SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ"

Transkript

1 SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN ÖĞRETİM ÜYESİ PRO.DR. ERTUĞRUL DURAK DENEYİ YAPTIRAN ÖĞRETİM ELEMANI PRO.DR. ERTUĞRUL DURAK DENEY GRUBU: DENEY TARİHİ : TESLİM TARİHİ :

2 T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK AKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ VİDALARDA OTOBLOKAJ DENEY ÖYÜ DENEY I DENEYİN ADI: Vidalarda Ooblokaj. DENEYİN AMACI: Vidalarda ooblokaj olayıı kavraması TEORİK BİLGİ:. Ooblokaj : Vidaı mukaveme sıırlarıda aşıyacağı yük alıda koumuu bozulmaması, sürüme yüzeyide oluşa kuvveleri vidayı degede uması demekir. Vida yük alıda kedi kedie ilerleme yaparsa Ooblokajsız bir kosrüksiyo a sahip demekir. Vidalarda ooblokaj olayıı kavraabilmesi içi öcelikle vidaları geomerik özellikleri ve eğik düzlem üzeride harekee zorlaa bir cisim üzerie eki ede kuvveleri aalizii yapılması gereklidir. Vidayı aımlaya başlıca özellikler; have, cıvaa çapı ve eğim açısıdır. Şekil 2.2. Cıvaayı belirleye büyüklükler a.have: Silidir çevreside bir am devir yapıldığıda ekseel olarak alıa vida yoludur. Bua göre iki yiv veya iki se arasıdaki mesafedir. b.silidir çapı: Vidaı çaplarıı belirleye büyüklükür. E büyük çap vida diş üsü çapı d, e küçük çap vida diş dibi çapı d 1 ve oralama çap ise diş üsü ve diş dibi çaplarıı arimeik oralaması ola d 2 çapı ile göserilmekedir. c.eğim açısı: Vidaı silidire eğe bir düzlemdeki izdüşümüü yaayla veya dik üçgei hipoeüsüü yaayla yapmış olduğu açıdır. Bu açı diş üsü, diş dibi ve oralama çaplar içi ayrı ayrı olup uygulamada geellikle oralama çap kullaılmakadır. Şekil 1 de görüldüğü gibi: h g ; d g h 1 1 ; d1 g h 2 2 olur. d 2

3 Vidaı geomerik açılımıı bir dik üçge olduğu bilimekedir. Bua eğik düzlem de deir. Cıvaa vidası ile emasa ola ve birbiri üzeride sürüerek ilerleye somu ise eğik düzlem üzeride hareke ede herhagi bir elemaa bezeilebilir. M s momei esiri ile yüklee bağlaı elemaları arasıda Şekil 2..a da görüldüğü gibi kuvveler meydaa gelir. Eğik düzlem üzeride hareke eirile bir elemaı sürümeside meydaa gele kuvveler poligouda; somu sıkma kuvvei ve ö gerilme kuvvei arasıdaki bağıı yazılabilir. Poligodaki kuvvelerde ö sıkma sırasıda meydaa gele ö gerilme kuvvei, somuu sıkmak içi lüzumlu eğesel kuvve, elemalar arasıdaki ormal kuvve, hareke yöü erside sürüme kuvveidir. d 2 y ö x ö ' x d2 /2 a) ö /2 N x /2 b) z Şekil 2 Bağlama sırasıda cıvaada meydaa gele kuvveler Kuvveleri degede olduğu dikkae alıarak düşey kuvveleri dege deklemi yazılırsa: ö ö. cos. si (cos si ) 1 ö (I) cos si şeklide buluur.

4 Yaay kuvveleri dege deklemide:.si cos si cos (II) bu formülde I yerie koyulursa: ö si cos cos si şeklii alır. Pay ve paydaki erimler cos ya bölüüp ve g yazılırsa: ö g g 1 g. g olur. Bu ifade g( ) u rigoomerik açılımı olup: ö g şeklidedir. Somuu çözerke vidalarda hareke yöü değişeceği içi sürüme kuvvei de yö değişirecekir. Çözme kuvveii ayiide sürüme açısı eksi işare alacakır.o halde kare vidalarda çözme kuvvei: ög olacakır. (Kayak: Kurbaoğlu, C., 2006, Makie Elemaları Teori, Kosrüksiyo ve Problemler, Nobel Yayı Dağıım, Akara) DENEYDE KULLANILAN ALETLER: Deeyde üç ade ayı çap ve boylara, farklı havelere sahip çelik vida ve bu vidalar uygu piriç malzemede somu bulumakadır. Vidaları geomerik özellikleri şekil 3. de göserilmekedir. DENEYİN YAPILMASI: Deey başlamada öce vidaı diş başı ve diş dibi çapları ölçülerek oralama çapı hesaplaır. Ayrıca vidaları ağız sayılarıda dikkae alıarak haveleri ölçülür. Vidaya uygu ola somu yerleşirildike sora somuu harekei izleir. Burada üç durum gözleir. 1. Somu kedi ağırlığı ile vida üzeride hareke emekedir. 2. Somu kedi ağırlığı ile vida üzeride hareke ememekedir. Acak üzerie bir mikar yükleme yapıldığıda hareke emekedir. 3. Yükleme yapılsı veya yapılması somu vida üzeride hareke ememekedir.

5 HESAPLAMALAR : Vidaı geomerik ölçüleri göz öüe alıarak her bir vida içi eğim açısı hesaplaır. Yukarıda alaıla (2) durumuda (==arca) durumu söz kousudur ve burada hesaplaabilir. (1) (3) durumudaki vidalarıda eğim açıları hesaplaarak değeri ile kıyaslaır ve ooblokaj şarıı sağlaya eğim açısı ve sürüme açısı ilişkisi ispalamış olur. Hesaplaa ile eorik ( eorik =0.15) ile karşılaşırılır. Hesaplama Tablosu D 1 olu vida 2. olu vida 3 olu vida D 1 D 2 h Deeyi Yorumu :

6 T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK AKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SÜRTÜNME KATSAYISININ BELİRLENMESİ DENEY ÖYÜ DENEY I DENEYİN ADI: İki malzeme arasıdaki sürüme kasayısıı deeysel olarak espii DENEYİN AMACI: Bu deeyde, ayı veya farklı ür malzemeler içi eğik düzlemde sürüme kasayısıı belirlemesi amaçlamışır. Sürümei varlığı birçok gülük uygulamada dezavaaj gibi gözükürke diğer arafa birçok uygulamada da avaaj olarak karşımıza çıkmakadır. Mesela düz bir yüzeyde bir küleyi sürüyerek çekmek ya da imek isediğimizde küle ile yüzey arasıdaki sürüme harekee egel olmaka ve eerjimizi bir kısmıı sürümeyi yemek içi harcamak zoruda kalmakayız. Bezer şekilde birbirie göre sürümeli olarak hareke ede üm yüzeylerde boşa harcaa bu eerji geellikle ısıya döüşerek aılmakadır. Sürümeyi yemek içi harcayacağımız eerjiyi azalmak içi ya sürümeyi azalıcı silidir, bilye ve yağlayıcılar gibi meodlar kullaılmaka ya da birbirie sürüe yüzeyleri malzemeleri sürüme kasayısı düşük ola malzemelerde seçilmekedir. Acak bazı uygulamalarda ise sürümei olması (haa yüksek olması) özellikle isemekedir. Bua e güzel örek aeşi bulumasıdır. Kuru ağaç dallarıı birbirie sürülerek hareke eerjisii ısı eerjisie döüşmesi ve buu soucuda da ara ısı ile dalları uuşması ağaç dalları arasıdaki sürümei var olması ile gerçekleşmişir. Acak bu sürümei değerii belire sürüme kasayısı ölçülebildiği akdirde işimize yarayacakır. Aksi akdirde bilmediğimiz bir şeyi isediğimiz gibi faydamıza kullamamız mümkü olmayacakır. Bu deey de değişik malzemeler arasıdaki sürüme kasayısı belirleemeye çalışacağız. TEORİK BİLGİ Geel olarak emasa ola ve izafi hareke ede iki cismi emas yüzeylerii harekee veya hareke ihimalie karşı göserdikleri direç sürüme olarak arif edilmekedir. Bir cisim diğer bir cisim üzeride kayarke birbirlerie kayma yüzeyie paralel bir kuvve uygulamakadır. Bu kuvve sürüme kuvvei olarak aımlaır ve cisimleri izafi harekeie ers yödedir. İzafi hareke yapa yüzeyler arasıa bir ara elema olarak yağlayıcı madde koulması veya koulmaması durumua göre sürüme kuru, sıır, karışık ve sıvı sürüme olarak aımlamakadır. Sürüme kasayısı boyusuz ve skaler bir değerdir. Sürüme kasayısı iki yüzeyi birbiri üsüde relaif olarak hareke eirmek içi gereke yaal kuvve oraıdır. Sürüme Kasayısıı ekileye fakörler: Malzeme cisi, yapısı, Yüzey kirlemesi, Oksi filmleri, Yağlama, Yüzey düzgülüğü, Nem, Kayma hızı, Sıcaklık Bu deeyde bir külei eğik düzlemdeki kayma öcesi (kayma başlagıcıdaki) dege durumu iceleerek küle üzerideki yerçekimi kuvvei ve sürüme kuvvei ilişkileri kullaılacak ve küle ile eğik düzlem arasıdaki sürüme kasayısıı hesaplaması içi gerekli formüller üreilecekir. Aşağıdaki şekilde görüldüğü gibi eğik düzlemde kayma aıda degede dura bir külei üzeride eğik düzlem boyuca iki kuvve vardır. Bularda birisi külei ağırlığıı düzleme paralel ola bileşei, diğeri ise külei aşağı doğru kaymasıı egelleye ve yöü yukarı doğru ola sürüme kuvveidir. Ayrıca ayı küle üzeride eğik düzleme dik doğruluda iki kuvve daha vardır ve bularda birisi külei ağırlığıı düzleme dik ola bileşei diğeri ise düzlemi küleye uyguladığı epki kuvveidir.

7 Şekil 1. Eğik düzlem ve kuvveleri göserimi s = mg Si θ, s = μn, N = mg Cos θ Dege durumda s= s içi mg Si θ = μ(mg Cos θ) Si θ = μ Cos θ μ = Si θ / Cos θ μ = a θ= h/l DENEY DÜZENEĞİ Deey düzeeği Şekil 2.'de göserilmekedir. Eğik düzlemi eğim açısı, açı skalasıa(2) bağlaılı döe bir elema yardımıyla 0 ile +80 arasıda ayarlaabilmekedir. Eğik düzlemi malzemesi ahadır. Şekil 2. Eğik düzlemde sürüme deey düzeeği Eğik düzlemi uç kısmıda bir makara(4) bulumakadır. Makara, üzeride geçe bir ip yardımıyla kayar ese(3) ve yüklemeleri yapıldığı kaca(5) birbirie bağlamakadır. Düzeeke, iki ade ese mevcuur. Biri eğik düzlem üzerie sabi koula ese diğeri ise kacaya bağlı halaa bağlaa kayar esedir. Deeyde kacaya ağırlık yüklemesi yapılabilmekedir. Bu deeyde aşağıdaki malzemeler arasıdaki sürüme kasayılarıı belirleecekir; Sabi Nese Kayar Nese Çelik- Çelik Çelik Çelik Alümiyum- Çelik Alümiyum Çelik Piriç- Piriç Piriç Piriç Çelik- Taha Çelik Taha DENEYİN YAPILIŞI Deeyi yapılışı sırasıda aşağıdaki işlemleri sırasıyla uygulaması gerekmekedir: Açı skalası yardımıyla eğik düzlem açısı θ= 0 olarak yai yaay olarak ayarlaır. İki farklı malzemede biri eğik düzlem üzerie sabileir. Kayar ese yaay olarak eğik düzlem üzerie yerleşirile malzemei üzerie yerleşirilir.

8 Kayar ese ve boş kacaı bağlı olduğu hala makara üzeride geçe bir ip yardımıyla bağlaır. Kayar ese hareke edee kadar kacaya yük ekleir. θ açısı yavaş yavaş arırılarak bloğu harekee başladığı adaki θ değeri belirleir, abloya yazılır. Deey üç defa ekrarlaır. Her bir ölçüm içi saik sürüme kasayısı μ = Ta θ= h/l ifadeside hesaplaır, abloya yazılır. Bulua μ değerlerii oralaması alıır ve abloya yazılır. Diğer malzemeler arasıdaki sürüme kasayılarıı belirlemesi içi deey ekrarlaır. Bu abloyu Word yapalım. Tabloda bir süu daha ekleyip Sadar sapmaları da hesaplaalım. SONUÇ: Deeyler yapılarak sürüme kasayısıı farklı malzemeler içi farklı olabileceği göserilmişir.

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ. KM 482 Kimya Mühendisliği Laboratuarı III GAZİ ÜNİVERSİTESİ MÜHENİSLİK - MİMARLIK FAKÜLTESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KM 482 Kimya Mühedisliği Laboratuarı III eey No : 2-a eeyi adı : Kesikli istilasyo eeyi amacı : a) Kolodaki basıç kaybıı belirlemek,

Detaylı

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve DĐŞLĐLER Diş Boyuları Taba Kavisi (Fille Radius) Diş başı yüksekliği (Addedum) Taba yüksekliği(dededum) Diş yüksekliği (Addedum +Dededum) Taksima (Circular pich) Diş kalılığı (Tooh Thickess) Dişler arasıdaki

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

REAKTÖRLER V Q. t o ...(1.1)

REAKTÖRLER V Q. t o ...(1.1) REAKTÖRLER İçide kimyasal veya biyljik reaksiyları gerçekleşirildiği aklara veya havuzlara reakör adı verilir Başlıa dör çeşi reakör vardır: Tam Karışımlı Kesikli Reakörler: Reakör dldurulup işlem yapılır

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi Teksil Tekolojileri Elekroik Dergisi Cil: 3, No: 1, 009 (31-37) Elecroic Joural o Texile Techologies Vol: 3, No: 1, 009 (31-37) TEK OLOJĐK ARAŞTIRMALAR www.ekolojikarasirmalar.com e-issn:- Makale (Paper)

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini KIRILMALAR Gülük hayatta çok sık rastladığımız ve gözlemlediğimiz bir olaydır kırılma. Bir su kuyusua baktığımız zama kuyuu dibii daha yakıda görürüz. Çay bardağıdaki kaşığı bardak içideyke kırık gibi

Detaylı

2011 Mayıs. www.guven-kutay.ch KAVRAMALAR TAHRİK TEKNİĞİ. 14-00a. M. Güven KUTAY. www.guven-kutay.ch

2011 Mayıs. www.guven-kutay.ch KAVRAMALAR TAHRİK TEKNİĞİ. 14-00a. M. Güven KUTAY. www.guven-kutay.ch ayıs www.guve-kuay.ch KAVRAALAR TAHRİK TEKNİĞİ 4-a. Güve KUTAY www.guve-kuay.ch DİKKAT: İyi iye, büü dikka ve çabama karşı yalışlar olabilir. Bu edele soucu sorumluluk verecek hesaplarda, ya imalacıı vereceği

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

Q5.1. A. T 1 B. T 2 C. T 3 D. T 1, T 2, ve T 3. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Q5.1. A. T 1 B. T 2 C. T 3 D. T 1, T 2, ve T 3. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Q5.1 Şekilde bir araba motoru zincirlerle asılı durumda dengededir. Buna göre motorun serbest cisim diyagramında gerilme kuvvet yada kuvvetlerinden hangisi yada hangileri dahil edilmelidir? A. T 1 B. T

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Q4.1. Motor. Kablo. Asansör

Q4.1. Motor. Kablo. Asansör Q4.1 Şekilde çelik bir kablo ile yukarı doğru sabi hızla çekilen asansör görülmekedir. Büün sürünmeleri ihmal eiğimizde; Çelik kablonun asansöre uyguladığı kuvve için ne söylenebilir? Kablo Moor v Asansör

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır?

S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır? BSNÇ S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır? - Özdeş küplerden üzerine "bir" tane küp koymak

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

MAKİNE ELEMANLARI - (9.Hafta) VİDALAR -2

MAKİNE ELEMANLARI - (9.Hafta) VİDALAR -2 VİDA HESAPLARI MAKİNE ELEMANLARI - (9.Hafta) VİDALAR -2 A. Ön Yükleme Kuvveti (FÖ) ile Sıkma/Çözme Kuvvetleri (FH) arasındaki İlişki İki malzemeyi birleştirmek için civata ve somun kullanılırsa, somunun

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Basit Makineler Test Çözümleri. Test 1'in Çözümleri

Basit Makineler Test Çözümleri. Test 1'in Çözümleri Basit akineler Test Çözümleri 1 Test 1'in Çözümleri 1. Basit makinelerin içbirisi işten kazanç sağlayamaz. Hatta sürtünmelerden dolayı işten kayıp söz konusudur. I. öncül yanlıştır. Basit makineleri terci

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi BÖLÜM 1 DAİRESEL HAREKET 1. DAİRESEL HAREKET 1.1. Kaı Cisimlerin Dairesel Harekei Açısal Yer Değişim: Bir eksen erafında dönmeke olan bir cismin (eker ezgah mili, volan vb.) dönme ekisi ile bir iş yapılır.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri Politekik Dergisi Joural of Polytechic ilt: 9 Sayı: 4 s.63-69, 006 Vol: 9 No: 4 pp.63-69, 006 Elektrik Eerji Sistemleride Oluşa Harmoikleri Filtrelemeside Pasif Filtre ve Filtreli Kompazasyou Kullaımı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik

SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik (normal) olarak ifade etmiştik. Bu yaklaşım idealize

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. ÖDEV SETİ 4 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. 2) a) 3 kg lık b) 7 kg lık blok iki ip ile şekildeki gibi bağlanıyor, iplerdeki gerilme

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

CİLALI ve PÜRÜZLÜ AÇIK KANAL AKIMLARINDA SÜRTÜNME KATSAYILARININ İNCELENMESİ

CİLALI ve PÜRÜZLÜ AÇIK KANAL AKIMLARINDA SÜRTÜNME KATSAYILARININ İNCELENMESİ İLALI ve PÜRÜZLÜ AÇIK KANAL AKIMLARINDA SÜRTÜNME KATSAYILARININ İNELENMESİ (*) Mehmet Ardıçlıoğlu, (**) Ahmet Bilgil, (*) Özgür Öztürk (*) Erciyes Üiversitesi, İşaat Müh., Böl., Kayseri (**) Niğde Üiversitesi,

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF KONU ANLATIMLI. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ 5 Aış Harekeleri. Ünie 5. Konu (Aış Harekeleri) A nın Çözümleri. a. K cismi bulunduğu konumdan serbes

Detaylı

TEOG 2016 FEN SORULARI FACEBOOK GRUBU

TEOG 2016 FEN SORULARI FACEBOOK GRUBU 1) Calıları kedilerie bezeye yei bireyler meydaa getirmesie üreme deir. Calılarda eşeyli ve eşeysiz olmak üzere iki çeşit üreme görülür. Hücrei yapısıda bulua kalıtsal madde, üreme olayıı e temel kavramıdır.

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

Basit Makineler Test Çözümleri. Test 1'in Çözümleri

Basit Makineler Test Çözümleri. Test 1'in Çözümleri 4 Basit Makineler Test Çözümleri 1 Test 1'in Çözümleri 1. Basit makinelerin içbirisi işten kazanç sağlayamaz. Hatta sürtünmelerden dolayı işten kayıp söz konusudur. I. öncül yanlıştır. Basit makineleri

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Fizik 101-Fizik I 2013-2014 Hareket Kanunları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Kuvvet Kavramı Newton nun Birinci Yasası ve Eylemsizlik

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cismin hareketi ve hareketi doğuran sebepler arasındaki ilişkiyi inceler. Bu deneyde eğik hava masası üzerine kurulmuş Atwood makinesini kullanarak Newton un ikinci

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DURAĞAN OLMAYAN ZAMAN SERİLERİNDE KOİNTEGRASYON VEKTÖRÜNÜN TAHMİNİ ÜZERİNE BİR ÇALIŞMA Yudum BALKAYA İSTATİSTİK ANABİLİM DALI ANKARA 006 Her

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2 T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 016-017 8. SINIF DEĞERLENDİRME SINAVI - 016-017 8. SINIF DEĞERLENDİRME SINAVI - FEN BİLİMLERİ Adı ve Soyadı :... Sııfı

Detaylı

CIVATA BAĞLANTILARI. DEÜ Makina Mühendisliği Böl. Çiçek ÖZES

CIVATA BAĞLANTILARI. DEÜ Makina Mühendisliği Böl. Çiçek ÖZES CIVATA BAĞLANTILARI Cıvata bağlantıları teknikte en çok kullanılan çözülebilen bağlantılardır. Cıvatalar makinaların montajında, yatakların ve makinaların temele tespitinde, boru flanşların, silindir kapaklarının

Detaylı

Örnek 2: Helisel dişli alın çarkları:

Örnek 2: Helisel dişli alın çarkları: Örek : Helisel dişli alı çarkları: Bir blum (kütük) haddeleme tezgahıda kullaılmak amacıyla P=00 kw güç ilete ve çevrim (iletim) oraı i=400 (d/dk) / 800(d/dk) ola evolvet profilli stadard helisel dişli

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Fizik 101-Fizik I

Fizik 101-Fizik I Fizik 101-Fizik I 2013-2014 Dairesel Hareket ve Newton Kanunlarının Diğer Uygulamaları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Newton nun İkinci Yasasının Düzgün Dairesel Harekete Uygulanması Sabit hızla

Detaylı

8. SINIF FEN BİLİMLERİ TESTİ. 1. Aşağıdaki grafikte bir canlının hücre sayısının zamanla değişimi verilmiştir.

8. SINIF FEN BİLİMLERİ TESTİ. 1. Aşağıdaki grafikte bir canlının hücre sayısının zamanla değişimi verilmiştir. FEN BİLİMLERİ TESTİ 1. Aşağıdaki grafikte bir calıı hücre sayısıı zamala değişimi verilmiştir. Hücre sayısı. I. Bölüme II. Bölüme K L M Zama Bu grafiğe göre, I. K zama aralığıda bu calıı hücreleri belli

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

İÇİNDEKİLER

İÇİNDEKİLER İÇİNDEKİLER 27.10.2016 DİNAMİK 01 Giriş ve Temel Prensipler Dinamiğin Prensipleri (Newton Kanunları) 1) Eylemsizlik Prensibi (Dengelenmiş Kuvvetler) 2) Temel Prensip (Dengelenmemiş Kuvvetler) 3) Etki-Tepki

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ

HARMONİK DİSTORSİYONUNUN ÖLÇÜM NOKTASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ HARMONİK DİSORSİYONUNUN ÖLÇÜM NOKASI VE GÜÇ KOMPANZASYONU BAKIMINDAN İNCELENMESİ Celal KOCAEPE Oktay ARIKAN Ömer Çağlar ONAR Mehmet UZUNOĞLU Yıldız ekik Üiversitesi Elektrik-Elektroik Fakültesi Elektrik

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

ÖZET. Basit Makineler. Basit Makine Çeşitleri BASİT MAKİNELER

ÖZET. Basit Makineler. Basit Makine Çeşitleri BASİT MAKİNELER Basit Makineler Basit Makine Nedir? Günlük hayatımızda yaptığımız işleri kolaylaştırmak için bir takım araçlar kullanırız. Bir kuvvetin yönünü, büyüklüğünü ya da bir kuvvetin hem büyüklüğünü hem de yönünü

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TALAŞLI İMALAT LABORATUARI DENEY FÖYÜ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TALAŞLI İMALAT LABORATUARI DENEY FÖYÜ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TALAŞLI İMALAT LABORATUARI DENEY FÖYÜ DENEY ADI İŞLEME HASSASİYETİ (İŞ PARÇASI YÜZEY PÜRÜZLÜLÜĞÜ ÖLÇÜMÜ) DERSİN

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA Yöeim, Yıl: 7, Sayı: 55, Ekim 6 DİNAMİK PORFÖY SEÇİMİ ve BİR UYGULAMA Dr. Mehme HORASANLI İsabul Üiversiesi İşleme Fakülesi Sayısal Yöemler Aabilim Dalı Bu çalışmada, Li ve Ng ( arafıda aaliik çözümü üreile

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı