÇÖZÜERİ 31 5. Üite 1. ou Etkilik C i Çözümleri c. 1. Soruda e dalgalarıı hızı eşit erilmiş. Ayrıca şekil icelediğide m = 4 birim, m = 2 birimdir. Burada;

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ 825 LPG DEPOLAMA TAKLARII GAZ VERME KAPASİTELERİİ İCELEMESİ Fehmi AKGÜ 1. ÖZET Sunulan çalışmada, LPG depolama tanklarının gaz verme kapaitelerinin belirlenmei amacına yönelik zamana bağlı ve ürekli rejim

Detaylı

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ 5. MODEL DENEYLEİ İLE GEMİ DİENİNİ BELİLEME YÖNTEMLEİ Gei projeinin değişik erelerinde iteatik odel deneylerine dayalı yaklaşık yöntelerle gei topla direnci e dolayııyla gei ana akine gücü belirlenektedir.

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı Uygulama /0 Fa ve motor gurubu şasi üzerie cıvatalamış olup şasi de fabrika zemiie dübellerle bağlamak istemektedir. Şasi ve üzerideki toplam kütle 00 kg dır. Motor döme devri =000 dev/dak. Sistemi yere

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1

Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1 İMO eknik Dergi, 2004 3085-3103, Yazı 207 Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1 Yuu CALAYIR * Muhammet KARAON ** ÖZ Bu çalışmada, betonun lineer olmayan

Detaylı

Uçucu Organik Bileşiklerin YapıMalzemelerindeki Difüzyon ve AdsorpsiyonununDinamik Metotla İncelenmesi

Uçucu Organik Bileşiklerin YapıMalzemelerindeki Difüzyon ve AdsorpsiyonununDinamik Metotla İncelenmesi Uçucu Orgaik Bileşikleri YaıMalzemelerideki Difüzyo ve AdsorsiyouuDiamik Metotla İcelemesi *1 Mehmet Kaleder, 2 Şakir Yılmaz ve 2 Cevdet Akosma 1 Fırat Üiversitesi Mühedislik Fakültesi, Biyomühedislik

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı