Çizge teorisi. 1736, Euler, Königsberg Köprüleri problemini çözdü

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Çizge teorisi. 1736, Euler, Königsberg Köprüleri problemini çözdü"

Transkript

1 Çizge Algoritmaları

2 Çizge teorisi 1736, Euler, Königsberg Köprüleri problemini çözdü

3 Königsberg Köprüleri Problemi C A D B

4 Çizge örneği 4 öğrenci: A, B, C, D 4 iş: FF, SC, W, BS FF SC W BS A B C D Soru:Tüm öğrenciler arzu ettikleri bir işe girebilirler mi? Cevap: Hayır Ch1-4

5 Çizge tanımı G çizgesi (V,E) ikilisinden oluşmuştur. Burada V(G) boş olmayan sonlu bir kümedir (elemanlarına köşe denir) E(G) ise V(G) kümesinde tanımlı bir bağıntıdır ( elemanlarına eğer varsa kiriş denir). V(G) : G nin köşeler kümesi E(G) : kirişler kümesi Kiriş {u, v} = {v, u} = uv (veya vu) G yönlü ise (digraf denir) Ch1-5

6 Örnek G=(V,E) olsun V={u, v, w, x, y, z} E={{u,v}, {u,w}, {w,x}, {x,y}, {x,z}} E={uv, uw, wx, xy, xz} G diagram u v w z x y Ch1-6

7 Komşu ve Bağlı u, v : G nin köşeleri u e v u ve v köşeleri G de komşudur eğer if uv E(G) ise ( u v ye ve v u ya komşudur) e=uv (e u ve v yi birleştiriyor) (e u ile baülıdır, e v ile bağlıdır) Ch1-7

8 Çizge çeşitleri döngü Katlı kiriş, parallel kiriş Yönsüz çizge: (basit) çizge: döngü ( ), katlı kiriş ( ) Katlı çizge: döngü ( ), katlı kiriş ( ) Pseudograph: döngü ( ), katlı kiriş ( ) Yönlü çizge: Yönlü çizge: döngü ( ), katlı kiriş ( ) Yönlü katlı çizge : döngü ( ), katlı kiriş ( ) döngü Katlı kiriş değil Katlı kiriş Ch1-8

9 Mertebe(order) ve boyut(size) G çizgesinin köşe sayısına çizgenin mertebesi denir ( V(G) ile gösterilir). Kirişlerin sayısına boyut ( E(G) ile gösterilir ). Önerme 1: Eğer V(G) = p ve E(G) = q ise Çizgenin mertebesi p ve boyutu q ise (p, q) çizgesi denir p q 2 Ch1-9

10 Çizgelerin uygulanması Ali ve Ahmet Ayşe ve Fatma ile tanışıyorlar. Mehmetle Ahmet ve Fatma tanışıyorlar. Tanışlık çizgesi: Ali Ahmet Mehmet Ayşe Fatma Ch1-10

11 Köşelerin derecesi Tanım. G çizgesinin v köşesi için N(v) = { u V(G) vu E(G) } kümesine bu köşenin komşuluğu denir. v köşesinin derecesi deg(v) = N(v) sayısına denir u x v w y N(u) = {x, w, v}, N(y)={ } deg(u) = 3, deg(y) =0 Ch1-11

12 Not Eğer V(G) = p ise 0 deg(v) p-1, v V(G) dir. deg(v) = 0 ise v köşesine tecrit edilmiş köşe denir. v ye tek köşe denir eğer deg(v) tekse. v ye çift köşe denir eğer deg(v) çiftse. Ch1-12

13 El sıkışma teoremi Theorem G bir çizge ise, v V(G) deg( v) E(G) 2 Örnek u 2 3 v v V(G) deg( v) 8 x 1 w 2 E( G) 4 Ch1-13

14 El sıkışma teoremi Özellik Her çizgenin tek köşelerinin sayısı çift sayıdır. ispat. Eğer tek köşelerin sayısı tek sayıda olsaydı, çizgenin toplam derecesi tek olurdu. Ch1-14

15 Düzgün çizge Tanım. G çizgesinin her köşesinin derecesi r ise G çizgesine r-düzgün çizge denir. G çizgesi bir r sayısı için düzgünse bu çizgeye düzgün çizge denir Örnek Not. 1-düzgün veya mertebesi 5 olan 3-düzgün çizge yoktur (Özellik) 2-düzgün Ch1-15

16 Tümleyen Tanım. G çizgesinin tümleyeni eğer V(G) = V(G) ve uv E(G) eğer uv E(G). G çizgesidir u v u v G G w x w x Ch1-16

17 Derece uygulaması Soru: n kişi var (n 2) Bu kişiler arasından hangi iki kişiyi alırsak alalım, bu kişilerin tanıdıkları kişi sayıları bir birinden farklıdır. Bu mümkün mü? ( A B yi tanıyorsa, B de A yı tanıyor) Ch1-17

18 Örnek 1 Mertebesi n 2 olan çizgenin dereceleri bir birine eşit olan en az 2 köşesinin olduğunu gösteriniz. (ipucu. Önceki sayfadaki problem.) ispat. deg(x) = 0 ve deg(y) = n-1 olacak biçimde x ve y köşeleri olmalıdır bu da olamaz Ch1-18

19 Örnek 2. G çizgesinin mertebesi 14 ve boyutu 25 tir. Köşelerinin derecesi 3 veya 5 tir. Bu çizgenin 3 dereceli kaç köşesi vardır? çözüm. x tane köşenin derecesi 3 olsun, 14-x köşenin derecesi 5 olur. E(G) =25 dereceler toplamı=50 3x + 5(14-x) = 50 x = 10 Ch1-19

20 Örnek 3. G çizgesinin mertebesi 7 ve boyutu 10 dur. 6 köşenin derecesi a ve bir köşenin derecesi b dir. b kaçtır? sol. 6a + b = 20 (a, b) = (0, 20) ( ) (1, 14) ( ) (2, 8) ( ) (3, 2) ( ) a=3, b=2. Ch1-20

21 1.3 Isomorf(denk) çizgeler G 1 G 2 v 1 v 2 u 1 u 3 u 4 u 5 v 3 v 4 v 5 u 2 v 2 G 1 ve G 2 aynıdır (köşelerin yerlerini değiştirdikten sonra). Ch1-21

22 Isomorf (denk çizgeler) Tanım. Eğer V(G 1 ) kümesinden V(G 2 ) kümesine öyle bir 1-1 ve örten fonksiyonu varsa ve uv E(G 1 ) ancak ve ancak (u) (v) E(G 2 ) koşulu sağlanıyorsa G 1 ve G 2 çizgeleri izomorfdur denir(g 1 G 2 ile gösterilir) fonksiyonuna izomorfizm denir. Önceki sayfada (v i ) = u i her i için Ch1-22

23 Tanım. Mertebesi 1 olan çizgeye önemsiz çizge denir Örnek 4 Mertebesi 6 ve boyutu 9 olan ve izomorf olmayan 2 tane 3-düzgün çizge bulunuz. Sol. G 1 G 2 Üçgen var Üçgen yok Ch1-23

24 Örnek 5 Aşağıdaki G1 ve G2 çizgelerinin izomorf olup olmadıklarını araştırınız. G 1 G 2 Üçgensiz Cevap: hayır Üçgen var Ch1-24

25 1.4 Altçizgeler Tanım. Eğer V(H) V(G) ve E(H) E(G) ise H çizgesine G çizgesinin altçizgesi denir ( H G) Örnek v w v w v w u x y x y x y G H G F G Ch1-25

26 Üretilmiş Altçizge Tanım. S V(G), S olsun. G nin köşeleri S olan en büyük alt çizgesine s den üretilmiş alt çizge denir( <S> ile gösterilir) G u v x y w H x v w y H G nin üretilmiş altçizgesi değil H {xw} Ch1-26

27 Köşelerin silinmesi Tanım.S V(G) olsun. G-S = <V(G)-S> olarak tanımlanır Eğer S={v} ise G-v yazılır. G v w G-S v w u S={x,u} ise u x y x y Ch1-27

28 Kiriş üretilmiş alt çizge Tanım. X E(G), X olsun. X den üretilmiş alt çizge, G nin kirişleri X olan en küçük alt çizgesidir ( <X> ile gösterilir) G v w <X> v w u Let X={uv,vw} u x y Ch1-28

29 Tanım. H G olmak üzere eğer V(H) = V(G) ise H a örten altçizge denir. Tanım. H = G + {uv, uw} ifadesinin anlamı E(H) = E(G) {uv, uw}, burada uv, uw E(G). Örnek 6 Eğer H=<E(G)> ise H=<V(G)> olur mu? Hayır G v u w H v w Ch1-29

30 Örnek G =(p, q) çizge olsun. G nin kaç tane farklı kiriş üretilmiş alt çizgesi vardır? Not. Kiriş üretilmiş alt çizge cevap. 2 q -1 ( X E(G) X, 2 q -1 X ) Ch1-30

31 Dereceler dizisi Tanım. G=(V, E), V={v 1, v 2,, v p } olsun. s: deg(v 1 ), deg(v 2 ),, deg(v p ) dizisine G nin dereceler dizisi denir (Genelliği bozmadan, s artmayan olsun. Bu durumda s tek olarak belirlenir) G 3 2 s: 3, 3, 2, 1, 1, minimum derece : d(g) 3 1 maximum derece : D(G) Ch1-31

32 Not Eğer d 1, d 2,, d p bir çizgenin dereceler dizisi ise 0 d i p-1 i. ve p çifttir. i 1 s: d 1, d 2,, d p tam sayılar dizisi ve 0 d i p-1 i, ve p d i ise i 1 s in dereceler dizisi olduğunun kanıtı yoktur. d i örnek. s: 5, 5, 3, 2, 1, 0 ( p-1 ve 0 aynı zamanda olamazlar) Daha fazlası, d 1 p imkansızdır. ) Ch1-32

33 Tanım. Negatif olmayan tam sayılar dizisi verilmiş olsun. Eğer dereceleri bu dizinin elemanlarına eşit olan bir çizge varsa bu diziye grafşksel dizi denir Theorem 2 (Havel-Hakimi) s dizisi: d 1, d 2,, d p, burada d i N, i. olsun. t dizisi : d - 1, d - 3 1,, d - d 1 1, dd 2, dd 3,, d Olsun. s in grafikseldir amcak be ancak t graphieal. p Ch1-33

34 Proof of Thm 1.2: ( ) If s d - 1, d ,, d - 1 : d 1 1, dd 2, dd 3,, d p is graphical graph G 1 s.t. s 1 is the degree sequence of G 1 d 1 vertices G 1 d 2-1 d 3-1 v 2 v 3 v d1 +1 v d1 +2 d d d d1 +2 d p v p d 2 d 3 d d1 +1 d d1 +2 d p G v 2 v 3 v d1 +1 v d1 +2 v p v 1 s : d 1, d 2,, d p is graphical. Ch1-34

35 Proof of Thm 1.2: (continued) ( ) If s : d 1, d 2,, d p is graphical graph G s.t. s is the degree sequence of G with deg(v i ) = d i for 1 i p, and deg( w) w N ( v 1 ) is maximum. Claim: { v 1 v 2, v 1 v 3,, v 1 v d1 +1} E(G) i.e., d 1 d 2 d 3 d d1 +1 d d1 +2 d p v p G v 1 v 2 v 3 v d1 +1 v d1 +2 : : If the claim is true, then G-v 1 is a graph with degree sequence s 1 s 1 is graphical. Ch1-35

36 Claim: { v 1 v 2, v 1 v 3,, v 1 v d1 +1} E(G) Proof: If not, there must be two vertices v j and v k (j < k) with d j > d k s.t. v 1 v k E(G) but v 1 v j E(G). G v 1 v j v k v n Since d j > d k, v n V(G) s.t. v j v n E(G), v k v n E(G). Let G 2 = G - {v 1 v k, v j v n } + {v 1 v j, v k v n } G 2 has degree seq s but larger deg( w) w N ( v 1 ), Ch1-36

37 Algorithm s: d 1, d 2,, d p sequence of integers To determine whether s is graphical: (1) If d i =0, i, then s is graphical. If d i <0 for some i, then s is not graphical. Otherwise, go to (2). (2) Reorder s to a nonincreasing sequence if necessary. (3) Let s = s 1, (s 1 Thm 1.2), return to (1). Ch1-37

38 Example 1 s: 4, 4, 3, 3, 2, 2 s 1 : 3, 2, 2, 1, 2 (delete the first 4) s 1 : 3, 2, 2, 2, 1 (reorder) s 2 : 1, 1, 1, 1 (delete 3) s 3 : 0, 1, 1 (delete the first 1) s 3 : 1, 1, 0 (reorder) s 4 : 0, 0 (delete the first 1) s is graphical Ch1-38

39 Draw the graph s: 4, 4, 3, 3, 2, 2 s1 : 3, 2, 2, 1, 2 s1: 3, 2, 2, 2, 1 s2: 1, 1, 1, 1 s3 : 0, 1, 1 s3: 1, 1, 0 s4: 0, 0 s is graphical G Ch1-39

40 Example 2 s: 5, 4, 3, 2, 1, 1 s 1 : 3, 2, 1, 0, 0 (delete 5) s 2 : 1, 0, -1, 0 (delete 3) s is not graphical Ch1-40

41 1.6 Connected graphs Definition. A walk in a graph G is an alternating sequence W: v 0, e 1, v 1, e 2, v 2,, v n-1, e n, v n (n 0) of vertices and edges, where e i =v i-1 v i, i. (W is also called a v 0 -v n walk) W is said to have length n. A trail is a walk without repeated edges. A path is a walk without repeated vertices. G u v x y w walk: x, w, v, x, w trail: x, w, v, x, y path: x, w, v Ch1-41

42 Theorem 1.3 Every u-v walk in a graph contains a u-v path. Definition (1) A cycle is a walk v 0, v 1, v 2,, v n-1, v n in which n 3, v 0 = v n, and v 1, v 2,, v n-1, v n are distinct. (n-cycle) (2) A u-v walk is closed if u=v. (closed walk) (3) A nontrivial closed trail is called a circuit. Ch1-42

43 Definition (1) Let u,v V(G), u is connected to v if u-v path. (2) G is connected if u is connected to v u,v V(G), otherwise, G is called disconnected. (3) A subgraph H of G is a component of G if H is a maximal connected subgraph of G. (4) The number of components of G is denoted by k(g). Note. is connected to is an equivalence relation Ch1-43

44 1.7 Cut Vertices and Bridges Definition A vertex v in a graph G is called a cutvertex if k(g - v) > k(g). So v is a cut-vertex in a connected graph G if G - v is disconnected. Ch1-44

45 e.g. v 1 v 2 G : v 3 cut-vertex: v 3, v 5 v 4 v 5 cut-edge: v 5 v 6 v 6 Ch1-45

46 Definition An edge e in a graph G is called a bridge (cut-edge) if k(g - e) > k(g). e.g. The graph in previous page: v 5 v 6 is a bridge. Note. (1) if v is a cut-vertex of a connected graph G, then k(g - v) 2 (2)If e is a bridge of a connected graph G, then k(g - e) =2 Ch1-46

47 Theorem 1.4 An edge e of a connected graph G is a bridge iff e does not lie on a cycle of G. Ch1-47

48 1.9 Digraphs Definition: A digraph (or directed graph) D is a finite, nonempty set V(D) of vertices and a set E(D) of ordered pairs of distinct vertices. The elements of E(D) are called arcs. e.g. u D : v w E(D) ={(v,u),(u,w), (v,w),(x,w),(w,x)} x Ch1-48

49 Definition: The underlying graph of a diagraph D: (Note: becomes w ) Definition 3: u v u is adjacent to v v is adjacent from u (u,v) is incident from u and incident to v. Ch1-49

50 Definition 4: v outdegree of v : od v (textbook), deg + (v) v indegree of v : id v, deg - (v) Thm 1.7: Let D be a digraph, then v V ( D) deg ( v) deg v V ( D) - ( v) E( D) Many properties are similar with simple graphs, but the length of a cycle can be 2. Ch1-50

51 Definition: semiwalk : W: e 1 e 2 e 3 e 4 v 1 v 3 v n (e i = (v i-1,v i ) or (v i,v i-1 ) ) Definition: Two vertices u and v in a digraph D are connected if D contains a u-v semiwalk. Ch1-51

52 Definition: 1 A diagraph D is connected if every two vertices of D are connected. weakly connected. 2 A diagraph is unilaterally connected if for every two distinct vertices u and v there is a u-v path or a v-u path. 3 A diagraph is strongly connected if for every two distinct vertices u and v there is a u-v path and a v-u path. Definition: G is symmetric if G is asymmetric if v u v u Ch1-52

53 Definition: multidigraph : allowed pseudodigraph: allowed and Definition: A digraph D in which either is called a tournament. v or (not both) u u,v V(D) Ch1-53

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Graph (Çizge) Yük. Müh. Köksal GÜNDOĞDU 2 Graph (Çizge) Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan

Detaylı

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10 100 Score:

Detaylı

köşe (vertex) kenar (edg d e)

köşe (vertex) kenar (edg d e) BÖLÜM 7 köşe (vertex) kenar (edge) Esk den Ank ya bir yol (path) Tanım 7.1.1: Bir G çizgesi (ya da yönsüz çizgesi) köşelerden oluşan bir V kümesinden ve kenarlardan oluşan bir E kümesinden oluşur. Herbir

Detaylı

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 11 Bu bölümde, Graph (Çizge - Graf) Terminoloji Çizge Kullanım

Detaylı

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 GÜZ Çizgeler Yollar ve Çevrimler Çizge Olarak Modelleme Çizge Olarak Modelleme Yönlü Çizge Kenar - Köşe 2 / 90 Çizgeler Yollar ve Çevrimler Çizge Olarak

Detaylı

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam - ANSWERS Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10

Detaylı

GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi VERİ YAPILARI. Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1

GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi VERİ YAPILARI. Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk

Detaylı

Graflar - Çizgeler. Ders 9. Graflar ve Tanımlar

Graflar - Çizgeler. Ders 9. Graflar ve Tanımlar Graflar - Çizgeler Ders 9 9-1 Graflar ve Tanımlar Bir grafın ne olduğunu açıklamadan önce belki de ne olmadığını söylemek daha iyi olabilir. Bu bölümde kullanılan graf bir fonksiyonun grafiği değildir.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Çizgeler Çizge Tanım Çeşitleri Çizge Üzerinde Arama Önce derinliğine

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Matematik Mühendisliği - Mesleki İngilizce

Matematik Mühendisliği - Mesleki İngilizce Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir

Detaylı

Graflarda Derece Bağlantılık İndeksi ve Temel İşlemlerde İncelenmesi (The Degree Connection Index of Graphs and research on basic operations)

Graflarda Derece Bağlantılık İndeksi ve Temel İşlemlerde İncelenmesi (The Degree Connection Index of Graphs and research on basic operations) Graflarda Derece Bağlantılık İndeksi ve Temel İşlemlerde İncelenmesi (The Degree Connection Index of Graphs and research on basic operations) * 1 Mehmet Umit GURSOY ve 1 Pinar DUNDAR 1 Ege Üniversitesi,

Detaylı

GRAFLAR (ÇİZGELER) karşılık gelen başka bir kenar yoktur. Sonuç olarak, bir basit grafta uv, köşe

GRAFLAR (ÇİZGELER) karşılık gelen başka bir kenar yoktur. Sonuç olarak, bir basit grafta uv, köşe 1 GRAFLAR (ÇİZGELER) 1. GRAFLAR VE GRAF MODELLERİ Tanım: Bir G=(V,E) grafı, boş olmayan köşeler (veya düğümler) kümesi V ve kenarlar kümesi E den meydana gelir. Her kenar kendisi ile bağlantılı 1 veya

Detaylı

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir.

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir. BÖLÜM 3 Karakter Dizgileriil i Tanım 3.1.1 Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki öğelerden oluşan bir sonlu dizidir. Hiç bir öğesi olmayan bir karakter dizgisine boş karakter

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir !"#$ %& '()*' ' #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir b L, z L / #* ) {red, blue, red} ile {red, blue} aynıdır {3, 1, 9}, {9, 1, 3} ve {3, 9, 1} aynıdır / 0 Bir elemana sahip

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü

Detaylı

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER MAT3 AYRIK MATEMATİK DERSİ.ARA SINAVI 18.1.009 ÇÖZÜMLER 1. G çizgesinin silindiğinde kalan çizge tek parça olacak şekildeki kenarlarını birer birer silelim (G yoldan farklı olduğundan en az bir böyle bir

Detaylı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat İLHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,7060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

Leyla Bugay Haziran, 2012

Leyla Bugay Haziran, 2012 Sonlu Tekil Dönüşüm Yarıgruplarının Doğuray Kümeleri ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Haziran, 2012 Yarıgrup Teorisi Nedir? Yarıgrup terimi ilk olarak 1904 yılında Monsieur l

Detaylı

SIERPINSKI ÇİZGELERİN OYUN KROMATİK VE OYUN RENK SAYILARI GAME CHROMATIC NUMBER AND GAME COLORING NUMBER OF SIERPINSKI GRAPHS

SIERPINSKI ÇİZGELERİN OYUN KROMATİK VE OYUN RENK SAYILARI GAME CHROMATIC NUMBER AND GAME COLORING NUMBER OF SIERPINSKI GRAPHS Anadolu Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler Anadolu University Journal of Science and Technology B- Theoretical Sciences 2016 - Cilt: 4 Sayı: 2 Sayfa: 91-98 DOI: 10.20290/btdb.53177

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

xy, de iki polinom verildiğinde bunların

xy, de iki polinom verildiğinde bunların İKİ RANKLI SERBEST NILPOTENT LIE CEBİRLERİNDE İÇ-OTO-DENKLİK * İnner-Auto-Equivalene for Free Nilpotent Lie Algebras of Rank Two Cennet ESKAL Matematik Anabilim Dalı Ahmet TEMİZYÜREK Matematik Anabilim

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS Sampling from a Population Örnek: 2, 4, 6, 6, 7, 8 say lar ndan oluşan bir populasyonumuz olsun Bu say lardan 3 elemanl bir örneklem (sample) seçebiliriz. Bu

Detaylı

Königsberg köprüleri. Königsberg köprüleri Problemi

Königsberg köprüleri. Königsberg köprüleri Problemi Königsberg köprüleri Könisberg şimdi Rusya da yer alan ve günümüzde batı Rusya nın büyük bir endüstri ve ticaret merkezi olan şimdiki adı Kalingrad olan bir zamanlar doğu Prusya nın başkenti olan bir şehirdir.

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score:

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score: BBM 205 - Discrete Structures: Midterm 2 Date: 8.12.2016, Time: 16:00-17:30 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 Total Points: 12 22 10 10 15 16 15 100 Score: 1. (12 points)

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Orta Doğu Teknik Üniversitesi, Ankara Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Kuantum grubu örgülü bir Hopf cebridir. Cebir Tanım Bir k-vektör uzayı A için, µ : A A A ve η : k A birer k-doğrusal

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek BÖLÜM 8 Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek birbasit yol vardır. Bir kkl köklü ağaçğ ise,

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Çizge Teorisi (Graph Theory)

Çizge Teorisi (Graph Theory) Sadi Evren SEKER, Çizge Teorisi (Graph Theory), YBS Ansiklopedi, v.2, is.2, pp. 17-29, 2015 17 YBS Ansiklopedi www.ybsansiklopedi.com Cilt 2, Sayı 2, Haziran 2015 Çizge Teorisi (Graph Theory) Sadi Evren

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat LHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,72060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

4. Bulanık Sayılar- Üyelik Fonksiyonları

4. Bulanık Sayılar- Üyelik Fonksiyonları 4. Bulanık Sayılar- Üyelik Fonksiyonları Bulanık Sayı Normal ve dışbükey bir bulanık kümenin alfa kesimi kapalı bir küme ise bulanık sayı olarak adlandırılmaktadır. Her bulanık sayı dış bükey bir bulanık

Detaylı

Grup Homomorfizmaları ve

Grup Homomorfizmaları ve Bölüm 7 Grup Homomorfizmaları ve İzomorfizmalar Bu bölümde verilen gruplar arasında grup işlemlerini koruyan fonksiyonları ele alacağız. Bu fonksiyonlar yardımıyla verilen grupların cebirsel yapılarının

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48 Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun

Detaylı

Graf Teorisi (Graph Theory)

Graf Teorisi (Graph Theory) Graf Teorisi (Graph Theory) Giris G grafi nedir? G = (V, E) V = V(G) = dügümler kümesi E = E(G) = kenarlar kümesi Örnek: V = {s, u, v, w, x, y, z} E = {(x,s), (x,v), (x,v) 2, (x,u), (v,w), (s,v), (s,u),

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =? Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Projenin Adı: Çizge Kuramıyla Ders Çalışma Planı. Projenin Amacı:

Projenin Adı: Çizge Kuramıyla Ders Çalışma Planı. Projenin Amacı: Projenin Adı: Çizge Kuramıyla Ders Çalışma Planı Projenin Amacı: Farklı birçok alanda kullanılabilen Çizge Kuramı, hemen hemen her zaman karşılaşabileceğimiz bir probleme, daha kolay ve daha verimli bir

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır:

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi EN LİSELERİ, SOSYL İLİMLER LİSELERİ,SPOR LİSELERİ,NDOLU LİSELERİ ÖĞRETMENLERİNİN SEÇME SINVIN HZIRLIK DENEME SINVI. 2 HZIRLYN : İ:K(2008) idensu@gmail.com kuscuogluibrahim@gmail.com http://idensu.googlepages.com

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs, called Context- Free Languages (CFL). These langs have a natural,

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

GAP (Grup, Algoritma ve Programlama)

GAP (Grup, Algoritma ve Programlama) Orta Doğu Teknik Üniversitesi, Ankara Grup/Temsil Kuramından Kesitler Feza Gürsey Enstitüsü, İstanbul 08 Şubat 2010 GAP ne için kullanılır? Yapılacak ispatların doğruluğunu bazı gruplar üzerinde denemek

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 FINITE AUTOMATA Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 Protocol for e-commerce using e-money Allowed events: P The customer can pay the store (=send the money- File to the store) C The

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

Graf, noktalar yani diğer bir değişle düğümler ve bu noktaları birleştiren çizgiler yani ayrıtlar

Graf, noktalar yani diğer bir değişle düğümler ve bu noktaları birleştiren çizgiler yani ayrıtlar Projenin Adı: EULER İN YOLU İSTANBUL A DÜŞERSE Projenin Amacı: Çizge kuramının başlangıç noktası kabul edilen Königsberg köprüsü probleminden hareketle İstanbul ve Königsberg şehirleri arasında analoji

Detaylı

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur? Ayrık Hesaplama Yapıları A GRUBU.0.05 Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız.

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

Otomata Teorisi (BİL 2114)

Otomata Teorisi (BİL 2114) Otomata Teorisi (BİL 2114) Hafta 2: Sonlu Otomata (1.Bölüm) bas kapa aç bas 1 Hafta 2 Plan 1. Bir Sonlu Otomata Orneği 2. Sonlu Otomatanin Esasları 3. Sonlu Otomatanın Resmi Gösterimi 4. Nondeterministik

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

Bölüm 2 Matematik Dili. Kümeler

Bölüm 2 Matematik Dili. Kümeler Bölüm 2 Matematik Dili Kümeler Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir Kümenin elemanları element olarak adlandırılır Kümeler nasıl gösterilir Liste şeklinde Örnek: A = {1,3,5,7} Tanım

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50 Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli

Detaylı