6.12 Örnekler PROBLEMLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "6.12 Örnekler PROBLEMLER"

Transkript

1 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde Düğüm Kesim Yöntemi Kafes Sistemlerde Düğüm Noktası Yöntemi 6.8 Kafes Sistemlerde Çubuk Değiştirme Yöntemi 6.9 Mesnetleri İle Tam Bağlı Düzlem Kafes Sistemler 6.10 Kritik Kafes Sistemler 6.11 Çerçeveler ve Makinalar 6.1 PROBLEMLER Agustin-Louis CAUCHY ( ) Fransız matematikçi analiz ve ikame grupları kuramı alanındaki çalışmalarıyla ünlüdür ve modern matematiğin önde gelen isimlerindendir. Karmaşık fonksiyonlar kuramının temellerini oluşturdu da dalga yayılması hakkında yazdığı makalesi günümüzde de hidrodinamiğin temel eserlerinden biri olarak kullanılmaktadır. Bugün kullandığımız limit ve süreklilik kavramlarından yararlanarak sonsuz küçükler hesabının ilkelerine açıklık getirdi. Geliştirdiği karmaşık değişkenli fonksiyonlar kuramı, bugün fizikten havacılığa kadar uygulamalı matematiğe dayanan tüm alanlarda kullanılmaktadır. Hata kuramı üstüne de çalışmalarda bulundu ve önemli makaleler yazdı. Optik alanında eserleri mevcuttur. Katı ve tutucu kişiliğiyle tanınan Cauchy, 1830 da X. Charles sürülüp yerine Louise-Philippe tahta çıkarılınca bağlılık yemini etmediği için sürgüne gönderildi ve ona Torino Üniversitesi nde bir fizik kürsüsü kuruldu de bağlılık yemini kaldırılınca, o da Franda daki Politeknik Okulu ndaki kürsüsüne geri döndü.

2 6.1. ÇOK PARÇALI TAŞIYICILAR Geçtiğimiz bölümlerde, yalnız dış kuvvetlerin etkisi altındaki sistemler incelenmişti. Bu bölümde çok sayıda parçadan oluşan kafes sistemlerin, çerçevelerin ve makine parçalarının düzlemde dengesi ele alınacak. Bu sistemlerde mesnet tepkilerinin yanı sıra sistemi oluşturan parçalar arasında da etkileşim kuvvetleri (ya da iç kuvvetler) vardır. Bunları hesaplamak için taşıyıcı sistem önce bağ noktalarından parçalarına ayrılır ve daha sonra her bir parça dengedeki bir rijit cisim olarak ele alınır. İç Kuvvetler: Dış kuvvetlerin etkisi altındaki çok parçalı taşıyıcı sistemin çeşitli parçalarını bir arada tutan kuvvetlere denir. Birbirleriyle karşılıklı etkileşim içinde olan cisimlerde, iç kuvvetler (etki ve tepki kuvvetleri) aynı şiddette, aynı tesir çizgisi üzerinde ama zıt yöndedirler. 6.. KAFES SİSTEMLER Geniş açıklıkları geçmek için eğer dolu gövdeli çubuklar kullanılırsa, büyük kesit alanları nedeniyle taşıyıcı sistem ağırlaşmakla kalmaz aynı zamanda ekonomik olmaktan çıkarlar. Köprü ve çatı makası gibi mühendislik projelerinde sıklıkla kafes sistemlerin tercih edilmesinin altında yatan sebep, kafes sistemlerin diğer yapı elemanlarına göre çok daha hafif taşıyıcılar olmasındadır. Üst ve alt başlık çubukları ile bunların arasına yerleştirilen örgü çubuklarından oluşurlar. Genellikle malzeme olarak ahşap ya da çelik kullanılır. Yalnız imalat sonrasında metal elemanlarda oksitlenmeye karşı, ahşapta ise çürümeye karşı gerekli bakım önlemleri alınmalıdır. Düzenli bakımı yapılmayan taşıyıcılar erken yaşlanır ve taşıma verimleri düşer.

3 144 STATİK Kafes sistemler; doğru eksenli çubukların, mafsallar aracılığı ile birbirlerine bağlandığı ve yüklerin sadece mafsal noktalarına etkidiği kabul edilen çok parçalı taşıyıcı sistemlerdir. Bunları oluşturan çubukların birleşim (mafsal) noktaları Şekil (6.1) de görüldüğü gibi ya kaynaklı, bulonlu ya da perçinli olabilir ve bu mafsal noktalarına da genellikle düğüm noktası adı verilir. Doğru eksenli kafes sistem çubukları sadece basınç ya da çekme kuvveti aktarırlar. Şekil (6.a) da görüldüğü gibi kafes sistemdeki bir bağlantı levhasına perçin, bulon ya da kaynak ile sabitlenmiş çubuk elemanların oluşturduğu bir düğüm noktasında, tüm çubukların eksenleri tek bir noktada kesişiyorsa, burada mafsal koşulu genellikle sağlanır. Böylece Şekil (6.b) deki SCD da görüldüğü gibi, çubuk eksenlerinin kesiştiği düğüm noktası A da mafsal koşullarının sağlandığı varsayılarak, buraya yönelmiş,, ile numaralı çubuklar, birer doğru ile işaret edilir. Aynı düşünceyle Şekil (6.c,d) yi inceleyiniz. Eğer kafes sistemi oluşturan çubukların ağırlıkları hesaba katılacaksa, bu durumda çubuğun ağırlığı yarı yarıya onun her iki yanındaki düğüm noktalarına dış yük gibi uygulanır. Düzlem Kafes Sistemler: Kafes sistemi oluşturan çubukların bir düzlem içerisinde kalması durumudur. Uygulamada sıkça karşılaşılan düzlem kafes sistemlere özellikle çelik köprülerle, çatılarda rastlanır ve kısaca makas olarak adlandırılırlar. Çok bilinen isimleri ile bazı kafes sistemler Çizelge (6.1) ile Çizelge (6.) de görülmektedir. Uzay kafes sistemler Bölüm 8 de kapsamlı bir biçimde ele alınacaklardır. Rijit Çerçeve: Mafsallarla birbirine bağlı üç çubuk, Şekil (6.3a) da görüldüğü gibi, bir üçgen olacak biçimde en basit anlamda bir düzlem kafes olup bir rijit çerçeve oluşturur. Bir rijit çerçevede bütün mafsal noktalarının yapacakları yer değiştirmeler ihmal edilebilecek mertebededir. İçten Bağlılık Durumları: Şekil (6.3b) de görüldüğü gibi birbirlerine mafsallarla bağlı AB, BC, CD ve AD çubuklarında oluşan dikdörtgen biçimli ABCD çerçevesi oynak sistemler için güzel bir örnektir. Bilindiği gibi mafsal noktaları dönmeye açık bağlantı noktalarıdır. O nedenle; eğer çerçeve örneğin BD köşegeni doğrultusunda bir çift F kuvveti ile sıkıştırılırsa, dikdörtgende hemen büyük şekil değiştirmeler ortaya çıkar. Şimdi ABCD çerçevesine Şekil (6.3c) de görüldüğü gibi bir BD çubuğu eklenirse, içten tam bağlılık sağlanır. Rijit çerçevelerin birbirlerine mafsallarla bağlanması sonucu oluşturulan ve kendi içinde rijit davranan kafeslere, içten tam bağlı kafes sistemler denir. Eğer sistemi oluşturan elemanlar birbirlerine göre oynak ise, bu durum kafeste bir iç bağ eksikliğinden kaynaklanır. Eğer bunu ortadan kaldırmak için gerektiğinden

4 150 STATİK ÇİZELGE (6.3): Kafes köprü uygulamaları Yol alt başlıkta Yol üst başlıkta

5 6. DÜZLEMDE TAŞIYICI SİSTEMLER 153 ÇİZELGE (6.6): Düzlem kafes sistemler kullanılarak gerçekleştirilen bazı çatı uygulamaları. ÜÇGEN KAFES SİSTEMLER PARALEL BAŞLIKLI KAFES SİSTEM YAMUK KAFES SİSTEM KAFES ÇERÇEVE SİSTEMLER

6 6. DÜZLEMDE TAŞIYICI SİSTEMLER 159 bulunur. Benzer şekilde şimdi de S çubuğuna dik doğrultuda bir denge denklemi yazarsak, S 1 sin = S =, ( 0 1 ) < < (6.13) elde edilir. Sonuç olarak Şekil (6.13a) daki iki çubuğun birleştiği A mafsal noktasına hiç bir dış kuvvet etkimediğinden bunların ikisi de sıfır 1 çubuğu olur. Eğer A noktasına Şekil (6.13b) deki gibi, 0 < < ve 0 < < ( - ) olacak biçimde, bir P dış kuvveti uygulanırsa o zaman S 1 ¹ 0 ve S ¹ 0 olur ve bu durumda kuvvetler üçgeni de Şekil (6.13b) de görüldüğü gibi çizilir. Şimdi iki özel seçeneği inceleyelim. P kuvveti numaralı çubuk doğrultusunda ise: Bu durumda = 0 olur ve F y = 0 dan S = 0 ve F x = 0 dan S1 = P elde edilir. P kuvveti numaralı çubuk doğrultusunda ise: O zaman =- olur ve S ye dik doğrultuda yazılacak denge denkleminden S 1 = 0 ve S doğrultusunda yazılacak denge denkleminden S = P bulunur. Şimdi aynı doğrultu üzerindeki iki çubuğa dik olacak biçimde üçüncü bir çubuğun birleştirildiği Şekil (6.13c) deki A mafsalını inceleyelim. Burada yatay dengeden kolayca S 1 = S yazılır ve düşey dengeden S 3 = 0 elde edilir. Görüldüğü gibi numaralı çubuk bir sıfır çubuğudur. Eğer S 3 ¹ 0 olsun isteniyorsa, o zaman düğüm noktası A ya düşey bileşeni sıfırdan farklı bir dış kuvvet etkimelidir. Eğrisel Çubuklar: Şekil (6.14) de görüldüğü gibi, iki ucu mafsallı eğrisel AB ve CD çubuklarına uçları dışında üçüncü bir kuvvet etkimediği için, her iki çubukta da uç kuvvetleri, mafsallı iki ucu birleştiren doğru üstünde yer alır.

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir.

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. KAFES SİSTEMLER Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. Özellikle büyük açıklıklı dolu gövdeli sistemler öz ağırlıklarının

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- Giriş 2 Denge denklemlerini, mafsala bağlı elemanlarda oluşan yapıları analiz etmek için kullanacağız. Bu analiz, dengede olan bir yapının

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

ENLEME BAĞLANTILARININ DÜZENLENMESİ

ENLEME BAĞLANTILARININ DÜZENLENMESİ ENLEME BAĞLANTILARININ Çok parçalı basınç çubuklarının teşkilinde kullanılan iki tür bağlantı şekli vardır. Bunlar; DÜZENLENMESİ Çerçeve Bağlantı Kafes Bağlantı Çerçeve bağlantı elemanları, basınç çubuğunu

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun Dolu Gövdeli Kirişler TAŞIYICI SİSTEM TASARIMI 1 Prof Dr Görün Arun 072 ÇELİK YAPILAR Kirişler, Çerçeve Dolu gövdeli kirişler: Hadde mamulü profiller Levhalı yapma en-kesitler Profil ve levhalarla oluşturulmuş

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

ÇELİK PREFABRİK YAPILAR

ÇELİK PREFABRİK YAPILAR ÇELİK PREFABRİK YAPILAR 2. Bölüm Temel, kolon kirişler ve Döşeme 1 1. Çelik Temeller Binaların sabit ve hareketli yüklerini zemine nakletmek üzere inşa edilen temeller, şekillenme ve kullanılan malzemenin

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopasdf

qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopasdf qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopa Dersin Kodu sdfghjklzxcvbnmqwertyuiopasdf ARA SINAV Yazar ghjklzxcvbnmqwertyuiopasdfghj

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 DR. MUSTAFA KUTANİS SLIDE 1 KAFES KÖPRÜLER DR. MUSTAFA KUTANİS SAÜ İNŞ.MÜH. BÖLÜMÜ

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

TEST SORULARI STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd

TEST SORULARI STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd dı /Soyadı : No : İmza: STTİK-MUKVEMET 1. YI İÇİ SINVI 31-10-2013 Örnek Öğrenci No 010030403 abcd Şekildeki kafes sistemde daki bağ kuvvetleri ile 1, 2, 3 numaralı çubuk kuvvetlerini bulunuz. =12(a+c)

Detaylı

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR) BÖLÜM 4 YAPISAL ANALİZ (KAESLER-ÇERÇEVELER-MAKİNALAR) 4.1 Kafesler: Basit Kafes: İnce çubukların uçlarından birleştirilerek luşturulan apıdır. Bileştirme genelde 1. Barak levhalarına pimler ve kanak vasıtası

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Çerçeve ve Makineler

Çerçeve ve Makineler Çerçeve ve Makineler Hedefler Mafsal (pim) ile tutturulmuş çerçeve ve makine elemanlarına etki eden kuvvetlerin analizi. Çerçeve ve Makineler Çok kuvvet elemanı içeren mafsal ile tutturulmuş yapılardır.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

Taşıyıcı Sistem İlkeleri

Taşıyıcı Sistem İlkeleri İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Taşıyıcı Sistem İlkeleri 2015 Bir yapı taşıyıcı sisteminin işlevi, kendisine uygulanan yükleri

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

8. METRAJ VE MALİYET HASAPLARI

8. METRAJ VE MALİYET HASAPLARI 8. METRAJ VE MALİYET HASAPLARI Projesi hazırlanan çelik çatı sisteminin imalatı için gerekli malzeme miktarının belirlenmesi metraj olarak adlandırılır. Ancak çelik eleman boyutlarının standart olması

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun . Döşemeler TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun 07.3 ÇELİK YAPILAR Döşeme, Stabilite Kiriş ve kolonların düktilitesi tümüyle yada kısmi basınç etkisi altındaki elemanlarının genişlik/kalınlık

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ BAÜ MÜH.MİM. FAK. İNŞAAT MÜH. BL. ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI

BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ BAÜ MÜH.MİM. FAK. İNŞAAT MÜH. BL. ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI Yrd.Doç.Dr. Kaan TÜRKER 1.HAFTA (2016) 1 DERS PLANI KONULAR 1. Çelik Çatı Sisteminin Geometrik

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER Yrd. Doç. Dr. Banu Yağcı Kaynaklar G. Kıymaz, İstanbul Kültür Üniversitesi İnşaat Mühendisliği Bölümü Ders Notları, 2009 http://web.sakarya.edu.tr/~cacur/ins/resim/kopruler.htm

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi 3B Kuvvet Momenti Üç Boyutlu Kuvvet Sistemi M = r (vektör) X F (vektör) Her F kuvvetinin uzunluk r vektörünü bul Eğer verilmemişse, F kuvvetini de vektörel ifade et. Uzunluk vektörünü r bulmak için: Uzunlık

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

25. SEM2015 programı ve kullanımı

25. SEM2015 programı ve kullanımı 25. SEM2015 programı ve kullanımı Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 Toplam 100 1 Mukavemet ve Statiğin Önemi 2 Statiğin

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER Yapı Elemanları İnşaat Mühendisliği ile ilgili yapı sistemleri üç ayrı tipteki yapı elemanlarının birleşiminden oluşur. 1)Çubuk Elemanlar: İki boyutu üçüncü boyutuna

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI ÇİZİMLER Vaziyet Planı (1/100 veya 1/50) Detaylar Paftası (1/5 veya 1/2) Yarım Çerçeve (1/10 veya

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÖZET Donatılı gazbeton çatı panellerinin çeşitli çatı taşıyıcı sistemlerinde

Detaylı

ÇATILAR. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi

ÇATILAR. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi ÇATILAR Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi ÇATILAR Bir yapıyı üstünden etkileyen yağmur, kar, rüzgar, sıcak ve soğuk

Detaylı

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 10 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

ÇELİK YAPILAR ÇELİK KOLONLAR ÇELİK KOLONLAR ÇELİK KOLON EN-KESİTLERİ ÇELİK KOLONLAR ÇELİK KOLON EN-KESİTLERİ ÇELİK KOLON EN-KESİTLERİ

ÇELİK YAPILAR ÇELİK KOLONLAR ÇELİK KOLONLAR ÇELİK KOLON EN-KESİTLERİ ÇELİK KOLONLAR ÇELİK KOLON EN-KESİTLERİ ÇELİK KOLON EN-KESİTLERİ ÇEİK KOONAR Kolonlar, döşeme ve kirişlerden gelen yükleri zemine aktaran doğru eksenli düşey yapı elemanlarıdır. ÇEİK YAPIAR 4 ÇEİK KOONAR Bir çelik yapıda kolonlar * üstüste gelmeli, * etkiyen tüm yatay

Detaylı

TEMEL MEKANİK 12. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 12. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 12 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

İSTANBUL - SABİHA GÖKÇEN HAVAALANI DIŞ HATLAR TERMİNAL BİNASI ÇELİK YAPISI

İSTANBUL - SABİHA GÖKÇEN HAVAALANI DIŞ HATLAR TERMİNAL BİNASI ÇELİK YAPISI İSTANBUL - SABİHA GÖKÇEN HAVAALANI DIŞ HATLAR TERMİNAL BİNASI ÇELİK YAPISI Necati ÇELTİKÇİ (*) 1983 yılında, İstanbul un Anadolu yakasında, gelişmiş teknolojiye sahip, bilgisayar ve havacılık tesisilerinin

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

ÇELİK YAPILARDA BİRLEŞİMLER

ÇELİK YAPILARDA BİRLEŞİMLER ÇELİK YAPILARDA BİRLEŞİMLER Çelik yapılarda birleşimlerin kullanılma sebepleri; 1. Farklı tasıyıcı elemanların (kolon-kolon, kolon-kiris,diyagonalkolon, kiris-kiris, alt baslık-üst baslık, dikme-alt baslık

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR HAFTA 01 YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR YAPI STATİĞİ Hafta 01 1 İçindekiler GİRİŞ... 2 YAPI SİSTEMLERİ... 3 YÜKLER... 6 1- ETKİME DURUMLARINA GÖRE YÜKLER... 6 2- ETKİME BİÇİMLERİNE GÖRE YÜKLER...

Detaylı

25. SEM2015 programı kullanımı

25. SEM2015 programı kullanımı 25. SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

ÇELİK PREFABRİK YAPILAR

ÇELİK PREFABRİK YAPILAR ÇELİK PREFABRİK YAPILAR 5. Bölüm Prefabrik Çelik Kirişli Çatılar 6. Bölüm Dairesel Kesitli Çelik Yapılar PREFABRİK ÇELİK KİRİŞLİ ÇATILAR 5. Çelik Kirişli Çatılar Çatılar; çatı kaplaması, mertekler, aşıklar

Detaylı

5. BASINÇ ÇUBUKLARI. Euler bağıntısıyla belirlidir. Bununla ilgili kritik burkulma gerilmesi:

5. BASINÇ ÇUBUKLARI. Euler bağıntısıyla belirlidir. Bununla ilgili kritik burkulma gerilmesi: 5. BASINÇ ÇUBUKLARI Kesit zoru olarak, eksenleri doğrultusunda basınç türü normal kuvvet taşıyan çubuklara basınç çubukları adı verilir. Bu tür çubuklarla, kafes sistemlerde ve yapı kolonlarında karşılaşılır.

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

ÇELİK YAPILAR 2. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

ÇELİK YAPILAR 2. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli ÇELİK YAPILAR 2. Hafta Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Haddelenmiş Çelik Ürünleri Nelerdir? Haddelemeyi tekrar hatırlayacak olursak; Haddeleme

Detaylı

DÜZLEM KAFES SİSTEMLERİNİN ANSYS İLE ANALİZİ

DÜZLEM KAFES SİSTEMLERİNİN ANSYS İLE ANALİZİ T.C. DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DÜZLEM KAFES SİSTEMLERİNİN ANSYS İLE ANALİZİ BİTİRME PROJESİ Çağdaş BAY Projeyi Yöneten Prof. Dr. Mehmet ZOR Aralık, 2014

Detaylı

Makina Dinamiği. Yrd. Doç. Dr. Semih Sezer.

Makina Dinamiği. Yrd. Doç. Dr. Semih Sezer. Yrd. Doç. Dr. Semih Sezer Makina Dinamiği sezer@yildiz.edu.tr Dersin İçeriği : Makinaların dinamiğinde temel kavramlar, Kinematik ve dinamik problemlerin tanımı, Mekanik sistemlerin matematik modeli, Makinalarda

Detaylı

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1-

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- Mekanizma Tekniği Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- 2 Mek. Tek. DERSİN İÇERİĞİ DERSİN AMACI Mekanizma Tekniğinde Ana Kavramlar Eleman Çiftleri Kinematik Zincirler Serbestlik Derecesi Üç Çubuk Mekanizmaları

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

Bölüm 6. Birleşimlere giriş Perçinler Bulonlar

Bölüm 6. Birleşimlere giriş Perçinler Bulonlar Bölüm 6 Birleşimlere giriş Perçinler Bulonlar Birleşimler Birleşim yapma gereği: -Elemanların boyunu uzatmak -Elemanların enkesitini artırmak -Düğüm noktaları oluşturmak -Mesnetleri oluşturmak Birleşim

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

7. STABİLİTE HESAPLARI

7. STABİLİTE HESAPLARI 7. STABİLİTE HESAPLARI Çatı sistemlerinde; Kafes kirişlerin (makasların) montaj aşamasında ve kafes düzlemine dik rüzgar ve deprem etkileri altında, mesnetlerini birleştiren eksen etrafında dönerek devrilmelerini

Detaylı

ÇELĐK PREFABRĐK YAPILAR

ÇELĐK PREFABRĐK YAPILAR ÇELĐK PREFABRĐK YAPILAR 2. Bölüm Temel, kolon kirişler ve Döşeme 1 1. Çelik Temeller Binaların sabit ve hareketli yüklerini zemine nakletmek üzere inşa edilen temeller, şekillenme ve kullanılan malzemenin

Detaylı

YAPI TEKNOLOJİSİ DERS-8 ÇATILAR

YAPI TEKNOLOJİSİ DERS-8 ÇATILAR YAPI TEKNOLOJİSİ DERS-8 ÇATILAR ÇATILAR Bir binanın en üst kısmını teşkil eden, binayı üstten kar, yağmur, rüzgar, soğuk ve sıcak gibi tesirlere karşı koruyan, güzelliğini ve sağlamlığını etkileyen yapı

Detaylı

ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI

ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI REQUIRED DRAWINGS Vaziyet Planı (Site Plan) (1/100 veya 1/50) Detaylar Paftası (Details) (1/5 veya 1/2) Yarım Çerçeve (Half Frame) (1/10 veya 1/5) Vaziyet Planı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ÇELİK YAPILAR. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe

ÇELİK YAPILAR. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe. Çelik Yapıda Cephe ÇELİK YAPILAR Cephe elemanı yatay ve düşey elemanların oluşturduğu forma bağlı olarak rüzgar yüklerini iki yada tek doğrultuda aktarır. Bu, döşemenin düşey yükler altındaki davranışına benzer. 8 1 Çelik

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

ST1453 KULLANIM REHBERİ

ST1453 KULLANIM REHBERİ ST1453 KULLANIM REHBERİ Ahmet ÖZBAYRAK ST1453 v4.0 st1453@yandex.com 1 Program Hakkında St1453 statik analiz sonrasında boyutlandırma ve imalata yönelik hesaplamalar yapar. Yaptığı hesaplamalara ait raporlar

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU FRENLER MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU Frenler 2 / 20 Frenler, sürtünme yüzeyli kavramalarla benzer prensiplere göre çalışan bir makine elemanı grubunu oluştururlar. Şu şekilde

Detaylı

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı Dersin Adı : Yapı Mühendisliğinde Bilgisayar Uygulamaları Koordinatörü : Doç.Dr.Bilge DORAN Öğretim Üyeleri/Elemanları: Dr. Sema NOYAN ALACALI,

Detaylı