F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);"

Transkript

1 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca anlatınız. Böl ve Yönet yaklaşımı; büyük boyutlu bir problemin küçük boyuttaki parçalara bölünerek, her bir alt parçanın rekürsif olarak çözümlenmesi (yönetilmesi) ve gerektiğinde bu çözümlerin birleştirilerek esas çözüme ulaşılması ilkesine dayanır. Eğer N boyutlu bir problem N den daha ufak boyuttaki bir alt problem cinsinden ifade edilebiliyorsa, bu alt problemin çözümünde elde edilen sonuç üst problemin çözümlenmesinde kullanılabilir. Böl ve Yönet yaklaşımının 3 aşaması vardır : 1- Böl (divide) : N boyutlu problemin daha ufak boyutta en az bir parçaya ayrılması. 2- Yönet (conquer) : Her bir alt problemin rekürsif olarak çözümlenmesi. 3- Birleştir (combine) : Gerekiyorsa alt parçalardan gelen eldelerin birleştirilmesi. b) Aşağıda sözde-kod biçiminde verilmiş olan algoritma ne iş yapar? Bu algoritmanın rekürans bağıntısını oluşturunuz ve karmaşıklığını bulunuz. Bu algoritmanın yaptığı işi yapan en bilinen yöntem ile bir karşılaştırmasını yapınız. Hangi yöntem daha hızlıdır? F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); Yanda verilen algoritma, son satırda tekrar kendini çağırdığı için rekürsif bir algoritmadır. Sözde-kod incelendiğinde bu algoritmanın parametre olarak verilen bir A dizisinde N ile 0. indis arasında kalan elemanların en büyüğünü bulduğu (ve her rekürsif dallanmada bu bilgiyi K değişkeni üzerinden ilettiği) görülebilir. Her iki if satırındaki işlemler sabit zamanlı Θ(1), son satırdaki rekürsif çağrı ise problemi N boyuttan N-1 boyuta indirerek tekrar çağırdığı için rekürans bağıntısı T(n) = T(n-1) + Θ(1) şeklindedir. Bu rekürans bağıntısının çözümü Θ(n) dir (Toplam n adet iç içe çağrı var; her çağrıda sabit zamanlı iş yapılıyor. n*c = cn) Bir dizinin en büyük elemanını bulma probleminin en bilinen yöntemi, 0-n indisleri arasında çalışan tek bir döngü üzerinde dizi elemanlarını incelemek ve en_büyük ten daha büyük olan dizi elemanını en_büyük içinde saklamaktır. Bu yöntemin karmaşıklığı da Θ(n) dir. Sonuç olarak her iki algoritma da Θ(n) karmaşıklığındadır. Rekürsif yaklaşımdaki her dallanmada adres ve yerel değişken bilgilerinin tutulduğu yığıt kullanımının getirdiği ek maliyet düşünüldüğünde iteratif yaklaşım tercih edilmelidir.

2 2. T(n) = T(n/2) + Θ (n 2 ) rekürans bağıntısını rekürsiyon ağacı (recursion tree) yöntemi ile çözünüz. Bu bağıntı master method teoreminin hangi durumuna uygundur? Bu yöntem ile de çözümü bularak ilk çözümün sağlamasını yapınız. Master Method : T(n) = at(n/b) + f(n) formundaki rekürans bağıntıları için; 1. Herhangi bir ε>0 için f(n) = Ο(n log b a-ε ) ise T(n)=Θ (n log b a ) 2. Herhangi bir k>=0 için f(n) = Θ (n log b a lg k n) ise T(n)= Θ (n log b a lg k+1 n) 3. Herhangi bir c<1 için a.f(n/b)<=c.f(n) sağlanıyorsa ve herhangi bir ε>0 için f(n)=ω( n log b a+ε ) ise T(n) = Θ (f(n)). T(n) cn 2 cn 2 cn 2 cn 2 \ \ \ \ T(n/2) c(n 2 /4) c(n 2 /4) c(n 2 /4) \ \ \ h= log 4 n 2 T(n\4) c(n 2 /16) c(n 2 /16) \... Θ(1) En sağda oluşan rekürans ağacının yüksekliği log 4 n 2 = 2log 4 n dir. Toplam maliyeti bulalım: 2log 4n -1 T(n) = cn 2 + c(n 2 /4) + c(n 2 /16) = cn 2. (1/4) i = cn 2. (1-(1/4) 2log4n / (1-(1/4))) i=0 = cn 2. ((1 (1 / n 2 )) / (3/4)) = cn 2. (4(n 2 1)/3 n 2 ) = c(4n 2-4) / 3 = Θ(n 2 ) olarak bulunur. Master teorem kullanarak çözümü bulmaya çalışalım. a=1, b=2, f(n)= n 2 n log b a = n log 2 1 = n 0 = 1 f(n)= n 2 = Ω(1) olduğundan ve 1.(n/2) 2 <= c.n 2 ifadesi ¼<=c<1 için sağlandığından dolayı 3. durum içindeyiz. Buna göre çözüm T(n) = Θ (f(n)) = Θ (n 2 ) olarak bulunur.

3 3. Quicksort algoritması ile A={13,19,9,5,12,8,7,4,21,2,6,11} dizisi sıralanacaktır. Buna göre algoritmanın içindeki ilk PARTITION işleminin çalıştırılması esnasında dizinin alacağı durumu aşama aşama gösteriniz (her aşamada i ve j indislerinin yer değişimini gösteriniz). PARTITION(A, p, q) x A[p] i p for j p+ 1 to q do if A[j] x then i i+ 1 exchange A[i] A[j] exchange A[p] A[i] return i Quicksort algoritmasının çekirdeğini oluşturan PARTITION bölümünde pivot eleman dizinin diğer elemanları ile karşılaştırılmaktadır. Bu algoritmadak parametresi sırası ile karşılaştırılacak dizi elemanlarının indisini; i parametresi ise pivotun olası güncel konumunu belirlemektedir. Karşılaştırmalar esnasında bulunan her küçük eleman pivotun solunda kalacağı için pivotun konumu, yani i değeri 1 arttırılmakta ve karşılaştırılan eleman yeni konumdaki eleman ile değiştirilmektedir. Buna göre, soruda verilen A dizisi için seçilecek ilk pivot 13 elemanı olacak ve bu elemanı dizinin diğer elemanları ile karşılaştırılacaktır. Karşılaştırılan elemanlar koyu olarak belirtilmiştir. p q

4 4. n elemanlı bir A[1...n] dizisi şu şekilde sıralanabilir : Önce tüm dizinin en küçük elemanı bulunup bu eleman A[1] indisindeki eleman ile yer değiştirilir. Bunun ardından ilk eleman dışında kalan diğer elemanların en küçüğü bulunup bu eleman A[2] indisindeki eleman ile yer değiştirilir. Bu işlem A dizisinin ilk n-1 elemanı için tekrarlandığında dizi sıralanmış olur. Bu sıralama algoritması literatürde seçmeli sıralama (selection sort) algoritması olarak bilinmektedir. a) Bu algoritmaya ilişkin bir sözde kod (pseudo-code) yazınız. b) A={2,4,3,1} dizisinin bu algoritma ile sıralanması esnasında toplam kaç adet karşılaştırma (comparison) ve yer değiştirme (swap) işlemi yapılır? Hesaplayınız. c) Bu algoritmanın asimtotik analizini yapınız (analizde sadece karşılaştırma (comparison) sayılarını dikkate alınız). SELECTION_SORT (A,N) // A[1..N] dizisi for i 1 to N-1 do ek A[i] y i for j i+1 to N do if A[j]<ek then ek=a[j] y j if i!=y then swap (A[i],A[y]) A={2,4,3,1} Dizi Elemanı Karşılaştırma Yer Değiştirme (swap) Dizi Son Durumu 2 3 (2-4, 2-3, 2-1) 1 {1,4,3,2} 4 2 (4-3, 4-2) 1 {1,2,3,4} 3 1 (3-4) 0 {1,2,3,4} Dolayısıyla bu dizinin sıralanması esnasında toplam = 6 karşılaştırma, 1+1=2 yer değiştirme yapılmaktadır. Algoritma iç içe iki döngü içermektedir. Dış döngü N-1 kere, iç döngü ise N-(i+1)+1 kere çalışmaktadır. Eleman karşılaştırma ifadesi bu iki döngünün de içinde yer aldığından, karşılaştırma işlemi sırasıyla N-1, N-2, N-3,... 1 kere yapılır. Yukarıdaki örnek için 4 elemanlı bir dizide sırayla 3,2,1 kere karşılaştırma yapılmıştır (1. eleman 3 kere, 2. eleman 2 kere, 3. eleman 1 kere karşılaştırma işlemi içinde yer almıştır). Sonuç olarak toplam karşılaştırma sayısı 1 den N-1 e kadar olan sayıların toplamıdır. Asimtotik olarak analiz edildiğinde algoritmanın karmaşıklığı N-1 i = ((N)*(N-1))/2 = Θ (n 2 ) olarak bulunur. i=1

5 5. U = {18,26,35,9,64,47,96,36,70} anahtarları slot sayısı m=13 olan boş bir hash tablosuna yerleştirilecektir. Bu yerleştirme işlemini; a) Doğrusal sınama (linear probing) ve b) h 1 (k)=k mod 13, h 2 (k)=1 + (k mod 12) hash fonksiyonlarını kullanan ikili sınama (double probing) yöntemlerini kullanarak ve her aşamada yapılan işlemleri belirterek gerçekleştiriniz. U = {18,26,35,9,64,47,96,36,70} Doğrusal sınama : h(k, i) = ((k mod 13) + i) mod 13 (18 mod 13)+0 = 5 (26 mod 13)+0 = 0 (35 mod 13)+0 = 9 (09 mod 13)+0 = 9 (çakışma) (09 mod 13)+1 = 10 (64 mod 13)+0 = 12 (47 mod 13)+0 = 8 (96 mod 13)+0 = 5 (çakışma) (96 mod 13)+1 = 6 (36 mod 13)+0 = 10 (çakışma) (36 mod 13)+1 = 11 (70 mod 13)+0 = 5 (çakışma) (70 mod 13)+1 = 6 (çakışma) (70 mod 13)+2 = İkili sınama : h(k, i) = (k mod 13 + i.(1+(k mod 12))) mod 13 (18 mod 13)+0 = 5 (26 mod 13)+0 = 0 (35 mod 13)+0 = 9 (09 mod 13)+0 = 9 (çakışma) ((09 mod 13)+1.(1+ (09 mod 12))) mod 13 = 6 (64 mod 13)+0 = 12 (47 mod 13)+0 = 8 (96 mod 13)+0 = 5 (çakışma) ((96 mod 13)+1.(1+ (96 mod 12))) mod 13 = 6 (çakışma) ((96 mod 13)+2.(1+ (96 mod 12))) mod 13 = 7 (36 mod 13)+0 = 10 (70 mod 13)+0 = 5 (çakışma) ((70 mod 13)+1.(1+ (70 mod 12))) mod 13 =

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 1 Algoritmaların Çözümlemesi Araya yerleştirme sıralaması Asimptotik çözümleme Birleştirme sıralaması Yinelemeler Prof. Charles E. Leiserson Dersle ilgili bilgiler

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması September 14, 2005 Copyright 2001-5 Erik D. Demaine and Charles

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

Veri Yapıları. for(i=1;i=0 && ekle<=d[k] ;k ) D[k+1]=D[k]; /* Geriye kaydırılıyor*/

Veri Yapıları. for(i=1;i<n;i++) { ekle=d[i]; for (k=i 1; k>=0 && ekle<=d[k] ;k ) D[k+1]=D[k]; /* Geriye kaydırılıyor*/ Program çalışma hızı; Belirlenen bir problemin çözümü için tasarlanan program kodunun görevini yerine getirmesi için gerekli zaman bilgisini veren bir ifadededir. Bellek Gereksinimi; Programın yürütülmesi

Detaylı

YMT219 VERİ YAPILARI ÖDEV-1

YMT219 VERİ YAPILARI ÖDEV-1 YMT219 VERİ YAPILARI ÖDEV-1 1. İkiliBul yordamı aşağıda verilmiştir. İkiliBul yordamı A dizisi içerisinde 2 tane eşit sayı bulursa true bulamazsa false döndürmektedir. public boolean ikilibul(int[] A){

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Temel Kavramlar Algoritma: Bir problemin çözümünü belirli bir zamanda çözmek için sonlu sayıdaki adım-adım birbirini takip eden

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 S6 S7 Toplam HACETTEPE ÜNİVERSİTESİ 2012-2013 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 25.04.2013 Sınav Süresi:

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Veri Yapıları Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Hash Tabloları ve Fonksiyonları Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing

Detaylı

Algoritmalara Giriş 6.046J/18.401J DERS 2

Algoritmalara Giriş 6.046J/18.401J DERS 2 Algoritmalara Giriş 6.046J/18.401J DERS 2 Asimptotik Simgelem O-, Ω-, ve Θ-simgelemi Yinelemeler Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) Prof. Erik Demaine September

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki, Algoritma Karmaşıklığı ve Büyük O Gösterimi (Big O Notation) Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

Matlab da Dizi ve Matrisler. Mustafa Coşar

Matlab da Dizi ve Matrisler. Mustafa Coşar Matlab da Dizi ve Matrisler Mustafa Coşar MATLAB Değişkenleri Matlab da değişkenler; skaler, dizi(vektör), matris veya metin (string) türünde olabilirler. Örnek olarak: a=1; b=-3.2e3; c=22/5; metin= mustafa

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision)

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) Özyineleme tanımlamaları Özyineleme çağırma Tail özyineleme Nontail özyineleme Dolaylı (Indirect) özyineleme İçiçe (Nested) özyineleme Yrd.Doç.Dr. M. Ali Akcayol Kendi kendisini doğrudan veya dolaylı olarak

Detaylı

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları Giriş 1) Algoritma geliştirme üzerine temel kavramlar 2) Veri modelleri 3) Veri yapıları 4) Algoritma veya yazılım şekilsel gösterimi

Detaylı

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf İçindekiler 1. Giriş... 1 1.2. c++ Programı Yapısı... 2 1.3.Using Direktifi... 5 Bölüm 2. Veri türleri, değişken kavramı, sabit ve değişken bildirimleri ve c++ da kullanımı 7 2.1. Temel veri türleri...

Detaylı

Veri Yapıları Laboratuvarı

Veri Yapıları Laboratuvarı 2013 2014 Veri Yapıları Laboratuvarı Ders Sorumlusu: Yrd. Doç. Dr. Hakan KUTUCU Lab. Sorumlusu: Arş. Gör. Caner ÖZCAN İÇİNDEKİLER Uygulama 1: Diziler ve İşaretçiler, Dinamik Bellek Ayırma... 4 1.1. Amaç

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU Diziler Yrd.Doç.Dr.Bülent ÇOBANOĞLU Dizi (Array) Nedir? Bellekte sürekli yer kaplayan artarda sıralanmış aynı türden verilerin oluşturduğu kümeye dizi (array) denir. Dizi, çok fazla miktardaki tek tip

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BAŞLAMADAN ÖNCE Bu dersi alan öğrencilerin aşağıdaki konuları bildiği

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

Bir dizinin boyutları sabittir ve kullanılmadan önce belirlenmelidir. Dizi boyutunu belirlemek için başka bir değişkende kullanabilirsiniz.

Bir dizinin boyutları sabittir ve kullanılmadan önce belirlenmelidir. Dizi boyutunu belirlemek için başka bir değişkende kullanabilirsiniz. C# da Diziler Diziler için aynı tipteki verilerin tutulduğu bir koleksiyon diyebiliriz. Örneğin integer verinin bir yığın şeklinde tutulması için dizileri kullanırız. C# da diziler referans tipinde değişkenlerdendir.

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2014-2015 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 2. Ara Sınav 09.04.2015 Sınav Süresi: 90 dakika

Detaylı

BPR152-Algoritma ve Programlama II Uygulama -13

BPR152-Algoritma ve Programlama II Uygulama -13 Örnek problemler ve çözümleri /*Klavyeden girilen n ve m aralığındaki (n ve m dahil) 2, 3 ve 5 sayılarına bölünebilen sayıların toplamlarını ve ortalamalarını hesaplayan bir C# programını yazınız. Not-1:

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. DERS İÇERİĞİ VE KAYNAKLAR Veri Yapıları (VY) dersinde görülmesi muhtemel

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR?????????

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR????????? MATLAB 4.DERS return Komutu Yazdığınız MATLAB programını herhangi bir anda (programın normalde sona erdiği noktanın haricinde - early termination) sona erdirmek için return komutunu kullanabilirsiniz.

Detaylı

HSancak Nesne Tabanlı Programlama I Ders Notları

HSancak Nesne Tabanlı Programlama I Ders Notları DİZİLER Bellekte ard arda yer alan aynı türden nesneler kümesine dizi (array) denilir. Bir dizi içerisindeki bütün elemanlara aynı isimle ulaşılır. Yani dizideki bütün elemanların isimleri ortaktır. Elemanlar

Detaylı

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI.

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI. VERİ YAPILARI HASH TABLOLARI Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ muratgok@gmail.com Hash tabloları Hash tablo veri yapısı ile veri arama, ekleme ve silme işlemleri

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 14 Yarışmacı Çözümleme Kendini Düzenleyen Listeler Öne Taşıma - Buluşsal Yaklaşım Öne Taşımanın Yarışmacı Çözümlemesi Prof. Charles E. Leiserson Kendini Düzenleyen

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

JAVADA DİZİ İŞLEMLERİ

JAVADA DİZİ İŞLEMLERİ JAVADA DİZİ İŞLEMLERİ Javada diziler nesnedirler, cdeki gibi hafızada yer kaplayan pointer değillerdir. Javada diziler, cye göre daha güvenilirdir. Dizilerin elemanlarına gelişigüzel değerler atayamazsınız.

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI 2011-12 Bahar Yarıyılı ALGORİTMA VE PROGRAMLAMA BİL 133 5 AKTS Kredisi 1. yıl 1. yarıyıl Lisans Zorunlu 4 saat/hafta

Detaylı

Eln 1002 Bilgisayar Programlama II

Eln 1002 Bilgisayar Programlama II Eln 1002 Bilgisayar Programlama II Recursive Fonksiyonlar Ne ÖĆreneceĆiz? Recursion nedir? Recursive Fonksiyon tanımı Uygulama ve Örnekler Recursive Çözüm Tasarlama Recursion Nedir? Birçok problem, kendisinin

Detaylı

Selection Sort Insertion Sort

Selection Sort Insertion Sort Ozet Selection Sort Selection Sort Insertion Sort Linear Search.. Growth Rates. Implementation. Once dizinin en buyuk element ini bul ve bunu en son pozisyondaki element le degistir, daha sonra en buyuk

Detaylı

İnternet Programcılığı Öğr. Gör. Serkan AKSU PHP de Dizi-Değişkenler, Nesneler. Dizi Oluşturma. Tek Boyutlu Diziler

İnternet Programcılığı Öğr. Gör. Serkan AKSU  PHP de Dizi-Değişkenler, Nesneler. Dizi Oluşturma. Tek Boyutlu Diziler PHP de Dizi-Değişkenler, Nesneler Dizilerle ilgili örneklere geçmeden önce aşağıdaki tabloyu inceleyelim. Tabloda dizi kavramının mantığı açıklanmaktadır. Tablonun tamamını bir dizi olarak düşünün ve bu

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN BLM111 Programlama Dilleri I Hafta 10 Diziler Yrd. Doç. Dr. Caner ÖZCAN Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri girilmesi ve girilen verilerin işlenerek belirli bir sistematiğe

Detaylı

Temel Bilgisayar Programlama

Temel Bilgisayar Programlama Temel Bilgisayar Programlama C Programlamaya Giriş Dr. Tahir Emre Kalaycı 2012 Dr. Tahir Emre Kalaycı () Temel Bilgisayar Programlama 2012 1 / 16 İçerik 1 Geçtiğimiz hafta 2 Yapısal Program Geliştirme

Detaylı

SIRALAMA SORTING. Yrd. Doç. Dr. Aybars UĞUR

SIRALAMA SORTING. Yrd. Doç. Dr. Aybars UĞUR SIRALAMA SORTING Yrd. Doç. Dr. Aybars UĞUR Giriş Sıralama ve arama tekniklerinden pek çok programda yararlanılmaktadır. Günlük yaşamımızda elemanların sıralı tutulduğu listeler yaygın olarak kullanılmaktadır.

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü E-Posta: ogu.ahmet.topcu@gmail.com Web: http://mmf.ogu.edu.tr/atopcu Bilgisayar Destekli Nümerik Analiz Ders notları

Detaylı

5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr

5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II. Öğr.Gör. Hakan YILMAZ. hakanyilmaz@karabuk.edu.tr 5. HAFTA KBT204 İNTERNET PROGRAMCILIĞI II Öğr.Gör. Hakan YILMAZ hakanyilmaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler STRING FONKSİYONU... 3 SPLIT FONKSİYONU...

Detaylı

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( )

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Ders Tanıtım Formu Dersin Adı Öğretim Dili ALGORİTMA VE PROGRAMLAMAYA GİRİŞ Türkçe Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X )

Detaylı

Ders 4: Diziler (Arrays( Arrays) barisgokce.com

Ders 4: Diziler (Arrays( Arrays) barisgokce.com Ders 4: Diziler (Arrays( Arrays) Hazırlayan : Öğr. Grv.. Barış GÖKÇE Đletişim im : www.barisgokce barisgokce.com Diziler Aynı tipteki bir veri gurubunun bir değişken içinde saklanmasıdır. Veriler Hafızada

Detaylı

Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir

Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir DİZİLER (ARRAYS) Değişkenler, içerisinde tek bir değer tutabilen yapılardır. Örneğin haftanın günlerini değişkenlerde tutmak istersek, her bir gün adı için bir değişken tanımlamak gereklidir. string gun1,

Detaylı

Algoritmalara Giriş J/18.401J Ders 15. Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması

Algoritmalara Giriş J/18.401J Ders 15. Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması Algoritmalara Giriş 6.046J/18.401J Ders 15 Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması Prof. Charles E. Leiserson November 7, 2005 Copyright 2001-5 by Erik D. Demaine

Detaylı

Göstericiler (Pointers)

Göstericiler (Pointers) C PROGRAMLAMA Göstericiler (Pointers) C programlama dilinin en güçlü özelliklerinden biridir. Göstericiler, işaretçiler yada pointer adı da verilmektedir. Gösterici (pointer); içerisinde bellek adresi

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 2 hafta Ödev No : 7 ****(ilk 3 soru çıktı üzerinde el

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 1 hafta Ödev No : 5 1. Aşağıdaki programların çıktısı

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 2001

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 2001 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: VERİ YAPILARI VE ALGORİTMALAR Dersin Orjinal Adı: DATA STRUCTURES AND ALGORITHMS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora)

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER Veri Yapıları Yrd. Doç. Dr. Şadi Evren ŞEKER Not: Bu sunumun amacı, İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü, Bilgisayar Mühendisliğine Giriş Dersi için genel amaçlı veri yapıları hakkında

Detaylı

Ruby. Prof.Dr.Timur Karaçay Başkent Üniversitesi

Ruby. Prof.Dr.Timur Karaçay Başkent Üniversitesi Ruby Prof.Dr.Timur Karaçay Başkent Üniversitesi Eylül 2014 2 Aren e ve Altan a ii Önsöz Ruby dilinin yaratıcısı Yukihiro Matsumoto, onu kısaca Matz diye çağırırlar, yarattığı dili şöyle anlatıyor: Ruby

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026 O NOTASYONU Abdullah Gazi Emre DAĞLI 0804.01026 Program Çalışma Hızı ve Bellek Gereksinimi Programın çalışma hızı karmaşıklıkla ifade edilir; bu kavram zaman birimiyle ifade edilmeyip doğrudan işlem adedi

Detaylı

Chapter 8. Komut düzeyi kontrol yapıları ISBN

Chapter 8. Komut düzeyi kontrol yapıları ISBN Chapter 8 Komut düzeyi kontrol yapıları ISBN 0-321-49362-1 8. bölüm konuları Giriş Seçme komutları Tekrarlayan komutlar Şartsız dallanma Korumalı komutlar Sonuç Tercüme edip geliştiren: Doç. Dr. Zeki Bayram,

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

-A Grubu- MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı

-A Grubu- MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı KOCAELİ ÜNİVERSİTESİ 14.10.2016 MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı Öğretim Üyesi: Prof. Dr. Hasan OCAK Sınav Süresi: 80 dakika. Her

Detaylı

Doğu Akdeniz Üniversitesi Bilgisayar Mühendisliği Bölümü. BLGM 318 Ara Sınavı 2012 2013 Đlkbahar Dönemi 13 Nisan 2013. Ad, Soyad Öğrenci No.

Doğu Akdeniz Üniversitesi Bilgisayar Mühendisliği Bölümü. BLGM 318 Ara Sınavı 2012 2013 Đlkbahar Dönemi 13 Nisan 2013. Ad, Soyad Öğrenci No. Doğu Akdeniz Üniversitesi Bilgisayar Mühendisliği Bölümü BLGM 318 Ara Sınavı 2012 2013 Đlkbahar Dönemi 13 Nisan 2013 Ad, Soyad Öğrenci No. : : Öğretim Üyesi: Doç. Dr. Zeki BAYRAM Süre: 100 dakika Talimatlar:

Detaylı

Aktivite 7. En hafif ve en ağır Sıralama Algoritmaları

Aktivite 7. En hafif ve en ağır Sıralama Algoritmaları Aktivite 7 En hafif ve en ağır Sıralama Algoritmaları Özet Bilgisayarlar sıklıkla bir takım listeleri sıralamak amaçlı kullanılır. Örneğin, isimleri alfabetik sıraya koymak, randevuları tarih sırasına

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

ALGORİTMA İ VE PROGRAMLAMA

ALGORİTMA İ VE PROGRAMLAMA ALGORİTMA İ VE PROGRAMLAMA II Öğr.Gör.Erdal GÜVENOĞLU Hafta 2 Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ 2 Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek

Detaylı

Telefon Rehberi Uygulaması

Telefon Rehberi Uygulaması Sayfa1 Telefon Rehberi Uygulaması Uygulama, temel düzeyde, telefon rehberi üzerinedir. Kullanıcı, telefon rehberine eklediği her bir kayıt içi ad, soyad, ev telefonu ve üç adet cep telefonu bilgisi girebilmektedir.

Detaylı

Quick Sort Algoritması (Hızlı Sıralama Algoritması)

Quick Sort Algoritması (Hızlı Sıralama Algoritması) Quick Sort Algoritması (Hızlı Sıralama Algoritması) Quick Sort (Hızlı Sıralama) algoritması C.A.R.Hoare tarafından bulunan etkin bir sıralama yöntemidir. Siyaset biliminde çok kullanılan böl ve yönet stratejisine

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER Dizi, aynı tipteki verilere tek bir isimle erişmek için kullanılan bir kümedir. Bir dizi bildirildikten sonra, dizinin bütün elemanları bellekte peşpeşe

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

ÖRNEK 1: Verilen iki sayının toplamının bulunmasının algoritması aşağıdaki gibi yazılır:

ÖRNEK 1: Verilen iki sayının toplamının bulunmasının algoritması aşağıdaki gibi yazılır: ALGORİTMANIN HAZIRLANMASI, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade edilir.

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

AĞAÇLAR. Doç. Dr. Aybars UĞUR

AĞAÇLAR. Doç. Dr. Aybars UĞUR AĞAÇLAR TREES Doç. Dr. Aybars UĞUR Giriş Bağlı listeler, yığıtlar ve kuyruklar doğrusal (linear) veri yapılarıdır. Ağaçlar ise doğrusal olmayan belirli niteliklere sahip iki boyutlu veri yapılarıdır (Şekil

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA GİRİŞ Bilgisayarların önemli bir kullanım amacı, veri ve bilgilerin kullanılarak var olan belirli bir problemin çözülmeye çalışılmasıdır. Bunun için, bilgisayarlar

Detaylı