Tahminleme Yöntemleri-2

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tahminleme Yöntemleri-2"

Transkript

1 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2

2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi Gereken Hususlar

3 Mevsimsel Seri Yöntemleri N ( 2) dönemde bir tekrar eden bir yapıya sahip zaman serilerine Mevsimsel Seriler denir. N: mevsim uzunluğu c t : mevsimsel katsayılar, 1 t N. Σc t = N Örneğin. c 3 = 1.25 olması 3. dönem talebinin mevsimsel ortalamanın % 25 fazlası olduğunu gösterir.

4 Mevsimlik Düzeltmeler Yöntemi Herhangi bir tahmin yöntemi (Regresyon Analizi, Üstel Düzeltme Yöntemi vb.) ile tahmin değerleri hesaplanır. Geçmiş dönemlere ilişkin mevsimlik düzeltme indeksleri bulunur. Bunların mevsimler bazındaki ortalamaları hesaplanır. Tahmin yapılacak döneme ilişkin mevsimler bazında tahmini satış değerleri bulunur.

5 Örnek Yıl Dönem Satış 1.Üç ay Üç ay 3 3. Üç ay 4 4. Üç ay 2 1.Üç ay Üç ay 3 3. Üç ay 5 4. Üç ay 3 1.Üç ay Üç ay 4 3. Üç ay 6 4. Üç ay 3 1.Üç ay Üç ay 5 3. Üç ay 7 4. Üç ay 4

6 Örnek Regresyon Analizi yardımıyla bir satış tahmini çalışması Dönem (X) Satış (Y) X*Y X 2 Tahmin , , , , , , , , , , , , , , , ,

7 Trende Oran Tekniği 1 Geçmiş dönemlere ilişkin gerçekleşen satış değerleri/tahmin değerleri Örnek: 10. döneme ilişkin mevsimlik düzeltme indeksi Y/Tahmin=4/3,73=1,07

8 Trende Oran Tekniği 1 Mevsimlik Düzeltme İndeksleri Dönem Yıl Ortalama Düzeltme İndeksi 1. Üç ay 0,51 0,36 0,56 0,46 0,47 2. Üç ay 1,38 1,02 1,07 1,11 1,15 3. Üç ay 1,70 1,59 1,52 1,49 1,57 4. Üç ay 0,78 0,90 0,73 0,82 0,81 Y d =Tahmin*ODİ Y d: Mevsimlik düzeltmeler yöntemi ile elde edilen tahmin değeri Tahmin: Önceki tahmin yöntemi ile elde edilen tahmin değeri ODİ: Ortalama Düzeltme indeksi

9 Trende Oran Tekniği 2 Yıl Mevsim Toplam Ortalama 642,5 702, ,5 Elde edilen regresyon doğrusu: Y=2, *X 5.Yıl için Y değeri: Y 5 =2, *5=3730

10 Trende Oran Tekniği 2 Geçmiş yıllara ait Y değerleri: Y 1 =2, *1=2854 Y 2 =2, *2=3073 Y 3 =2, *3=3292 Y 4 =2, *4=3511 Ci, yıllık değişim etmenleri: C 1 =2800/2854=0,9810 C 2 =3070/3073=0,9990 C 3 =3460/3292=1,0510 C 4 =3400/3511=0,9683

11 Trende Oran Tekniği 2 Ortalama Yıllık Değişim Etmeni (OYDE): (0,9810+0,9990+1,0510+0,9683)/4=0,9998 Mevsimlik indeks: 1.mevsim: 600/2854=0, mevsim:650/2854=0, mevsim:700/2854=0, mevsim:850/2854=0,2978

12 Trende Oran Tekniği 2 Yıl Mevsim ,2102 0,2277 0,2452 0, ,2017 0,2277 0,2766 0, ,2126 0,2004 0,3037 0, ,1851 0,2278 0,2705 0,2848 Ortalama Düzeltme İndeksi 0,2024 0,2209 0,2740 0,3023

13 Trende Oran Tekniği 2 5. yılın mevsimlere göre satış tahminini: D i : i. Mevsime ilişkin satış değeri Y 5 : 5. yılın Y değeri OYDE: Ortalama yıllık değişim etmeni ODİ: Ortalama mevsimlik düzeltme indeksi D i =Y 5 *OYDE*ODİ D 1 =3730*0,9998*0,2024=755 D 2 =3730*0,9998*0,2209=824 D 3 =3730*0,9998*0,2740=1022 D 4 =3730*0,9998*0,3023=1127

14 Ortalama Mevsim İndeksi Tekniği Mevsimlere ilişkin satış ortalamaları hesaplanır. Ortalama mevsim indeksleri hesaplanır. S i =i. mevsimin ortalama satışı/mevsimlik genel ortalama

15 Örnek Mevsim Toplam Yıl Ortalama 642,5 702, ,5 S 1 =642,5/795,625=0,8075 S 2 =642,5/795,625=0,8829 S 3 =642,5/795,625=1,0997 S 4 =642,5/795,625=1,2097 Mevsimlik genel ortalama

16 Örnek Regresyon Analizi ile 5.yıla ilişkin toplam satış değeri: 3730 olarak tahmin edilmişti. Bu değeri, dört mevsime eşit olarak (3730/4)=932,5 paylaştıralım. D 1 =932,5*0,8075=753 D 2 =932,5*0,8829=823 D 3 =932,5*1,0997=1025 D 4 =932,5*1,2097=1128

17 Yıllık Satışlara Oran Tekniği İlgili mevsimdeki satışların, ortalama olarak yıllık toplam satışların % kaçı olduğunu gösteren bir oran, mevsim etmeni olarak alınır ve her mevsim için ortalama mevsim indeksleri hesaplanır.

18 Örnek Yıl Mevsim

19 Yıl Örnek Mevsim Ortalama Satış 1 Satış İndeks (45/250)=0,18 1,34 2,08 0,40 2 Satış İndeks (70/300)=0,23 1,23 1,97 0,57 3 Satış İndeks (100/450)=0,22 1,30 1,84 0,63 4 Satış Ortalama Düzeltme İndeksi İndeks (100/550)=0,18 1,32 2,11 0,39 1. Mevsim= 650*0,20= Mevsim=650*1,30= Mevsim=650*2,00= Mevsim=650*0,50=325 0,20 1,30 2,00 0,50

20 Box-Jenkins Modelleri Box-Jenkins tahmin modelleri belirgin derecede karmaşıktır. İki ünlü istatistikçi George E. Box (Wisconsin Üniversitesi) ve Gwilym M. Jenkins (Lancaster Üniversitesi) ile adlandırılır. Metot, zaman serilerinin otokorelasyon yapısının kullanımı üzerine kuruludur. Otokorelasyon var ise kullanılabilir. Box-Jenkins modelleri ARIMA modelleri olarak da bilinir. (ARIMA:AutoRegressive Integrated Moving Average)

21 Box-Jenkins Modelleri Model için kullanacağımız zaman serileri D 1, D 2,... olarak nitelendirilsin. Serinin durağan (stationary) olduğu varsayılsın: E(D i )=μ ve Var(D i )=σ 2, i=1,2,.. Durağan: seride artış trendi, azalış trendi yok ve varyans nispeten sabit. Durağanlık, bağımsızlık (independence) anlamına gelmemektedir. Aksine i j için D i ve D j değerlerinin bağımlı rassal değişkenler olması mümkündür. Modelde de bu bağımlılık kullanılacaktır.

22 Tahminlerin Doğruluğunu Etkileyen Unsurlar Geçmiş ürün talep bilgisinin varlığı Bilgisayar kullanımı Diğer bilgilerin tarihçesi (yeni ürünler. tasarım değişiklikleri. müşteri tabanı değişiklikleri. promosyon etkileri. ekonomik göstergeler. vb.) Tahminlerin yürütülme sorumluluğunun paylaşılarak üstlenilmesi (satış. dağıtım. ve imalat birimleri arasında)

23 Dikkat Edilecek Konular Hangi ürünler için tahmin yapılacak? Tahmin gelecekte hangi zamana kadar yapılmalıdır? Tahmin edilen miktarın geçerli olduğu zaman diliminin uzunluğu nedir? Tahmin ne kadar sık yapılmalı. gözden geçirilmeli ve değiştirilmelidir? Tahmin hatasının kabul edilebilir üst sınırı nedir?

24 Tahmin için kullanılacak araçlar Hesap Tablosu Yazılımları Örnek: Excel Veri Çözümleme Aracı Tahmin Uygulamaları Yazılımları istatistik paketleri tahmin yapmaya özgü paketler

25 Öneriler (1) Tahmin yapmadan önce eldeki verileri ayıkla Tekrar etmesi söz konusu olmayan olayları verilerden çıkar. Bu gibi veriler geçmişle ilgili doğru bir görüntü vermez. Ayarlama yapmak gereken durumlar: beklenmeyen hava şartları önemli bir müşterinin çıkması veya eklenmesi özel tanıtım promosyonları fiyat ve ambalaj değişiklikleri

26 Öneriler (2) Tahminleri elde etmek için düzenli olarak değişen farklı yöntemler uygula Her bir yöntemin doğruluk başarısının geçmişini tut En başarılı yöntemi resmi tahminler için kullan Tahmin edileceklerin bir ABC analizini yap A -tipi ürünler her ay yönetim tarafından takip edilir. B ve C sınıfında olanlarda sadece tahminler ve gerçekleşen talepler arasında ciddi farklılıklar olanlar yönetim tarafından incelenir.

Tahminleme Yöntemleri

Tahminleme Yöntemleri PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL 1. Uygulama: İhtiyaç Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

VERİ MADENCİLİĞİNİN GÖREVLERİ

VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ Classification (Sınıflandırma) Karakterizasyon (Betimleme) Regression (İlişki Çıkarımı) Clustering (Kümeleme) Association (İlişki Analizi) Forecasting

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir?

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Dersin amacı Tahmin, geleceğe hazır

Detaylı

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS Bu çalışmada Ulusal Sınai Endeks serisiyle ilgili analizler yapılacaktır. Öncelikle seri oluşturulur. Data dan Define Dates e girilir oradan weekly,days(5) işaretlenir ve

Detaylı

EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI

EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI Aşağıda iki güne yayılmış olarak sunulmuş olan 6 Eğitim Modülü 21 22 Mart, 11 12 Nisan ve 2 3 Mayıs tarihlerinde Yıldırım Beyazıt Üniversitesi

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü

Detaylı

BASEL II. RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar)

BASEL II. RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar) BASEL II RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar) Temerrüde düşmemiş krediler için Basel II düzenlemelerinde Korelasyon Katsayısı, Vade ayarlaması, Sermaye Yükümlülüğü oranı, Sermaye yükümlülüğü

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İSTATİSTİK II Ders No : 0020050027 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

Gediz Havzası Yağışlarının Stokastik Modellemesi

Gediz Havzası Yağışlarının Stokastik Modellemesi Ege Üniv. Ziraat. Fak. Derg.,, ():- ISSN - Gediz Havzası Yağışlarının Stokastik Modellemesi Kıvanç TOPÇUOĞLU Gülay PAMUK Mustafa ÖZGÜREL Summary Stochastic Modelling of Gediz Basin s Precipitation In this

Detaylı

İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü

Detaylı

İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI 2014 İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI Açıklama Staj yapılan işletmelerde

Detaylı

Tekirdağ&Ziraat&Fakültesi&Dergisi&

Tekirdağ&Ziraat&Fakültesi&Dergisi& NamıkKemalÜniversitesi ISSN:1302*7050 TekirdağZiraatFakültesiDergisi Journal(of(Tekirdag(Agricultural(Faculty( ( ( ( ( ( ( An(International(Journal(of(all(Subjects(of(Agriculture( Cilt(/(Volume:(10Sayı(/(Number:(2(((((Yıl(/(Year:(2013

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) İSTATİSTİKSEL KALİTE KONTROL EN-412 4/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Stokastik Modellerle Rüzgar Hızı Tahmini; Karabük Örneği

Stokastik Modellerle Rüzgar Hızı Tahmini; Karabük Örneği Stokastik Modellerle Rüzgar Hızı Tahmini; Karabük Örneği Bayram KÖSE 1, Ziyaddin RECEBLİ 2, Mehmet ÖZKAYMAK 2 1 Öğr. Gör., Eskipazar Meslek Yüksek Okulu, Karabük Üniversitesi, Karabük, Türkiye 2 Doç. Dr.,

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ Bölüm HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME ÖNTEMLERİ Bu bölümde üç basi öngörü yönemi incelenecekir. 1) Naive, 2)Oralama )Düzleşirme Geçmiş Dönemler Şu An Gelecek Dönemler * - -2-1 +1 +2 + Öngörü yönemi

Detaylı

Eğitim / Danışmanlık Hizmetinin Tanımı

Eğitim / Danışmanlık Hizmetinin Tanımı Eğitim / Danışmanlık Hizmetinin Tanımı 1. Proje Kapsamında Eğitim Talep Edilmiş ise, Eğitimin İçeriği Hakkında bilgi veriniz. Ekonometri alanı iktisat teorisi, işletme, matematik ve istatistiğin birleşmesiyle

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ZAMAN SERİSİ ANALİZİ. Ne ilginçtir ki, insanlar büyük ölçüde rassal olan şeylerde anlamlı örnekler bulmaya çalışır. Mr. Data Star Trek, 1992

ZAMAN SERİSİ ANALİZİ. Ne ilginçtir ki, insanlar büyük ölçüde rassal olan şeylerde anlamlı örnekler bulmaya çalışır. Mr. Data Star Trek, 1992 ZAMAN SERİSİ ANALİZİ Ne ilginçtir ki, insanlar büyük ölçüde rassal olan şeylerde anlamlı örnekler bulmaya çalışır. Mr. Data Star Trek, 1992 Zaman Serisi Analizi İçin Temel Kavramlar Durağanlık ve Durağan

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

2015 AĞUSTOS AYI ENFLASYON RAPORU

2015 AĞUSTOS AYI ENFLASYON RAPORU 2015 AĞUSTOS AYI ENFLASYON RAPORU HAZIRLAYAN 03.09.2015 Yrd. Doç. Dr. Sema ULUTÜRK AKMAN - İstatistik Araştırma Merkezi Araş. Gör. Hakan BEKTAŞ İktisat Fakültesi Ekonometri Bölümü RAPOR Ağustos ayında

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

ÖZET ...DEĞERLENDİRMELER...

ÖZET ...DEĞERLENDİRMELER... .1.1.1.1 ÖZET Ağustos ayında tüketici fiyatları yüzde, oranında azalmış ve yıllık enflasyon,7 puan düşüşle yüzde,5 olmuştur. Ağustos ayı Para Politikası Kurulu Toplantı Özeti nde de ifade edildiği üzere

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

EKONOMİK GELİŞMELER Şubat 2014

EKONOMİK GELİŞMELER Şubat 2014 EKONOMİK GELİŞMELER Şubat 2014 Kaynak: Türkiye İstatistik Kurumu (TÜİK) AR-GE MÜDÜRLÜĞÜ TÜRKİYE ESNAF VE SANATKARLARI KONFEDERASYONU İÇİNDEKİLER 1 GAYRİ SAFİ YURTİÇİ HASILA (GSYH) 2 İSTİHDAM - İŞSİZLİK

Detaylı

Tahmin (IE 519) Ders Detayları

Tahmin (IE 519) Ders Detayları Tahmin (IE 519) Ders Detayları Ders AdıDers Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Tahmin IE 519 Her İkisi 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin Seviyesi

Detaylı

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ İ&tanbul Üniversitesi İktisat Fakültesi Ord. Prof.'Şükrü Baban'a Armağan İstanbul - 1984 İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ Dr. Süleyman Özmucur" (*) 1. GİRİŞ: Bu makalenin amacı Devlet

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

F12 Piyasa Riskine Karşı Özel Risk Daha önceden belirtildiği gibi çok küçük bir çeşitlendirme bile değişkenlikte önemli oranda azalma sağlamaktadır. F13 Piyasa Riskine Karşı Özel Risk Doğru aynı zamanda,

Detaylı

İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3

İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3 T.C. SERHAT KALKINMA AJANSI İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3 2013 YILI PROJE TEKLİF ÇAĞRISI İŞ PLANI EK - E Referans No: TRA2-13-İGMD03/TRA2-13-İGMD03G I MEVCUT DURUM ANALİZİ 1. İŞLETMENİN TARİHÇESİ

Detaylı

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır.

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır. ZAMAN SERİSİ MODEL Aşağıdaki anlatım sadece lisans düzeyindeki temel ekonometri bilgisine göre hazırlanmıştır. Bir akademik çalışmanın gerektirdiği birçok ön ve son testi içermemektedir. Bu dosyalar ilk

Detaylı

ise, genel bir eğilim (trend) gösteriyorsa bu seriye uygun doğru ya da eğriyi bulmaya çalışırız. Trend orta-uzun dönemde her iniş, çokışı

ise, genel bir eğilim (trend) gösteriyorsa bu seriye uygun doğru ya da eğriyi bulmaya çalışırız. Trend orta-uzun dönemde her iniş, çokışı Trend Analizi Eğer zaman serisi i rastgele dağılmış ğ değil ise, genel bir eğilim (trend) gösteriyorsa bu seriye uygun doğru ya da eğriyi bulmaya çalışırız. Trend orta-uzun dönemde her iniş, çokışı yansıtmayacak,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

HAZIRLAYAN. TÜFE çekirdek enflasyon göstergelerine paralel olarak Kasım ayında azalış göstermiştir.

HAZIRLAYAN. TÜFE çekirdek enflasyon göstergelerine paralel olarak Kasım ayında azalış göstermiştir. ÖZET KASIM AYI ENFLASYON RAPORU 15.11.13 HAZIRLAYAN Yrd. Doç. Dr. Sema ULUTÜRK AKMAN - İstatistik Araştırma Merkezi Doç. Dr. Murat Dündar DEMİRÖZ - Türkiye, Avrupa ve Ortadoğu Ekonomik Araştırmalar Merkezi

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT ufirat@yahoo.com Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini

Detaylı

MURAT EĞİTİM KURUMLARI

MURAT EĞİTİM KURUMLARI 2013 KPSS de Testlerin Kapsamları Değişti ÖSYM tarafından yapılan açıklamaya göre 2013 KPSS de uygulanacak testlerin içeriğinde bir takım değişiklikler yapıldı. Bu değişikler başta Genel Yetenek - Genel

Detaylı

FABRİKA ORGANİZASYONU. Yrd. Doç. Dr. Serpil SAVCI

FABRİKA ORGANİZASYONU. Yrd. Doç. Dr. Serpil SAVCI FABRİKA ORGANİZASYONU Yrd. Doç. Dr. Serpil SAVCI TALEP TAHMİNİNDE TOPLANILACAK BİLGİLER 1. Üretilecek malın kullanım yerleri ve özellikleri 2. İstatistik seriler Sözü edilen malın geçmiş 10 veya daha fazla

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI 2012 - LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI Genel Yetenek 1) Türkçe %50 2) Matematik %50 a) Sözcük bilgisi %5 a) Sayılarla işlem yapma %10 b) Dil bilgisi %10 b) Matematiksel ilişkilerden yararlanma

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Türkiye de Tavuk Yumurtası Mevcut Durumu ve Üretim Öngörüsü

Türkiye de Tavuk Yumurtası Mevcut Durumu ve Üretim Öngörüsü Türkiye de Tavuk Yumurtası Mevcut Durumu ve Üretim Öngörüsü Zehra ÇİÇEKGİL Ebru YAZICI Öz Tavuk yumurtası insan beslenmesi açısından değerli bir gıda maddesidir. Türkiye de yumurta sektörü, son yıllarda

Detaylı

İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI

İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI İKİNCİ ÖĞRETİM SAĞLIK KURUMLARI YÖNETİMİ VE EKONOMİSİ TEZSİZ YÜKSEK LİSANS PROGRAMI Anabilim Dalı: İşletme PROGRAMIN TANIMI: Son yıllarda dünyada Sağlık yönetimi ya da Sağlık İdaresi yüksek lisans eğitim

Detaylı

ĐKLĐMLENDĐRME HESAPLARINDA DUYULUR ISI ORANLARININ ANLAMI VE KULLANILMASI

ĐKLĐMLENDĐRME HESAPLARINDA DUYULUR ISI ORANLARININ ANLAMI VE KULLANILMASI ĐKLĐMLENDĐRME HESAPLARINDA DUYULUR ISI ORANLARININ ANLAMI VE KULLANILMASI Turhan YÜCEL* GĐRĐŞ: Hava şartlandırma projelerinin uygulamadaki başarısı öncelikle Psikrometride yapılan sistem düzenlemeleridir.

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA

DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA 1. Amaç Dış Ticaret Beklenti Anketi (DTBA), dış ticaretimize yön veren firmaların yakın geçmişe ve mevcut duruma ilişkin değerlendirmeleri ile

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

ÖZET ...DEĞERLENDİRMELER...

ÖZET ...DEĞERLENDİRMELER... .13.13.13.13 ÖZET Nisan ayında tüketici fiyatları yüzde 1,3 oranında artmış, yıllık tüketici enflasyonu yüzde 7,1 e yükselmiştir. Gıda ve yemek hizmetleri yıllık enflasyonu yüksek seyrini bu dönemde de

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

CHAPTER 6 SIMPLE LINEAR REGRESSION

CHAPTER 6 SIMPLE LINEAR REGRESSION CHAPTER 6 SIMPLE LINEAR REGRESSION Bu bölümdeki amacımız değişkenler arasındaki ilişkiyi gösteren en uygun eşitliği kurmaktır. Konuya giriş için şu örnekle başlayalım; Diyelim ki Mr. Bump adındaki birisi

Detaylı