ELEKTRONİK DEVRE ELEMANLARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTRONİK DEVRE ELEMANLARI"

Transkript

1 1 ELEKTRONİK DEVRE ELEMANLARI

2 ELEKTRONİK DEVRE ELEMANLARI 2

3 3 KONDANSATÖRLER

4 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanıldığı iki iletken levha arasına bir yalıtkan malzeme konularak yapılan temel elektrik ve elektronik devre elemanına kondansatör adı verilir. Kullanılan yalıtkan malzemeye di elektrik, kondansatörü oluşturan iletkene ise kondansatör plakaları adı verilir. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC-DC arasında dönüşüm yapmada kullanılırlar ve tüm entegre elektronik vazgeçilmez elemanıdırlar. Kondansatör Semboller 4

5 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Kondansatörler elektrik yükü depo eden elemanlardır. Elektrik yükünü, yalıtkan malzemesinin içerisinde elektrik alanı olarak depolar. Kondansatör devrelerde C ile gösterilir, kondansatörlerin kapasite birimi Farad tır. Farad çok büyük bir kapasite birimi olduğundan μf, nf ve pf kullanılır. Kapasite C, bir kondansatörün yük depolayabilme yeteneği olarak tanımlanır ve birimi (Michael Faraday'ın anısına) Farad' olarak (F ile gösterilir) belirlenmiştir. Uluslararası MKS birim sisteminde 1Farad, uçları arasına 1Volt gerilim uygulandığında 1coulomb=6, tane elektron depolayabilen kondansatörün kapasitesine eşittir. Farad F 1 Mili Farad mf 10-3 = 0,001 F Mikro FaradμF 10-6 = 0, F Nano FaradnF 10-9 = 0, F Piko Farad pf = 0, F Kondansatörler, doğru akımı geçirmeyip, AC akımı geçiren devre elemanlarıdır. Kondansatörün alternatif akımın geçişine karşı gösterdiği zorluğa Kapasitif Reaktans denir. X C ile gösterilir, birimi Ohm ( ) dur. X C = 1 2π.f.C ile hesaplanır. Doğru akımda kapasitif reaktans sonsuzdur. 5

6 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Elektrik konusunun gelişmesi 18. Yüzyılda statik (durgun) elektriğin incelenmesiyle başlamıştır. Statik elektriğin bir ip boyunca iletilebilmesi, elektrik yükünün temasla paylaşılabilmesi ve depolanabilmesi özellikleri araştırmacı bilim adamları tarafından keşfedilmeye başlanmıştı yılında Ewald Georg von Kleist ( Alman Rahip-Bilimadamı) elektriği küçük metal bir şişede depolamayı başarmıştı. Kondansatörün asıl gelişmesi, Leiden'de elektrik üzerinde deneyler yapan Pieter van Musschenbroek ( Alman Rahip-Bilimadamı)'in çalışmaları sonucu gerçekleşmişti. Musschenbroek bir rastlantı sonucu Kleist'in çalışmalarını doğrular nitelikte sonuçlara erişti. Musschenbroek içi ve dışı metalle kaplı cam bir şişe tasarladı. Şişenin bir kısmı suyla doldurulmuş ve ağzı hava - sıvı geçirmeyecek şekilde mantarla tıkanmıştı. Mantarın ortasından geçen iletken, bir ucu şişenin dışında bir ucu suyun içinde olacak şekilde yerleştirilmişti. İletkene statik elektrik üretici temas ettiğinde Leiden şişesi yük depolamakta, elektriği ileten başka bir malzeme temas ettiğinde boşalmaktaydı. Bu şişeler aynı zamanda ilk kondansatörlerdi. Bu nedenle, şu anda Farad olan kapasite birimi ilk zamanlarda jar (şişe) olarak kabul edilmişti. Bu birim bugün 1nF kapasiteye eşdeğerdir. 6

7 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar 7

8 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Hollanda Leiden Boerhaave müzesindeki dört Leyden Şişesi Paralel plakalı kondansatörün basit bir örneği 8

9 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar 9

10 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Çok yüksek gerilim üreten makinelerin yalıtım zorlukları ve verimsiz olmaları nedeniyle elektrostatik generatörler düşük güç değerlerine sahipti ve elektrik gücünün önemli miktarlarının ticari olarak üretilmesi için asla kullanılmadılar. Wimshurst makinesi ve Van de Graaff jeneratörü bu makinelerden günümüze ulaşanlarıdır. İki Leyden şişesi ile Wimshurst makinesi Van der graaff jeneratörü 10

11 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Şarj ve Deşarjı Kondansatör bir DC kaynağa bağlandığında devreden geçici olarak azalan bir akım geçer. Akımın kesilmesinden sonra kondansatör plakaları arasında kaynağın gerilimine eşit bir gerilim oluşur. Bu durumda kondansatör şarj olmuştur denir. Kondansatörün DC Kaynağa Bağlanması (Şarj Eğrileri) Şarj olmuş bir kondansatörün uçları bir direnç ile kısa devre edildiğinde devreden deşarj akım geçer. Akım, şarj akımının tam tersi yönde ancak büyüklüğü eşittir. Kondansatörün Deşarj Eğrileri 11

12 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Şarj ve Deşarjı 12

13 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Kapasitesi ve Depo Edilen Enerji Kondansatörlerin elektrik yükü depolama kapasitesi plakaların alanı ve kullanılan di elektrik malzeme ile doğru, aralarındaki mesafe ile ters orantılı olarak değişir. Buna göre kondansatör kapasitesi; C = 8, ε r.s d Kondansatörde depo edilen enerji; C = Kondansatörün Kapasitesi (F) ε r = Di elektrik katsayısı S = Plakaların alanı (cm 2 ) d = Plakalar arası mesafe (cm) W = 1 2. C. U2 formülüyle bulunur. Kondansatörlerde çalışma gerilimi kondansatöre uygulanacak maksimum gerilim değerini ifade eder. Kondansatörlerde çalışma geriliminin üzerine çıkılırsa kondansatörün ömrü azalır, hatta kondansatör delinir. Kondansatörde depo edilen yük q = C. U şeklinde ifade edilir. 13

14 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri Elekrolitik, seramik ve smd kondansatörler 3 fazlı kompanzasyon kondansatörleri, güç faktörü düzeltilmesi için kullanılır ve fiziksel olarak büyüktürler. 14

15 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri 15

16 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri 16

17 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Kapasite Değerlerine Göre) Kondansatörler elektronik devrelerde değişik tiplerde yapılırlar. Kullanılan yalıtkan malzemenin cinsine, kapasite değerlerine göre ve kutup durumlarına göre sınıflandırılırlar. Kapasite değerlerine göre Sabit kondansatörler Ayarlı kondansatörler Sabit kondansatörler: Sabit kondansatörlerin üretim aşamasında belli olan kapasiteleri sonradan kullanıcı eliyle değiştirilemediğinden devreye ince ayar yapma imkânı yoktur. Kullanıcı önceden ihtiyacı olan çalışma değerlerini belirler, ardından ona göre uygun bir kondansatör temin eder. 17 Sabit kondansatör sembolleri

18 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Kapasite Değerlerine Göre) Ayarlanabilir kondansatörler: Milinin elle ya da tornavida ile çevrilmesi ile kapasitesi sıfır ile maksimum değer arasında değişen kondansatörlerdir. İki çeşittedirler. Varyabıl kondansatörler: İç içe geçmiş levhalar şeklinde yapılan kapasitesi yüksek kondansatörlerdir. Trimer kondansatörler: Kapasitesi tornavida ile ara sıra değiştirilen kondansatörlerdir. Varaktör (Varikap Diyot): Diyot kullanılarak oluşturulmuş bir kondansatör çeşididir. Gerilim kontrollüdürler, uygulanan gerilim değeri büyüdükçe kapasite değerleri düşer. Yüksek frekansta çalışabilip telekomünikasyon alanında frekans kontrolünde kullanılırlar. Ayarlanabilir kondansatör sembolleri 18

19 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Kapasite Değerlerine Göre) Ayarlanabilir kondansatör çeşitleri Üstteki üç tanesi varyabl, alttaki dört tanesi trimer kondansatör çeşitleridir. 19

20 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Kutup Durumuna Göre) Kutup durumuna göre Kutupsuz kondansatörler Kutuplu kondansatörler Kutupsuz kondansatör Üretim aşamasında kutuplanmamış ve devreye bağlanma yönü önem taşımayan kondansatörlerdir. Seramik ve mika yalıtkanlı kondansatörlerin dahil olduğu bu grup, birkaç pikofarad'dan mikrofarad değerlerine kadar bir yelpazede değer alır. 20 Kutupsuz kondansatör sembolü

21 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Kutup Durumuna Göre) Kutuplu kondansatör Bu kondansatörler üretilirken kutuplu olarak tasarlanır. Kondansatörün bir + ve bir - ucu vardır. Bu uçların devreye düzgün şekilde bağlanması gerekir. Aksi halde ciddi hasarlar oluşur çünkü ters bağlama halinde bu kondansatörler patlarlar. Kutuplu kondansatörler grubuna alüminyum elektronik ve tantalum kondansatörler girerler. Bu kondansatörlerin kapasiteleri birkaç pikofarad'dan başlar Farad ve üzerine kadar uzanan geniş bir yelpazede değer alır. 21 Kutuplu kondansatör sembolleri

22 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Yalıtkan cinsine göre Kondansatörleri sınıflandırmanın en çok kullanılan yöntemi yalıtkan maddesine göre sınıflandırmadır. Malzemelerin bağıl yalıtkanlık katsayısı ve delinme gerilimleri yalıtkanlar arasındaki farklılıkları oluşturur ve bunlar kondansatörlerin özelliklerini belirleyip uygulama alanlarındaki çeşitliliği genişletir. Elektrolitik Kondansatörler Kağıtlı ve Film Kondansatörler Mika Kondansatörler Camlı Kondansatör Havalı kondansatör 22

23 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Elektrolitik Kondansatörler: İnce iki alüminyum levha arasına dielektrik malzeme emdirilerek yapılmış yalıtkan bir şeridin birlikte sarılması ile elde edilmiş kondansatör çeşididir. Artı ve eksi uçları vardır. Yapılacak yanlış bir bağlantıda kondansatör kullanılamaz hale gelir. Üzerinde yazan gerilimin üzerine çıkıldığında kondansatör patlar. Avantajları; hacmi küçük, kapasitesi büyüktür ve maliyeti düşüktür. Dezavantajları; sızıntı akımları büyüktür ve ters bağlandıkları takdirde bozulurlar. Elektrolitik kondansatörler; 0,1-0,47 1-2,2-3,3-4, μF lık kapasitelerde yapılırlar. Çalışma gerilimleri; 3-6, V tur. 23

24 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Seramik Kondansatörler: Küçük kapasitelerde imal edilmiş, kutupsuz kondansatörlerdir. Enerji kayıpları az olduğundan yüksek frekanslı devrelerde kullanılırlar. İletken malzeme olarak gümüş kullanılır. 24

25 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Kağıtlı ve Film Kondansatörler: Di elektrik olarak parafin emdirilmiş 0,01mm kalınlığında kağıt ve plaka olarak 0,008mm kalınlığında kalay veya alüminyum yapraklar kullanılarak elde edilmiş kondansatörlere kağıt kondansatör adı verilir. Genellikle tek fazlı motorların çalıştırılmasında kullanılırlar. Kutupsuzdurlar. Binlerce volt dayanma gerilimleri vardır. Film kondansatörlerde kağıt kondansatörlerde kağıt yerine plastik bir madde kullanılır. Lastik madde olarak polistren, polyester, polipropilen, polikarbonat, polipropilin ve yüksek kalite için polisülfon kullanılabilir. 25 Polyester kondansatör Kağıt ve film kondansatör

26 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Mika Kondansatörler: Di elektrik malzeme olarak mika kullanılan kondansatörlerdir. Tasarım olarak metal filmli kondansatöre benzeyen mikalı kondansatör, çoğunlukla yüksek gerilim için kullanılır. Kapasite değerleri 50pF ile 20nF arasındadır. Tolerans değerleri yüksektir ve yüksek frekansta çalışabilme özelliği vardır. Mika kondansatörler 26

27 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Camlı Kondansatör: Yüksek gerilimde kullanılır ve pahalıdır. Pahalı olmasının sebebi yüksek kararlılıkta çalışması ve kapasite değerinin yüksek güvenilirliğe sahip olmasıdır. Geniş bir sıcaklık aralığında kararlı bir sıcaklık katsayısı vardır. 27 Camlı Kondansatör

28 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Havalı kondansatör: Metal plakaları arasında hava boşluğu bırakılmasıyla oluşturulan bu kondansatörlerde, plakalar genelde Alüminyum ve gümüş kaplamalı olarak tasarlanır. Hava yalıtkanının dielektrik kaybı düşüktür. Hemen hemen tüm hava aralıklı kondansatörler ayarlanabilir olarak imal edilirler ve radyo frekansı ayarlamada kullanılırlar. Ayrıca yüksek kapasite değerleri sunarlar. 28 Havalı kondansatör

29 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) Belli başlı kondansatör çeşitlerinin aldıkları kapasite değerleri ve çalışma gerilimleri yelpazesi. 29

30 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Çeşitleri (Yalıtkan Cinsine Göre) 30

31 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Bağlantıları (Seri Bağlantı) Kondansatör Bağlantıları Seri Bağlantı Kondansatörlerin birbiri ardına eklenmesi ile elde edilen, devre akımının bütün devre elemanlarından geçtiği devreye denir. Kondansatörler seri bağlandıklarında kapasiteleri azalırken kapasitif reaktansları artar. I C1,XC1 C2,XC2 XN,XCN U1 U2 UN U Eşdeğer kapasite Eşdeğer kapasitif reaktans 1 = C C 1 C 2 C n X C = X C1 + X C X Cn 31

32 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Bağlantıları (Paralel Bağlantı) Paralel Bağlantı Kondansatörlerin karşılıklı uçlarının bağlanması ile oluşan devreye denir. Kondansatörler paralel bağlandıklarında toplam kapasite artarken ve kapasitif reaktans azalır. I U I1 I2 IN C1 XC1 U1 U2 UN C2 XC2 Eşdeğer kapasite Eşdeğer kapasitif reaktans C = C 1 + C C n 1 = X C X C1 X C2 X Cn 32

33 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatörların Okunması Kondansatör Okuma Kondansatörlerde temel olarak iki değişken, tüketici için seçme olanağı sunar ve kondansatörler arasındaki farkları oluşturur. Bunlar, kondansatörün çalışma - dayanma gerilim değeri ve depolayabileceği yük miktarıdır ve bunlar her kondansatörün üzerinde belirtilmiş olmak zorundadır. Kimi kondansatörlerin üzerinde çalışma değerleri doğrudan yazılı iken kiminde rakamlar ve renkler kullanılır. Direk değerleri yazılı olanlar kolay okunmasına karşın, rakam ve renk kodlu olanların okunması belli standartlara bağlıdır. Kondansatörün değeri üzerinde rakamla yazılır. (100μF/25 V, 47μF/35 V,10n, 333, 102 gibi) Kondansatör değeri üzerindeki renk kodları ile belirtilir. Üstteki iki kondansatörün çalışma değerleri Mavi: 400 Volt mikrofarad = 2.2 µf Sarı: 222J = 2200 pikofarad± %5 = 2.09 nf < C < 2.31 nf 33

34 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatörların Okunması Kondansatörün değeri kondansatörün üzerine doğrudan μf, nf, pf olarak veya kısaltılmış terimler yazılmıştır. Ayrıca seramik ve mikalı kondansatörlerde 103, 303, 333, 8n2, 15p, 12p vb. gibi rakamlarla kondansatörün değeri belirtilir. Üç rakamlı olanlarda ilk iki rakam sayı üçüncü rakam ise çarpandır. Çıkan değer ise pikofarat tır. Ayrıca seramik ve mikalı kondansatörlerin bazılarında çalışma gerilimleri de belirtilmektedir. 100n 63V gibi. Devrelerde kullanılan kondansatörlerin çalışma gerilimleri göz ardı edilmemelidir. Mikalı ve Seramik Kondansatörlerde Değer Okuma 103 = = pf = 10 nf 303 = = pf = 30 nf 104 = = pf = 100 nf 262 = = 2600 pf = 2,6 nf 34

35 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatörların Okunması Kondansatörlerin okunmasında n veya p nin araya girmesi virgül olduğu anlamına gelir. 8n6 = 8,6 nf 5p6 = 5,6 pf Hiçbir harf (n veya p) yazılı değilse değeri piko farattır. 5 = 5 pf 12 = 12 pf 6,7 = 6,7 pf Bazı kondansatörler ise.01,.1 gibi ifade edilmişlerdir. Burada noktadan önce sıfır var demektir. Bu şekilde belirtilmiş olan kondansatörlerin değeri mikro faradtır..47 = 0,47 μf = 470 nf.1 = 0,1 μf = 100 nf 0,22 = 0,22 μf = 220 nf 35

36 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatörların Okunması Seramik ve polyester kondansatörler eskiden renk kodlarına göre yapılırlar ve okunurlardı. Okunuşları dirençlerde olduğu gibidir. Bazı elektrolitik kondansatörlerde kapasite ve çalışma gerilim değerleri aşağıda olduğu gibi yazılır. 470/16=470μF/16V demektir. Elektrolitik kondansatörler eksi uç üzerinde belirtilmiştir. Çizgili uç eksi ucu, diğer uç ise artı ucu belirtir. Ayrıca uçları kesilmemiş kondansatörlerde uzun uç artı, kısa uç ise eksi uçtur. 36

37 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatörların Okunması Renk Kodları Rakam kodlarından başka, bazı kondansatör çeşitlerinde de renk kodları kullanılır. Özellikle seramik, tantalum ve polyester kondansatörlerde renk kodları yaygındır. Renk kodları standardı Seramik Tantalum Polyester Renk Değer Çarpan T V T V T V Siyah pf - % V % 20 - Kahve % 1 - % V Kırmızı % 2 - % V Turuncu Sarı V V Yeşil % 5 - % 5 16 V % 5 - Mavi V - - Mor Gri V - - Beyaz % 10 - % 10 3 V % 10-37

38 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Sağlamlık Kontrolü Kondansatör Arızaları Kondansatörler kolay bozulmayan ve devrede sağlıklı olarak çalışabilen elemanlardır. Uygun çalışma ve sıcaklıkta ömürleri oldukça uzundur. Buna rağmen meydana gelen arızalar şunlardır. Kısa Devre Yüksek sıcaklıklarda çalışan kondansatörlerin uzun süreli şarj ve deşarj olması sonucunda di elektrik malzeme özelliğini kaybedebilir ve bu durumda kısa devre meydana gelebilir. Kağıt ve elektrolitik kondansatörlerde böyle durumla daha çok karşılaşılır. Kondansatörün kontrolü sırasında ibre sıfır Ω değerine doğru saparak orada kalır. Ancak büyük kapasiteli kondansatörlerin ohmmetre bataryası ile şarjı uzun süreceğinden dikkatli ölçme yapılmalıdır. 38

39 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Sağlamlık Kontrolü Sızıntı Kondansatör di elektriğinin özelliğini kaybetmesi sonucu yalıtım direncinin azalarak sızıntı şeklinde devamlı akım geçirmesi durumudur. Bu tip arızalı kondansatörlerin dirençleri okunması gerekenden oldukça küçüktür. Açık Devre Daha çok elektrolitik kondansatörlerde meydana gelen arızalardır. Elektrolitiğin sıcaklık sebebiyle zamanla kuruması veya elektrolit temas direncinin artması neticesinde açık devre meydana gelebilir. Böyle bir kondansatör ölçülürken şarj olayı meydana gelmez ve ibre devamlı olarak sonsuz direnç değeri gösterir. Ancak küçük kapasiteli kondansatörlerin (100pF ve daha küçük) şarj akımı oldukça küçük ve kısa süreli olduğundan test edilmeleri sırasında ohmmetrenin kontrol momenti sebebiyle ibre sapmayabilir. Bu nedenle küçük kapasiteli kondansatörlerin testinde dikkatli ölçme yapılmalı ve hemen arızalı olduğu düşünülmemelidir. 39

40 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Sağlamlık Kontrolü Kapasite değeri ölçülmek istenen veya arıza sebebiyle gerçek kapasite değerinde olup olmadığı bilinmeyen kondansatör kapasiteleri LCR metreler (Endüktans, kapasitans ve direnç ölçer) ile tam olarak ölçülebilir. Kondansatörün Sağlamlık Kontrolü Kondansatör ölçümünde LCR metrelerden yararlanılır. LCR metre kondansatör kapasitesine uygun C konumuna alınır ve kondansatör LCR metre uçlarına bağlanır. LCR metre kondansatör üzerindeki yazılı değeri gösteriyorsa kondansatör sağlamdır aksi taktirde arızalıdır. 40

41 KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Kondansatör Sağlamlık Kontrolü LCR metrenin bulunmadığı durumlarda kondansatörün sağlamlık kontrolü kabaca analog ohmmetre ile şu şekilde yapılır. Elektrolitik kondansatör uçları analog ohmmetre uçlarına bağlandığında ohmmetre hızlıca sağa doğru sapıp geri eski haline yavaş yavaş geliyorsa kondansatör sağlamdır. İbre sağa saptıktan sonra geri eski haline gelmiyorsa kondansatör kısa devre, ibre hiç sapmıyorsa kondansatör açık devredir. Küçük kapasiteli (0,47μF ve daha aşağısı) kondansatörler ohmmetre ile ölçüldüğünde hiçbir kademede ibrenin sapmaması gerekir. 41

42 42 BOBİNLER

43 BOBİNLER VE BOBİN ÖLÇÜMÜ Tanımlar Bobin, bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur. Kullanım yerine göre, makara içerisi boş kalırsa "havalı bobin", demir bir göbek (nüve) geçirilirse "nüveli bobin" adını alır. Bobinin her bir sarımına "spir" denir. Bobinin sembolü Bir iletkenden akım geçirildiğinde, iletken etrafında bir manyetik alan oluşur. Bu alan kâğıt üzerinde daireler şeklindeki kuvvet çizgileri ile sembolize edilir. Bir bobinden AC akım geçirildiğinde, bobin sargılarını çevreleyen bir manyetik alan meydana gelir. Akım büyüyüp küçülüşüne ve yön değiştirmesine bağlı olarak bobinden geçen kuvvet çizgileri çoğalıp azalır ve yön değiştirir. DC gerilim uygulanırsa, Bobin DC akıma ilk anda direnç gösterir. Bu nedenle bobine DC akım uygulandığında bobin ilk anda yalıtkan daha sonra iletkendir. Bobine AC akım uygulandığında ise akımın yönü devamlı değiştiği için bir direnç gösterir. 43

44 BOBİNLER VE BOBİN ÖLÇÜMÜ Tanımlar İndüktans; Elektromanyetizma ve elektronikte bir bobinin manyetik alan içerisinde enerji depolama kapasitesidir. Bobin, bir devrede akımın değişimiyle orantılı olarak karşı gerilim üretirler. Bu özelliğe, öz indüksiyon denir. Bir devredeki öz indüksiyon L ile gösterilir, SI birimi Henry dir. L = μ 0.N 2.A (Henry) l Bobinin indüktansı çeşitli faktörlere göre azalmakta ya da artmaktadır. Sarım sayısı Nüvenin cinsi Sarımlar arası aralık Tel kesiti Bobinin biçimi Sargı katı sayısı Bobinin çapı Sargı tipi Uygulanan AC gerilimin frekansıdır. 44

45 BOBİNLER VE BOBİN ÖLÇÜMÜ Tanımlar Zıt Elektro Motor Kuvveti (EMK) Bobin içerisindeki kuvvet çizgilerinin değişimi, bobinde zıt elektromotor kuvvet (zıt EMK) adı verilen bir gerilim endükler. Gerilimin yönü, kaynak gerilimine ters yöndedir. Dolayısıyla da zıt EMK, bobinden, kaynak geriliminin oluşturduğu akıma ters yönde bir akım akıtmaya çalışır. Bu nedenledir ki, kaynak geriliminin oluşturduğu "I" devre akımı, ancak T/4 periyot zamanı kadar geç akmaya başlar. Endüktif Reaktans (XL) Bobinin, içinden geçen AC akıma karşı gösterdiği dirence Endüktif reaktans' denir. Endüktif reaktans XL ile gösterilir. Birimi "Ohm" dur. X L = ω. L 'dir. ω = 2. π. f olup yerine konulursa, X L = 2. π. f. L ohm olur. ω: Açısal hız (Omega) f: Uygulanan AC gerilimin frekansı, Herzt (Hz) L: Bobinin endüktansı, Henry (H) L nin birimi Henry (H) 'dir. 45 1mH = 10-3 H 1H = 10 3 mh 1µH = 10-6 H 1H = 10 6 µh 'dir.

46 BOBİNLER VE BOBİN ÖLÇÜMÜ Bobin Çeşitleri 46

47 BOBİNLER VE BOBİN ÖLÇÜMÜ Bobinlerin Okunması Bobinlerin Okunması Üzerinde yazı olan bobinlerde değer "mikrohenry" dir. İlk iki rakam sayı üçüncü değer çarpandır. Eğer sayılar arasındaki R virgülü ifade eder. 101 = μh = 100μH = 0,1mH 4R7 = 4,7μH Bazen yazının sonuna F, G, J, K, veya M harfleri kullanılarak bobinin toleransı yazılabilir. F = %1 G = %2 J = %5 K = %10 M = %20 47

48 BOBİNLER VE BOBİN ÖLÇÜMÜ Bobinlerin Okunması Renk kodu olanlarda dirençlerde olduğu gibi her rengin bir değeri vardır. Okunan değerler mikrohenry birimindedir. Bant Renkler 1.Bant 2.Bant Çarpan Tolerances % Altın (Gold) x 0.1 +/-5% Gümüş(Silver) x /-10% Siyah(Black) 0 0 x1 +/-20% K.rengi(Brown) 1 1 x10 (0) Kırmızı(Red) 2 2 x100 (00) Turuncu(Orange) 3 3 x1000 (000) Sarı(Yellow) 4 4 x10000 (0,000) Yeşil(Green) 5 5 Mavi(Blue) 6 6 Mor(Violet) 7 7 Gri(Grey) 8 8 Beyaz(White)

49 BOBİNLER VE BOBİN ÖLÇÜMÜ Bobinlerin Bağlantıları (Seri Bağlantı) Bobin Bağlantıları Seri Bağlantı Bobinlerin birbiri ardına eklenmesi ile elde edilen, devre akımının bütün devre elemanlarından geçtiği devreye denir. Bobinler seri bağlandıklarında endüktans ve endüktif reaktansları artar. I L1,XL1 U1 L2,XL2 U2 LN,XLN UN U Eşdeğer endüktans Eşdeğer endüktif reaktans L = L 1 + L L n X L = X L1 + X L X Ln 49

50 BOBİNLER VE BOBİN ÖLÇÜMÜ Bobinlerin Bağlantıları (Paralel Bağlantı) Paralel Bağlantı Bobinlerin karşılıklı uçlarının bağlanması ile oluşan devreye denir. Bobinler paralel bağlandıklarında toplam endüktans ve endüktif reaktans azalır. I U I1 L1 XL1 U1 I2 L2 XL2 U2 IN UN Eşdeğer endüktans Eşdeğer endüktif reaktans 1 = L L 1 L 2 L n 1 = X L X L1 X L2 X Ln 50

51 DİRENÇ, BOBİN VE KONDANSATÖR BAĞLANTILARI Karşılaştırılması 51

52 52 DİYOTLAR

53 DİYOT Tanımlar Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Bu özelliğinden dolayı en çok kullanım alanlarından biri doğrultmadır. Alternatif gerilimin doğrultulup doğru akıma dönüştürülmesinde kullanılırlar. Diyotun P tipi tabakasına anot N tipi tabakasına katot denir. Katot tarafı bir çizgi ile işaretlenmiştir. Direncin küçük olduğu yöne doğru yön veya iletim yönü, büyük olduğu yöne ters yön veya tıkama yönü denir. Diyot sembolü akım geçiş yönünü gösteren bir ok şeklindedir. Diyotun uçları pozitif (+) ve negatif (-) işaretleri ile de belirlenir. + uca anot, - uca katot denir. Diyotun anoduna, gerilim kaynağının pozitif (+) kutbu, katoduna kaynağın negatif (-) kutbu gelecek şekilde gerilim uygulandığında diyot iletime geçer. Diyotların yapı malzemeleri Germanyum veya Silisyumdur. Silisyum diyotlar doğru yönde bağlandığı takdirde 0,6V civarında iletime geçerler geriye kalan gerilimi doğrudan üzerinden geçirir. Germanyum diyot lar ise 0,3V civarında iletime geçer. AC gerilimi DC gerilime çevirmek için silisyum diyot kullanılır. 53

54 DİYOT Diyotun Çalışması Yarı iletkenler P ve N tabakası olarak iki ayrı eklemden oluşur. N tipinde atomların son elektronlarında 1 fazla elektron vardır. Elektron verme eğilimindedir. Elektronlarda negatif yük olduğu için N tabakası denir. P tipinde de Atomların son elektron sayılarında eksiklik vardır. Yani pozitif kabul ettiğimiz oyuklar vardır. Polarlamasız diyot yapısı Doğru polarmalı diyot Bir diyot N ve P tabakalarının birleşiminden oluşur. Bilindiği gibi elektrik elektronların hareketidir. Yarı iletkende elektron hareketi olabilmesi için uygun ortam olması gereklidir. Yani doğru yönde gerilim verilmesi gereklidir. 54

55 DİYOT Diyotun Çalışması Eğer doğru yönde elektrik verilirse yani P tabakasına pozitif N tabakasına negatif. Zıt kutuplar bir birini çeker aynı kutuplar bir birini iter. N tabakasındaki elektronlar negatif kutup tarafından itilir ve pozitif kutup tarafından çekilir. Eklemin arasındaki direnç bölgesi azalır ve elektronlar pozitif kabul ettiğimiz oyuklara atlamaya başlar ve elektrik hareketi başlar. Eğer ters gerilim verilirse, N tabakasındaki elektronlar pozitif yük tarafından çekilir. Eklemin arasındaki direnç bölgesi büyür ve hiç bir elektron hareketi olmaz. Ters polarmalı diyot 55

56 DİYOT Diyotun Çalışması 56

57 DİYOT Diyotun Çalışması 57

58 DİYOT Diyot Çeşitleri 58

59 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) LED (Işık Yayan) Işık yayan diyotlar, doğru yönde gerilim uygulandığı zaman ışıyan, diğer bir deyimle elektriksel enerjiyi ışık enerjisi haline dönüştüren özel katkı maddeli PN diyotlardır. Bu diyotlara, aşağıda yazılmış olduğu gibi, İngilizce adındaki kelimelerin ilk harfleri bir araya getirilerek LED (Light Emitting Diode; Işık yayan diyot) veya SSL (Solid State Lamps; Katı hal lambası) denir. LED diyot sembolü 59

60 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) 60

61 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) Özellikleri Çalışma gerilimi 1,5-2,5V arasındadır. (Kataloğunda belirtilmiştir.) Çalışma akımı 10-20mA arasındadır. (Kataloğunda belirtilmiştir.) Uzun ömürlüdür. (ortalama saat) Darbeye ve titreşime karşı dayanıklıdır. Kullanılacağı yere göre çubuk şeklinde veya dairesel yapılabilir. Çalışma zamanı çok kısadır. (nanosaniye) Diğer diyotlara göre doğru yöndeki direnci çok daha küçüktür. Işık yayan diyotların gövdeleri tamamen plastikten yapıldığı gibi, ışık çıkan kısmı optik mercek, diğer kısımları metal olarak da yapılır. 61

62 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) Organic light emitting diode (OLED) 62

63 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) Bir LED 'in üretimi sırasında kullanılan değişik katkı maddesine göre verdiği ışığın rengi değişmektedir. Katkı maddesinin cinsine göre şu ışıklar oluşur: GaAs (Galliyum Arsenid): Kırmızı ötesi (görülmeyen ışık) GaAsP (Galliyum Arsenid Fosfat): Kırmızıdan - yeşile kadar (görülür) GaP (Galliyum Fosfat): Kırmızı (görülür) GaP (Nitrojenli): Yeşil ve sarı (görülür) Diyot kristali, iki parçalı yapıldığında uygulanacak gerilimin büyüklüğüne göre kırmızı, yeşil veya sarı renklerden birini vermektedir. 63

64 DİYOT Diyot Çeşitleri LED (Işık Yayan Diyot) Işık yayan diyot ısındıkça, ışık yayma özelliği azalmaktadır. Bu hal etkinlik eğrisi olarak gösterilmiştir. Bazı hallerde fazla ısınmayı önlemek için bir soğutucu üzerine monte edilir. Ayrıca LED in aşırı ısınmasına yol açmamak için kataloğunda belirtilen akımı aşmamak gerekir. Bunun için gösterilmiş olduğu gibi devresine seri olarak bir R direnci konur. Bu direncin büyüklüğü LED in dayanma gerilimi ile besleme kaynağı gerilimine göre hesaplanır. LED Diyot Ön Direnç Değerinin Bulunması Ön direnç değeri = Uygulama gerilimi LED çalışma gerilimi Çalışma akımı Örnek: 9V luk bir pil ile kırmızı LED için gerekli olan ön direncin değerini hesaplayınız. Çalışma gerilimini 2V ve akımı 20mA alınız. 9 2 Ön direnç değeri = 0, 02 = 350Ω LED in uzun bacağı daima anottur. Devreden sökülmüş LED in içindeki büyük boyutlu olanına katot ucu bağlıdır. LED in içi gözükmüyorsa kılıfın kenarındaki düz tarafın olduğu bacak katot 64 ucudur.

65 DİYOT Diyot Çeşitleri LED Çalışma Gerilimleri 65

66 DİYOT Diyot Çeşitleri LED Çalışma Gerilimleri Renk Infrared (Kızıl ötesi) Wavelength (Dalga Genliği) Voltage (Gerilim) (V) (nm) λ > 760 ΔV < 1.9 Red (Kırmızı) 610 < λ < < ΔV < 2.03 Orange (Turuncu) 590 < λ < < ΔV < 2.10 Yellow (Sarı) 570 < λ < < ΔV < 2.18 Green (Yeşil) 500 < λ < < ΔV < 4.0 Semiconductor Material (Yarı iietken Malzeme) Gallium arsenide (GaAs) Aluminium gallium arsenide (AlGaAs) Aluminium gallium arsenide (AlGaAs) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP) Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN) Gallium(III) phosphide (GaP) Aluminium gallium indium phosphide (AlGaInP) Aluminium gallium phosphide (AlGaP) 66

67 DİYOT Diyot Çeşitleri LED Çalışma Gerilimleri Blue (Mavi) 450 < λ < < ΔV < 3.7 Zinc selenide (ZnSe) Indium gallium nitride (InGaN) Silicon carbide (SiC) as substrate Silicon (Si) as substrate (under development) Violet (Menekşe) 400 < λ < < ΔV < 4.0 Indium gallium nitride (InGaN) Purple (Mor) multiple types 2.48 < ΔV < 3.7 Dual blue/red LEDs, blue with red phosphor, or white with purple plastic diamond (235 nm) Boron nitride (215 nm) Ultraviolet λ < < ΔV < 4.4 Aluminium nitride (AlN) (210 nm) (Ultraviyole) Aluminium gallium nitride (AlGaN) Aluminium gallium indium nitride (AlGaInN) (down to 210 nm) White (Beyaz) Broad spectrum ΔV = 3.5 Blue/UV diode with yellow phosphor 67

68 DİYOT Diyot Çeşitleri Zener Diyot Zener Diyotlar Doğru yönde polarmalandığında normal bir diyot gibi çalışan; ters yönde polarmalandığı zaman ise kırılma(zener) gerilimine kadar iletime geçmeyen, kırılma geriliminden sonra çığ etkisi şeklinde akım geçiren diyotlardır. Zener belirli bir gerilimden sonra iletime geçer. Uygulamada, gerilimin sabitlenmesi, sinyal kırpma, elektronik eleman koruma v.b. İçin kullanılıırlar. Piyasada değişik gerilim değerlerine sahip zener diyotlar bulunmaktadır. Zener diyotu yüksek akıma karşı korumak için direnç ile seri bağlamak gerekir. Ters gerilim kalkınca, zener diyot da normal haline döner. Devrelerde, ters yönde çalışacak şekilde kullanılır. Bir zener diyot zener gerilimi ile anılır. Silikon yapılıdır. 68 Zener diyot sembolü

69 DİYOT Diyot Çeşitleri Zener Diyot Zener Diyodunun Özellikleri: Doğru polarmalı halde normal bir diyot gibi çalışır. Ters polarmalı halde, belirli bir gerilimden sonra iletime geçer. Bu gerilime zener dizi gerilimi veya daha kısa olarak zener gerilimi denir. Ters gerilim kalkınca, zener diyotta normal haline döner. Devrelerde, ters yönde çalışacak şekilde kullanılır. Bir zener diyot zener gerilimi ile anılır. Örn: "30V'luk zener" denildiğinde, 30V 'luk ters gerilimde çalışmaya başlayan zener diyot demektir. 69

70 DİYOT Diyot Çeşitleri Zener Diyot Diyot ların değerleri doğrudan üzerlerine yazılır. Zener diyot larda sabit voltaj değeri yazılırken diğer diyot larda diyot un modeli yazılır. Mesela bir zener diod üzerinde 2v7 yazıyorsa bu 2.7V bir zener diyot anlamına gelir. Diğer diyot larda ise 1N4001, 1N4148 gibi diyot un modeli yazılır. Genellikle katot ucuna yakın tarafa bir çizgi konularak anot katot uçlarının kolay bulunması sağlanır. 70

71 DİYOT Diyotun Sağlamlık Kontrolü Diyotun sağlamlık kontrolü Diyotlar, elektrik akımına karşı bir yönde küçük direnç gösterirken diğer yönde büyük direnç gösterirler. Analog bir avometre ile diyot kontrolünde ölçü aleti X1 kademesine alınıp iki yönde de diyot uçlarına temas ettirilir. Bu ölçümlerde ölçü aleti bir yönde sapıyor diğer yönde sapmıyorsa diyot sağlam demektir. Ohmmetrede küçük direnç okunduğu sırada ohmmetrenin siyah renkli probu (- ucu) diyotun anotunu, kırmızı renkli probu (+ ucu) diyotun katodunu gösterir. Çünkü analog ölçü aletlerinde aletin + ucu (kırmızı prob) içindeki bataryanın ucu ve aletin ucu (siyah prob) içindeki bataryanın + ucudur. Dijital ölçü aletlerinde ise ölçü aletinin kademe anahtarı buzzerli diyot ölçme kısmına getirilir. Bir yönde alet arasında bir değer gösterir diğer yönde değer göstermez ise diyot sağlamdır. Eğer alet 500 den küçük bir değer gösterip ses ile sürekli uyarıyorsa diyot kısa devre olmuş demektir. Dijital ölçü aletlerinde prob uçları pil ile aynı polariteli olduğundan değer gösterdiği andaki uçlar anot (kırmızı prob) ve katot (siyah prob) uçlarıdır. 71

72 DİYOT Diyotun Sağlamlık Kontrolü Ters polarmada (katot + uca, anot uca bağlı) iken ekranda yüksek direnç değeri; doğru polarmada (anot + uca, katot uca bağlı) iken ekranda düşük direnç değeri görülmelidir. 72

73 KAYNAKLAR 1. NACAR, A. Mahmut; Elektrik-Elektronik Ölçmeleri ve İş Güvenliği 2. ANASIZ, Kadir; Elektrik Ölçü Aletleri ve Elektriksel Ölçmeler; MEB Yayınları 3. MEGEP; Fiziksel Büyüklüklerin Ölçülmesi; Ankara MEGEP; Elektriksel Büyüklüklerin Ölçülmesi; Ankara New International Safety Standards for Digital Multimeters

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI 1 ELEKTRONİK DEVRE ELEMANLARI 2 3 KONDANSATÖRLER Elekrolitik, seramik ve smd kondansatörler 4 5 6 3 fazlı kompanzasyon kondansatörleri, güç faktörü düzeltilmesi için kullanılır ve fiziksel olarak büyüktürler.

Detaylı

KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar. Kondansatör Semboller

KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar. Kondansatör Semboller 1 KONDANSATÖRLER KONDANSATÖRLER VE KONDANSATÖR ÖLÇÜMÜ Tanımlar Elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanıldığı iki iletken levha arasına

Detaylı

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Doğru ve Alternatif

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu Direnç Dirençler elektronik devrelerin vazgeçilmez elemanlarıdır. Yaptıkları iş ise devre içinde kullanılan diğer aktif elemanlara uygun gerilimi temin etmektir. Elektronik devreler sabit bir gerilim ile

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

TEMEL ELEKTRONĠK DERSĠ

TEMEL ELEKTRONĠK DERSĠ TEMEL ELEKTRONĠK DERSĠ ÖĞRETMEYE YÖNELĠK TEST SORU BANKASI HAZIRLAYAN: Öğr.Gör.Aykut Fatih GÜEN 1 ÜNĠTE 1 TEST SORU BANKASI (TEMEL ELEKTRONĠK) DĠRENÇ SORULARI Aşağıdakilerden hangisi, pasif devre elemanlarının

Detaylı

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir,

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir, 9.KISIM BOBİNLER Dış ısıya dayanıklı yalıtkan malzeme ile izole edilmiş Cu veya Al dan oluşan ve halkalar halinde sarılan elemana bobin denir. Bir bobinin alternatif akımdaki direnci ile doğru akımdaki

Detaylı

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ TEMEL BİLGİLER DiRENÇLER DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI Elektrik akımına karşı gösterilen zorluğa direnç

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI:

Detaylı

A- TEMEL KAVRAMLAR 1- Elektrik Akımı: 2- Gerilim:

A- TEMEL KAVRAMLAR 1- Elektrik Akımı: 2- Gerilim: A- TEMEL KAVRAMLAR 1- Elektrik Akımı: Elektrik Akımı elektrik elektronik devrelerin temelini oluşturmaktadır. Elektrik akımını oluşturan temel faktör ise elektron akımıdır. Elektron akımı da, bağlantı

Detaylı

DENEY 1 DİYOT KARAKTERİSTİKLERİ

DENEY 1 DİYOT KARAKTERİSTİKLERİ DENEY 1 DİYOT KARAKTERİSTİKLERİ 1.1. DENEYİN AMACI Bu deneyde diyotların akım-gerilim karakteristiği incelenecektir. Bir ölçü aleti ile (volt-ohm metre) diyodun ölçülmesi ve kontrol edilmesi (anot ve katot

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK ELEKTRONİK 1 1. Atomun çekirdeği nelerden oluşur? A) Elektron B) Proton C) Proton +nötron D) Elektron + nötron 2. Elektron hangi yükle yüklüdür?

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot ElektronikI Laboratuvarı 1. Deney Raporu AdıSoyadı: İmza: Grup No: 1 Diyot Diyot,Silisyum ve Germanyum gibi yarıiletken malzemelerden yapılmış olan aktif devre elemanıdır. İki adet bağlantı ucu vardır.

Detaylı

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori: Deney 3: Diyotlar ve Diyot Uygulamaları Amaç: Diyot elemanını ve çeşitlerini tanımak Diyotun çalışma mantığını kavramak Diyot sağlamlık kontrolü İleri kutuplama, geri kutuplama ve gerilim düşümü. Araç

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

DENEY 3: SERİ VE PARALEL BAĞLI DEVRE ELEMANLARI

DENEY 3: SERİ VE PARALEL BAĞLI DEVRE ELEMANLARI DENEY 3: SERİ VE PARALEL BAĞLI DEVRE ELEMANLARI A. DENEYİN AMACI : Bu deneyde,, direnç, kapasite, bobin gibi elektrik devre elemanları sağlamlık kontrolleri ve breadboard üzerinde kurulacak devrelerde

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi.

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI Amaç: 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. Kuramsal Bilgi: i. Kondansatörler Kondansatör doğru akım (DC)

Detaylı

Analog Elektronik. Öğr.Gör. Emre ÖZER

Analog Elektronik. Öğr.Gör. Emre ÖZER Analog Elektronik Öğr.Gör. Emre ÖZER Analog Devre Elemanları Dirençler Dirençler elektrik akımına zorluk gösteren elektronik devre elemanlarıdır. Alman bilim adamı Ohm tarafından 1827 yılında bulunmuştur.

Detaylı

Dirençler üzerlerinden geçen akıma zorluk gösteren devre elemanlarıdır. Devre uygulamalarında dirençler, akım sınırlayıcı, gerilim düşürücü, devre

Dirençler üzerlerinden geçen akıma zorluk gösteren devre elemanlarıdır. Devre uygulamalarında dirençler, akım sınırlayıcı, gerilim düşürücü, devre Devre Elemanları Dirençler üzerlerinden geçen akıma zorluk gösteren devre elemanlarıdır. Devre uygulamalarında dirençler, akım sınırlayıcı, gerilim düşürücü, devre yükü, akım ayarlayıcısı olarak kullanılır.

Detaylı

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI BCP103 Öğr.Gör. MEHMET GÖL 1 Ders İçeriği Analog ve sayısal sinyal kavramları ler, çeşitleri, uygulama yerleri, direnç renk kodları Kondansatörler, çalışması, çeşitleri,

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Diyotu tanımlayınız. Diyot bir yönde akım geçiren, diğer yönde akım geçirmeyen elektronik devre elemanıdır. Diyotlarda anot ve katodu tanımlayınız. Diyot

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

KONDANSATÖRLER Farad(F)

KONDANSATÖRLER Farad(F) KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilir. Birimi Farad(F) C harfi

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

Hazırlayan: Tugay ARSLAN

Hazırlayan: Tugay ARSLAN Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optik Sensörler Üzerine düşen ışığa bağlı olarak üstünden geçen akımı değiştiren elemanlara optik eleman denir. Optik transdüserler ışık miktarındaki değişmeleri elektriksel

Detaylı

1.7 KONDANSATÖRLER (KAPASİTÖR)

1.7 KONDANSATÖRLER (KAPASİTÖR) 1.7 KONDANSATÖRLER (KAPASİTÖR) Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak, bir yalıtkan malzemenin iki metal tabaka

Detaylı

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA İçindekiler Temel Kavramlar Devre Elemanları Elektrik Devre Kaynakları GERİLİM (v) Pozitif ve negatif yük birbirinden ayrıldığı zaman enerji harcanır. Gerilim,

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK BÖLÜM 5 DİYOT ÇEŞİTLERİ 1) KRİSTAL DİYOT 2) ZENER DİYOT 3) TÜNEL DİYOT 4) IŞIK YAYAN DİYOT (LED) 5) FOTO DİYOT 6) AYARLANABİLİR KAPASİTELİ DİYOT (VARAKTÖR - VARİKAP) DİĞER DİYOTLAR 1) MİKRODALGA DİYOTLARI

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

SIĞA VE DİELEKTRİKLER

SIĞA VE DİELEKTRİKLER SIĞA VE DİELEKTRİKLER Birbirlerinden bir boşluk veya bir yalıtkanla ayrılmış iki eşit büyüklükte fakat zıt işaretli yük taşıyan iletkenlerin oluşturduğu yapıya kondansatör adı verilirken her bir iletken

Detaylı

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) 1 DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) Alternatif akım devrelerinde üç çeşit devre elemanı vardır. Bunlar; direnç, bobin ve kondansatördür. Sadece direnç bulunduran alternatif akım devreleri

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI 1 ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 2 3 DİRENÇ ÖLÇÜMÜ DİRENÇLER VE DİRENÇ ÖLÇÜMÜ Tanımlar Direnç, kısaca elektrik akımına karşı gösterilen zorluk şeklinde tanımlanır. Direnç R ile

Detaylı

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) 1 DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) ALTERNATİFDA DİRENÇ VE REAKTANS Alternatif akım devrelerinde üç çeşit devre elemanı vardır. Omik Direnç, Bobin Kondansatör Sadece direnç bulunduran

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİYOTLAR Diyot tek yöne elektrik akımını ileten bir devre elemanıdır. Diyotun

Detaylı

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ Deneyin Amacı: DENEY-1:DİYOT Elektronik devre elemanı olan diyotun teorik ve pratik olarak tanıtılması, diyot

Detaylı

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DENEY 6: KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI 1. Açıklama Kondansatör doğru akımı geçirmeyip alternatif akımı

Detaylı

Analog Elektronik. Öğr.Gör. Emre ÖZER. Analog Devre Elemanları Dirençler

Analog Elektronik. Öğr.Gör. Emre ÖZER. Analog Devre Elemanları Dirençler Analog Elektronik Öğr.Gör. Emre ÖZER Analog Devre Elemanları Dirençler Dirençler elektrik akımına zorluk gösteren elektronik devre elemanlarıdır. Alman bilim adamı Ohm tarafından 1827 yılında bulunmuştur.

Detaylı

HAFTA SAAT KAZANIM ÖĞRENME YÖNTEMLERİ ARAÇ-GEREÇLER KONU DEĞERLENDİRME

HAFTA SAAT KAZANIM ÖĞRENME YÖNTEMLERİ ARAÇ-GEREÇLER KONU DEĞERLENDİRME 75. YIL MESLEKİ VE TEKNİK ANADOLU LİSESİ ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ALANI ELEKTRİK-ELEKTRONİK ESASLARI DERSİ 10. SINIF ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI EYLÜL EYLÜL EKİM 1.(17-23) 2.(24-30) 3.(01-07)

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, YARIİLETKEN MALZEMELER Yarıiletkenler; iletkenlikleri iyi bir iletkenle yalıtkan arasında bulunan özel elementlerdir. Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, Ge Germanyum

Detaylı

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ Hazırlayan Arş. Gör. Ahmet NUR DENEY-1 ÖLÇÜ ALETLERİNİN İNCELENMESİ Kapaksız

Detaylı

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr 2. HAFTA BLM223 Yrd. Doç Dr. Can Bülent FİDAN hdemirel@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2. AKIM, GERİLİM E DİRENÇ 2.1. ATOM 2.2. AKIM 2.3. ELEKTRİK YÜKÜ

Detaylı

SICAKLIK ALGILAYICILAR

SICAKLIK ALGILAYICILAR SICAKLIK ALGILAYICILAR AVANTAJLARI Kendisi güç üretir Oldukça kararlı çıkış Yüksek çıkış Doğrusal çıkış verir Basit yapıda Doğru çıkış verir Hızlı Yüksek çıkış Sağlam Termokupldan (ısıl İki hatlı direnç

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

EEME 210 ELEKTRONİK LABORATUARI

EEME 210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME 210 ELEKTRONİK LABORATUARI DENEY 01: DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ 2014-2015 BAHAR Grup Kodu: Deney

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 1 Deney Adı: Dirençler ve Kondansatörler Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM KONDANSATÖRLER

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM KONDANSATÖRLER BÖLÜM KONDANSATÖRLER AMAÇ: İklimlendirme ve soğutma kompresörlerinde kullanılan kalkış (ilk hareket) ve daimi kondansatörleri seçebilme ve bağlantılarını yapabilme. Kondansatörler 91 BÖLÜM-7 KONDANSATÖRLER

Detaylı

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI DENEY NO: DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI Bu deneyde direnç elamanını tanıtılması,board üzerinde devre kurmayı öğrenilmesi, avometre yardımıyla direnç, dc gerilim ve dc akım

Detaylı

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 DENEY RAPORU DENEY 1. YARI İLETKEN DİYOT KARAKTERİSTİĞİ Yrd.Doç.Dr. Engin Ufuk ERGÜL Ar.Gör. Ayşe AYDIN YURDUSEV

Detaylı

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM ELEKTRİK TEST CİHAZLARI

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM ELEKTRİK TEST CİHAZLARI BÖLÜM ELEKTRİK TEST CİHAZLARI AMAÇ: Elektriksel ölçme ve test cihazlarını tanıyabilme; kesik devre, kısa devre ve topraklanmış devre gibi arıza durumlarında bu cihazları kullanabilme. Elektrik Test Cihazları

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI Teorinin Açıklaması: Kondansatör doğru akımı geçirmeyip alternatif akımı geçiren bir elemandır. Yükselteçlerde DC yi geçirip AC geçirmeyerek filtre

Detaylı

2.Sabit dirençte V= 50v iken I= 0,5 amper oluyorsa.v2= 100v iken akım kaç amper olur? A) 1A B) 0,5A C) 5A D) 0,1A

2.Sabit dirençte V= 50v iken I= 0,5 amper oluyorsa.v2= 100v iken akım kaç amper olur? A) 1A B) 0,5A C) 5A D) 0,1A TEMEL ELEKTRİK ELEKTRONİK 1.İletkenlerin almaçtan önce herhangi bir sebeple birleşmesiyle oluşan devreye ne denir? A) Açık devre B) Kısa devre C) Kapalı devre D) Elektrik devresi 2.Sabit dirençte V= 50v

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bilgileri edinme, dirençlerin renk kodlarını öğrenme, devre kurma aracı olarak

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK-I LABORATUVARI DENEY 1: YARIİLETKEN DİYOT Yrd.Doç.Dr. Engin Ufuk ERGÜL Arş.Gör. Ayşe AYDIN YURDUSEV Arş.Gör. Alişan AYVAZ Arş.Gör. Birsen BOYLU AYVAZ ÖĞRENCİ

Detaylı

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği ZENER DİYOT VE AKIM-GERİLİM KARAKTERİSTİĞİ Küçük sinyal diyotları, delinme gerilimine yakın değerlerde hasar görebileceğinden, bu değerlerde kullanılamazlar. Buna karşılık, Zener diyotlar delinme gerilimi

Detaylı

9- ANALOG DEVRE ELEMANLARI

9- ANALOG DEVRE ELEMANLARI 9- ANALOG DEVRE ELEMANLARI *ANALOG VE DİJİTAL KAVRAMLARI *Herhangi bir fiziksel olayı ifade eden büyüklüklere işaret denmektedir. *Zaman içerisinde kesintisiz olarak devam eden işaretlere Analog işaret

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Büyük Akım ve Gerilimlerin Ölçümü Ölçü Transformatörleri Ölçü Transformatörleri Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde;

Detaylı

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR )

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tristörler : SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tanımı: Tristör, anot ( A ), katot ( K ) ve geyt ( G ) ucu bulunan ve geytine uygulanan ( + ) sinyal ile A - K arası iletime

Detaylı

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI RLC devrelerinde Rezonans, Bant GeniĢliği, Q DENEY SORUMLUSU ArĢ. Gör. Ahmet KIRNAP ARALIK

Detaylı

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU No Soru Cevap 1-.. kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. 2-, alternatif ve doğru akım devrelerinde kullanılan

Detaylı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı RİZE ÜNİERSİESİ MYO Bilgisayar eknolojileri Bölümü Bilgisayar Programcılığı *** BİLP 07 EMEL ELEKRONİK İZE SNA *** Not: Kalem, silgi vs. alışverişi kesinlikle yasaktır. Kurala uymayanların sınav kağıdı,

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Diyot sembol ve görünüşleri DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ Diyotlar; bir yarısı N-tipi, diğer yarısı P-tipi yarıiletkenden oluşan kristal elemanlardır ve tek yönlü akım geçiren yarıiletken devre elemanlarıdır. N

Detaylı

DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU

DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU 1.1. DENEYİN AMAÇLARI Ölçü aletleri, Breadboardlar ve DC akım gerilim kaynaklarını kullanmak Sayısal multimetre

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER YARI İLETKENLER Doğada bulunan atamlar elektriği iletip-iletmeme durumuna görene iletken, yalıtkan ve yarı iletken olarak 3 e ayrılırlar. İletken maddelere örnek olarak demir, bakır, altın yalıtkan maddeler

Detaylı

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI DENEY-2 Kapaksız raporlar değerlendirilmeyecektir. ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI 1. Teorik Bilgi Asenkron Motorların Çalışma Prensibi Asenkron motorların çalışması şu üç prensibe dayanır:

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

Akımı sınırlamaya yarayan devre elemanlarına direnç denir.

Akımı sınırlamaya yarayan devre elemanlarına direnç denir. Akımı sınırlamaya yarayan devre elemanlarına direnç denir. Gösterimi: Birimi: Ohm Birim Gösterimi: Ω (Omega) Katları: 1 Gigaohm = 1GΩ = 10 9 Ω 1 Megaohm = 1MΩ = 10 6 Ω 1 Kiloohm = 1kΩ = 10 3 Ω 1 ohm =

Detaylı

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS 1. Sunum: Kapasitans ve İndüktans Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS Kapasitans ve İndüktans Kondansatörler elektrik alanlarında, indüktörler ise manyejk alanlarında

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

İletkenin boyu uzadıkça direnci de artar, boyu kısaldıkça direnci azalır. Özetle boy ile direnç doğru orantılıdır.

İletkenin boyu uzadıkça direnci de artar, boyu kısaldıkça direnci azalır. Özetle boy ile direnç doğru orantılıdır. DİRENÇ ÖLÇME Direnç ve İletken En basit ifade ile direnç elektrik akımına karşı gösterilen zorluk olarak ifade edilebilir. Direnci teknik olarak tanımlayacak olursak: 1 mm 2 kesitinde, 106,3 cm boyunda

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bigileri edinme, dirençlerin renk kodlarını öğrenme ve dirençlerin breadboard

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

Elektrik Devre Temelleri 11

Elektrik Devre Temelleri 11 Elektrik Devre Temelleri 11 KAPASİTÖR VE ENDÜKTÖR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi 6.1. Giriş Bu bölümde doğrusal iki devre elemanı olan kapasitör (capacitor)

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı