A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir."

Transkript

1 Yargı cümlelerinde sınıf terimler birbirlerine tüm ve bazı gibi deyimlerle bağlanırlar. Bunlara niceleyiciler denir. Niceleyiciler de aynen doğruluk fonksiyonu operatörleri (önerme eklemleri) gibi mantıksal operatörlerdir (eklemlerdir), fakat önermeler arası ilişkiler yerine, sınıf terimlerinin işaret ettiği kümeler arası ilişkilere işaret ederler. Mesela Tüm A lar B dir yargısı A nın B nin bir alt kümesi olduğunu belirtir, yani A nın üyesi olan tüm şeyler B nin de bir üyesidir. Benzer şekilde Bazı A lar B dir yargısı ise A kümesinin en az bir üyesinin B nin de üyesi olduğunu belirtir. Bu husus dilin günlük normal kullanımından farklılık arz eder. Günlük dilde Bazı A lar B dir demek, birden fazla A nın B olduğunu söylemek anlamına gelir. Yine günlük dilde Benim bazı arkadaşlarım bana kızgın dediğimde hepsinin bana kızgın olduğunu kastetmiş sayılmam, oysa mantıksal bağlamda, tüm arkadaşlarım bana kızgın olduklarında da bu yargı tamamen doğru kabul edilir. Tüm ve bazı niceleyicilerine ek olarak ayrıca hiçbir ya da hiçbiri değildir deyimini de göz önüne almamız icap eder. Çünkü A ların hiçbiri B değildir veya Hiçbir A, B değildir şeklindeki yargılar, A ve B kümelerinin ortak bir üyeye sahip olmadıklarını belirtir. Bu tür yargılarda geçen deyimler içinde sözünü etmediğimiz geriye bir tek dir eki kalıyor. Buna da kopula veya özne-yüklem bağlacı denir, çünkü özne ile yüklemi birbirine bağlar, yani bir niteliği, durumu, özelliği vs. özneye yükler. Demek ki dört tane kategorik yargı var: A Tüm S ler P dir. Tümel olumlu E Hiçbir S, P değildir. Tümel olumsuz I Bazı S ler P dir. Tikel olumlu O Bazı S ler P değildir. Tikel olumsuz Her kategorik yargı bir niceleyici, bir sınıf terimi (özne terimi), bir diğer sınıf terimi (yüklem terimi) ve bir kopuladan oluşur. Bu tür yargıları inceleyen mantığa da Aristoteles mantığı veya klasik mantık denir. Kimi mantıkçılar bu kategorik yargıların değillemelerini de birer kategorik yargı sayarlar. Dikkat ederseniz O-biçimi yargı değil deyimini içermektedir. Değil deyimi kategorik yargılarda birbirinden çok farklı iki görev yerine getirmektedir. Cümlenin bütününe uygulandığında bu deyim doğruluk-fonksiyonu işlevi görmektedir, yani doğruluk değerinin değillenmesi söz konusudur ve bir mantıksal değillemedir. Oysa bu deyim, O-biçimi yargılarda olduğu gibi, sınıf terimlerine uygulandığında tümleyen işlevi görmektedir, yani kümeler arası ilişkilerden bildiğimiz tamlayan/tümleyen ilişkisi. Mesela Bazı ağaçlar meşe ağacı değildir yargısı ile Bazı ağaçların meşe ağacı oldukları doğru değildir yargısı birbirinden çok farklıdır. Birinci yargıda değildir deyimi sadece meşe ağacı terimini değillemektedir, cümlenin bütününü değil. Bu değillemenin sonucu meşe ağacı-olmayan şeklinde yeni bir sınıf terimidir ki meşe ağacı olmayan tüm şeylere işaret etmektedir. Genel olarak, bir S kümesinin elemanı olmayan tüm şeylerin kümesine S nin tümleyeni/tamlayanı denilmektedir ve değil deyimi sınıf terimlerine uygulandığında mantıksal değillemeyi değil tümleme ilişkisini ifade etmektedir. Bu yüzden, Bazı ağaçlar meşe ağacı değildir cümlesinde değildir deyimi tümleme ilişkisini ifade etmekte ve ağaçlar kümesinin meşe ağaçları kümesinin tümleyeni ile en az bir ortak elemanı bulunduğunu, diğer bir deyimle, meşe ağacı olmayan ağaçların bulunduğunu

2 belirtmektedir. Bu cümlenin anlamı Bazı ağaçların meşe ağacı oldukları doğru değildir cümlesinin anlamından çok farklıdır, çünkü burada değildir deyimi bir mantıksal değilleme işlevi görmektedir. Bazı ağaçlar meşe ağacı değildir yargısı doğrudur, çünkü çam ağacı veya kavak ağacı gibi ağaçlar da vardır. Oysa Bazı ağaçların meşe ağacı oldukları doğru değildir yargısı yanlıştır, çünkü Bazı ağaçlar meşe ağacıdır yargısı doğrudur. Bu yüzden kategorik yargılar söz konusu olduğunda değil deyiminin gördüğü işlev tam net olmayabilir ve dikkatli olmak gerekir. Bundan böyle değil deyimi doğruluk fonksiyonu işlevi görüyorsa onu ~ sembolü ile veya doğru değildir deyimi ile göstereceğiz. Tümleyen işlevi gördüğünde ise -değil veya değil- veya -olmayan ile göstereceğiz. Ama günlük dilde değil deyimi her iki anlamda da kullanılabilir ve bu deyimin cümlenin bütününe mi yoksa bir sınıf terimine mi uygulandığının ayırtına varmak muhatap kişiye düşmektedir. ÇÖZÜMLÜ ÖRNEK 1.1 Aşağıdaki yargının mantıksal biçimini saptayınız. Tüm insanlar akılcı değildir. ÇÖZÜM Bu yargı belirsizlik arz eder, çünkü buradaki değil in mantıksal değilleme mi yoksa tümleme mi olduğu tam belli değildir. Eğer mantıksal değilleme ise bu yargı ~ (Tüm İ ler A dır) biçimine, eğer tümleme ise bu yargı Tüm İ ler değil-a dır veya Tüm İ ler A-olmayandır biçimine sahip olacaktır. Birinci halde bu yargı tüm insanların akılcı olmadıklarını ve bazılarının akılcı olduklarını, ikinci halde ise bu yargı tüm insanların akılcı-olmayanlar olduklarını yani hiçbir insanın akılcı olmadığını söylemiş olacaktır. Birbiriyle tümleyen ilişkisi içinde olan terimlere de dikkat etmek gerekir. Örneğin imkânsız şeyler, mümkün şeyler ile tümleyen ilişkisi içindedir, birbirlerini tümlerler, çünkü bir şey ya imkânsızdır ya da mümkündür, üçüncü bir seçenek yoktur. Oysa mutsuz şeylerin kümesi mutlu şeyler kümesinin tümleyeni değildir, çünkü pek çok şey ne mutludur ne de mutsuz (örneğin taşlar veya yansız bir ruh hali içinde olan insanlar gibi). Dolayısıyla mutlu şeyler kümesinin tümleyeni mutlu-olmayan şeyler kümesidir. Bir kategorik yargıda terimler tümlemesiz olabileceği gibi terimlerden biri veya hepsi tümlemeli olabilir. Örneğin Tüm omurgalı-olmayanlar memeli-olmayanlardır yargısı, terimlerinin her ikisi de tümlemeli olan bir A-biçimli yargıdır. Bazı S ler P değildir biçimindeki yargıların iki durumu söz konusu olabilir. Bunlar P teriminin yüklem olduğu O-biçimli yargılar olarak yorumlanabileceği gibi, P-olmayan şeklindeki tümlemeli terimin yüklem olduğu I-biçimli yargılar olarak da yorumlanabilirler. Ama her ikisi de tamamen aynı yargıyı dile getirirler. Aynı terime tümlemenin iki kez uygulanması tümlemeyi iptal eder. Örneğin Tüm insanlar ölümlü-değil-olmayandır yargısı ile Tüm insanlar ölümlüdür yargısı mantıksal eşdeğerdir. Bunlardan birincisi yüklem terimine çift tümleme uygulanmış bir A-biçimli yargıdır, ikincisi ise basit bir A-biçimli yargıdır. Bundan böyle çift tümlemeyi -değil-olmayan deyimi ile göstereceğiz. Diğer

3 taraftan Tüm insanların ölümlü-olmayan olduğu doğru değildir yargısında ise bir mantıksal değilleme ve bir tümleme içerilmektedir. ÇÖZÜMLÜ ÖRNEK 1.4 Aşağıdaki cümlelerden bazıları birer kategorik yargıdır bazıları değildir. Kategorik yargı olanları biçimselleştiriniz ve dört temel biçimden veya bunların değillemesinden hangisine girdiğini belirtiniz. (a) Zimmetine para geçirenlerin tümü kötüdür. (b) Zimmetine para geçirenlerin tümü kötü değildir. (c) Zimmetine para geçirenlerin tümü kötü-olmayandır. (d) Zimmetine para geçirenlerin bazısı kötü değildir. (e) Eğer Cafer zimmetine para geçiren birisiyse Cafer kötüdür. (f) Bu odadaki hiç kimse gitmiyor. (g) Bu odada hiç kimse yok. (h) Bu havlulardan bazısı nemli ve bazısı değil. (i) Elmaslar pahalıdır. (j) Madencilerden bir kaçı sigara tiryakisi değildi (tiryaki-olmayandı). (k) Sokrates ölümlüdür. (l) Eğlenceli bir şey yasaya aykırıdır. (m) Eğlenceli bir şeyin yasaya aykırı olduğu doğru değildir. (n) Ölüm her an her yerde karşına çıkabilir. (o) Yağmur yağıyor. (p) Tavan arasında fare var. (q) Avluda hiçbir iskeletin gömülü olmadığı doğru değil. (r) İçici-olmayanların tümü tiryaki-olmayan değildir. ÇÖZÜM (a) Tüm Z ler K dir. (Z: zimmetine para geçirenler, K: kötü ) (b) ~ (Tüm Z ler K dir). Burada bağlamdan çıkan anlam budur. Buradaki değil bir mantıksal değillemedir, doğru değildir demektir. (c) Tüm Z ler K-olmayandır. Bir A-yargısı. (d) Bazı Z ler K değildir. Bir O-yargısı. Eğer Bazı Z ler K-olmayandır şeklinde yorumlanırsa, bir I-yargısı olur. (e) Bu bir koşullu yargı, kategorik yargı değildir. (f) Hiçbir İ, G değildir. Bir E-yargısı. (İ: bu odadaki insanlar, G: gitmeyen şeyler ) (g) Hiçbir İ, O değildir. Bir E-yargısı. (İ: insanlar, O: bu odadaki şeyler ) (h) Kategorik yargı değil. Bu, bir I-biçimi yargı ile bir O-biçimi yargının bir bileşimidir, fakat kendisi kategorik yargı değildir. (i) Bu, Tüm E ler P dir şeklinde bir A-biçimi yargıya dönüştürülebilir (E: elmaslar, P: pahalı şeyler ). Ama olağan bağlamlarda, istisnasız tüm elmasların pahalı olduklarını anlatan bir yargı gibi anlaşılmaz, fakat elmasların genellikle pahalı şeyler olduklarını anlatır. Bu yüzden, bu yargını kategorik bir yargıya dönüştürülmesi doğru değildir, tam anlamını yansıtmaz.

4 (j) Bu yargı da yine bir miktar çarpıtma/anlamda tahrifatla bir O-biçimi yargıya dönüştürülebilir: Bazı M ler S değildir. (M: madenci, S: sigara tiryakisi ) Aynı zamanda, Bazı M ler S-olmayandır şeklinde bir I-biçimi yargı da olabilir. Burada da anlamda bir çarpıtma söz konusu ve çarpıtma, bir kaçı deyiminin, sayının azlığına gönderme yapmasından kaynaklanmaktadır. (k) Bu yargı Sokrates olan tüm şeyler ölümlü şeylerdir şeklinde okunabilir, yani bir A-biçimi yargıdır: Tüm S ler Ö dür. Ama diğer yandan, birçok mantıkçı Sokrates in bir özel isim olduğunu kabul eder ve bir cins isim gibi ele alınamayacağını söylerler. (l) Tüm E ler Y olmayandır. Bir A-yargısı. (E: eğlenceli şeyler, Y: yasal şeyler ) (m) ~ (Tüm E ler Y-olmayandır). Bir (~ A)-yargısı. (n) Bu bir kategorik yargı değildir ve anlamda aşırı bir çarpıtmaya gitmeden bir dönüştürme yapmak da mümkün değildir. (o) Kategorik yargı değil. (p) Bazı F ler T dir. Bir I-yargısı. (F: fare, T: tavan arasındaki şeyler ) (q) ~ (Hiçbir İ, G değildir). Bir (~ E)-yargısı. (İ: iskeletler, G: avluda gömülü şeyler ) (r) ~ (Tüm İ-olmayanlar T-olmayan değildir). Bir (~ A)-yargısı. (İ: içici, T: tiryaki )

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Mantıksal Operatörlerin Semantiği (Anlambilimi)

Mantıksal Operatörlerin Semantiği (Anlambilimi) Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi),

Detaylı

Venn Diyagramları Kategorik önermelerle ilgili işlemlerde kümeler arası ilişkileri göz önüne almak bu konuda bize yardımcı olur. Bir kategorik önerme, kesişen iki daire ile temsil edilir ve buradaki daireler

Detaylı

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları)

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Daha önce kanıtlamaların geçerliliği üzerine söylenenlerden hatırlanacağı gibi, bir kanıtlamanın geçerli olabilmesi için o kanıtlamadaki öncüller

Detaylı

Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır.

Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır. Doğrudan Çıkarımlar Bir kategorik önermeden diğer bir kategorik önermenin çıkarsandığı çıkarımlara doğrudan çıkarımlar denir. Bunlar, öncül bir önerme ve sonuç bir önerme olmak üzere sadece iki önermeden

Detaylı

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız.

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız. 6.7 x ( Fx zgzx) biçiminin bir ikb olduğunu gösteriniz. Kural 1 gereği Fa ve Gba birer ikb dir. Bu durumda, kural 2 ve 4 gereği, sırasıyla Fa ve zgza birer ikb dir. Bu iki biçime kural 3 ün uygulanması

Detaylı

Tüm S-olmayanlar, P dir önermesini temsil eden bir Venn diyagramı çiziniz.

Tüm S-olmayanlar, P dir önermesini temsil eden bir Venn diyagramı çiziniz. Venn Diyagramları Kategorik önermelerle ilgili işlemlerde kümeler arası ilişkileri göz önüne almak bu konuda bize yardımcı olur. Bir kategorik önerme, kesişen iki daire ile temsil edilir ve buradaki daireler

Detaylı

MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU

MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU 1. Aşağıdaki kanıtlamaların çıkarım belirticilerini, öncül ve sonuç önermelerini, tümdengelimli mi (geçersiz, geçerli veya sağlam), tümevarımlı mı

Detaylı

Russell ın Belirli Betimlemeler Kuramı

Russell ın Belirli Betimlemeler Kuramı Russell ın Belirli Betimlemeler Kuramı Russell ın dil felsefesi Frege nin anlam kuramına eleştirileri ile başlamaktadır. Frege nin kuramında bilindiği üzere adların hem göndergelerinden hem de duyumlarından

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

Microsoft Excel Uygulaması 2

Microsoft Excel Uygulaması 2 Microsoft Excel Uygulaması 2 Dört Temel İşlem: MS Excel hücrelerinde doğrudan değerlere ya da hücre başvurularına bağlı olarak hesaplamalar yapmak mümkündür. Temel aritmetik işlemlerin gerçekleştirilmesi

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

Uygulamalı Yapay Zeka. Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş

Uygulamalı Yapay Zeka. Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş Uygulamalı Yapay Zeka Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş Prolog Yazılımı Bedava Prolog yorumlayıcıları var Linux, Windows, Mac OS Çok fazla sayıda Prolog yazılımı indirmek mümkün Bunlardan birkaçı SWI

Detaylı

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet ÇOK DEĞERLİ MANTIK Klasik mantık sistemleri, sadece belirli koşullarda oluşan, kesin doğruluk değerleri doğru ya da yanlış olan önermelerle ilgilenirler. Belirsizlikle ilgilenmezler. İki değerlikli bu

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

(b) Bir kanıtlamadır. Burada (çünkü) bir öncül belirticidir ve kendisinden sonra gelen yargının öncül olduğunu gösterir.

(b) Bir kanıtlamadır. Burada (çünkü) bir öncül belirticidir ve kendisinden sonra gelen yargının öncül olduğunu gösterir. A-Grubu 1. Soru (B-Grubu 3. Soru ile aynı) Not: bu soruda öncül ve sonuçları sınavda istendiği gibi, verilen boş kağıda açıkça yazmayanlar ve soru kağıdı üzerinde altını çizmek vb. yöntemlerle gösterenlerin

Detaylı

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır.

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. Bu dersimizde biz Microsoft SQL Server veritabanı sistemini kullanmayı öğreneceğiz. SQL Nedir? SQL Structured Query Language

Detaylı

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni SANAT FELSEFESİ Sercan KALKAN Felsefe Öğretmeni Estetik güzel üzerine düşünme, onun ne olduğunu araştırma sanatıdır. A.G. Baumgarten SANATA FELSEFE İLE BAKMAK ESTETİK Estetik; güzelin ne olduğunu sorgulayan

Detaylı

C. Doğru, Yanlış, Doğruluk Değeri Doğru: Bir önermenin nesnesine olan uygunluğudur. Örnek: İnsanlar ölümlüdür.

C. Doğru, Yanlış, Doğruluk Değeri Doğru: Bir önermenin nesnesine olan uygunluğudur. Örnek: İnsanlar ölümlüdür. 1. ÜNİTE MANTIĞA GİRİŞ I. ÜNİTE MANTIĞA GİRİŞ A. Mantığın Tanımı ve Konusu Mantık terimi Arapça kökenli bir sözcüktür. Söz söyleme sanatı, nutuk anlamına gelir. Batıdaki anlamı Yunanca Logos sözcüğünden

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Önermeler. Önermeler

Önermeler. Önermeler Önermeler ers 1 1-1 Önermeler 1-2 1 Önerme Mantığı ve İspatlar Mantık önermelerin doğruluğunu kanıtlamak için kullanılır. Önermenin ne olduğu ile ilgilenmek yerine bazı kurallar koyar ve böylece önermenin

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK &

Detaylı

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ BİLGİSAYAR PROGRAMLAMAYA GİRİŞ 5. ders notu Örnek program yazılımları İlişkisel operatörler Mantıksal operatörler Şartlı deyimler İf deyimi Kaynak: Dr.Deniz DAL ders sunumları Örnek : Dışarıdan girilen

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Derse Genel Bakış Dersin Web Sayfası http://www.mehmetsimsek.net/bm202.htm Ders kaynakları Ödevler, duyurular, notlandırma İletişim bilgileri Akademik

Detaylı

Mantıksal (Logic) Operatörler

Mantıksal (Logic) Operatörler Mantıksal (Logic) Operatörler Bilgisayar dillerinin hemen hepsinde, program akışını kontrol edebilmek ve yönlendirebilmek için mantıksal operatörler kullanılır. Java dilinde kullanılan mantıksal operatörler

Detaylı

FARABİ DE BEŞ TÜMEL. Doktora Öğrencisi, Sakarya İlahiyat Fakültesi, İslam Felsefesi Bilim Dalı,

FARABİ DE BEŞ TÜMEL. Doktora Öğrencisi, Sakarya İlahiyat Fakültesi, İslam Felsefesi Bilim Dalı, FARABİ DE BEŞ TÜMEL Yakup ÖZKAN Giriş Farabi (ö. 950) ortaçağın en önemli felsefecilerinden biridir. Eserlerinin arasında Mantık Bilimi ile ilgili olanları daha fazladır. Farabi, mantıkçı olarak İslam

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

Programın Akışının Denetimi. Bir arada yürütülmesi istenen deyimleri içeren bir yapıdır. Söz dizimi şöyledir:

Programın Akışının Denetimi. Bir arada yürütülmesi istenen deyimleri içeren bir yapıdır. Söz dizimi şöyledir: Programın Akışının Denetimi Bir program komutların yazıldığı sırada akar. Ama çoğunlukla, bu akışı yönlendirmek gerekir. Bu iş için denetim yapılarını kullanırız. Bunlar iki gruba ayrılabilir: Yönlendiriciler

Detaylı

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir. 2. Niceleme Mantığı (Yüklemler Mantığı) Önermeler mantığı önermeleri nitelik yönünden ele aldığı için önermelerin niceliğini göstermede yetersizdir. Örneğin, "Bazı hayvanlar dört ayaklıdır." ve "Bütün

Detaylı

YAZILIM KAVRAMINA BİR BAKIŞ. Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007

YAZILIM KAVRAMINA BİR BAKIŞ. Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007 YAZILIM KAVRAMINA BİR BAKIŞ Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007 YAZILIM ve DONANIM Bilgisayar kavramı, donanım ve yazılım olmak üzere iki ana bileşenden oluşuyor. Elektronik, mekanik

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Önermelerin doğru veya yanlış olabilmesine doğruluk değerleri denir.

Önermelerin doğru veya yanlış olabilmesine doğruluk değerleri denir. A. MANTIĞIN ALANI ve İLKELERİ 1- Mantığın Tanımı Mantığın temel amacı (bilimsel dilden günlük dile kadar tüm alanlardaki) ifadeleri genel bir yöntemle inceleyerek doğruluk ya da yanlışlık yargısıyla değerlendirebilmektir.

Detaylı

Ders 9 İşlem tanımları. Ders Sorumlusu: Dr. Saadettin Erhan KESEN

Ders 9 İşlem tanımları. Ders Sorumlusu: Dr. Saadettin Erhan KESEN Ders 9 İşlem tanımları Ders Sorumlusu: Dr. Saadettin Erhan KESEN GİRİŞ Önceki derslerde iki önemli sistem bileşeni olan veri akışları ve veri yapıları tanımlandı. Bu derste üçüncü sistem bileşeni olan

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Öncelikle Niceleme /Yüklemler Mantığının temel kavramları ve sembolleştirilmesi ile ilgili bilgileri özetleyelim:

Öncelikle Niceleme /Yüklemler Mantığının temel kavramları ve sembolleştirilmesi ile ilgili bilgileri özetleyelim: IV. Ünite: SEMBOLİK MANTIK NİCELEME MANTIĞI / YÜKLEMLER MANTIĞI Önermeler mantığının önermelerin içyapısını, niceliğini ifade etmedeki yetersizliğinden dolayı yeni bir mantık sistemine gerek duyulmuştur:

Detaylı

2. ÜNİTE KLASİK MANTIK

2. ÜNİTE KLASİK MANTIK A. ARİSTOTELES VE MANTIK Mantığın Tarihçesi B. KAVRAMVE TERİM 1. Nelik, Gerçeklik, Kimlik 2. İçlem ve Kaplam 3. Kavram Çeşitleri 4. Beş Tümel 5. Kavramların Birbirleriyle Olan İlişkisi C. TANIM D. ÖNERME

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

MATEMATİK I Ders Notları

MATEMATİK I Ders Notları MATEMATİK I Ders Notları Gazi Üniversitesi Gazi Eğitim Fakültesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, ANKARA 2009 2010 1. ÖNBİLGİLER 1 İÇİNDEKİLER 1.1. ÖNERMELER MANTIĞI... 2 1.2. KÜMELER...

Detaylı

AKIŞ ŞEMASI AKIŞ ŞEMASI AKIŞ ŞEMASI ŞEKİLLERİ GİRİŞ

AKIŞ ŞEMASI AKIŞ ŞEMASI AKIŞ ŞEMASI ŞEKİLLERİ GİRİŞ GİRİŞ AKIŞ ŞEMASI Bir önceki ünitede algoritma, bilgisayarda herhangi bir işlem gerçekleştirmeden ya da program yazmaya başlamadan önce gerçekleştirilmesi düşünülen işlemlerin belirli bir mantık ve plan

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar HESAP Hesap soyut bir süreçtir. Bu çarpıcı ifade üzerine bazıları, hesaplayıcı dediğimiz somut makinelerde cereyan eden somut süreçlerin nasıl olup da hesap sayılmayacağını sorgulayabilirler. Bunun basit

Detaylı

Gereksiz Kodlar. burada if deyiminin else bölümüne gerek var mı? İfade doğruysa zaten fonksiyon geri dönüyor. Bu aşağıdakiyle tamamen eşdeğerdir:

Gereksiz Kodlar. burada if deyiminin else bölümüne gerek var mı? İfade doğruysa zaten fonksiyon geri dönüyor. Bu aşağıdakiyle tamamen eşdeğerdir: Gereksiz Kodlar Kaan Aslan 9 Temuz 1997 Kapalı spor salonu, durak yeri, taşıt aracı, en optimum, geri iade etmek, davranış biçimi Bu ifadelerde bir gariplik var, değil mi? Açık spor salonu göreniniz var

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

9. SINIF MATEMATİK KONU ÖZETİ

9. SINIF MATEMATİK KONU ÖZETİ 2012 9. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: MANTIK İnsan diğer canlılardan ayıran en önemli özelliklerden biri düşünebilme yeteneğidir. Bireyler karşılaştıkları günlük

Detaylı

Türkçe. Cümlede Anlam 19.02.2015. Cümlenin Yorumu. Metinde Kazandıkları Anlamlara Göre Cümleler

Türkçe. Cümlede Anlam 19.02.2015. Cümlenin Yorumu. Metinde Kazandıkları Anlamlara Göre Cümleler Metinde Kazandıkları Anlamlara Göre Cümleler 16-20 MART 3. HAFTA Cümledeki sözcük sayısı, anlatmak istediğimiz duygu ya da düşünceye göre değişir. Cümledeki sözcük sayısı arttıkça, anlatılmak istenen daha

Detaylı

DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ

DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ ÖĞRENCİLER: CİHAN ATLİNAR KAAN YURTTAŞ DANIŞMAN: SERHAT GÖKALP MEV KOLEJİ

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

BAĞLAÇ. Eş görevli sözcük ve sözcük gruplarını, anlamca ilgili cümleleri birbirine bağlayan sözcüklere "bağlaç" denir.

BAĞLAÇ. Eş görevli sözcük ve sözcük gruplarını, anlamca ilgili cümleleri birbirine bağlayan sözcüklere bağlaç denir. BAĞLAÇ Eş görevli sözcük ve sözcük gruplarını, anlamca ilgili cümleleri birbirine bağlayan sözcüklere "bağlaç" denir. Bağlaçlar da edatlar gibi tek başlarına anlamı olmayan sözcüklerdir. Bağlaçlar her

Detaylı

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel Yasa Kavramı Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel yasa her şeyden önce genellemedir. Ama nasıl bir genelleme? 1.Bekarla evli değildir. 2. Bahçedeki elmalar kırmızıdır 3. Serbest

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

7. SINIF TÜRKÇE DERSİ KURS KAZANIMLARI VE TESTLERİ

7. SINIF TÜRKÇE DERSİ KURS KAZANIMLARI VE TESTLERİ EKİM 7. SINIF TÜRKÇE İ KURS I VE LERİ AY FİİL FİİL Fiillerin anlam özelliklerini kavrar. Kip ve çekimli fiili kavrar. Bildirme kipleriyle dilek kiplerini ayırt eder. Bildirme kiplerinin kullanım özelliklerini

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı

Bilgisayar en yavaş parçası kadar hızlıdır!

Bilgisayar en yavaş parçası kadar hızlıdır! Donanım Bilgisayar en yavaş parçası kadar hızlıdır! Merkezi İşlem Birimi Kavramı (CPU) Bilgisayar içerisinde meydana gelen her türlü aritmetiksel, mantıksal ve karşılaştırma işlemlerinden sorumlu olan

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Bu sekme ile genel olarak biçimlendirme ile ilgili ayarlamaların yapıldığı sekmedir.

Bu sekme ile genel olarak biçimlendirme ile ilgili ayarlamaların yapıldığı sekmedir. 3. GİRİŞ SEKMESİ Bu sekme ile genel olarak biçimlendirme ile ilgili ayarlamaların yapıldığı sekmedir. 3.1. Excel 2010 da Kesme, Kopyalama, Yapıştırma ve Biçim Boyacısı Giriş sekmesinin ilk grubu olan Pano

Detaylı

Öğr. Gör. Serkan AKSU http://www.serkanaksu.net. http://www.serkanaksu.net/ 1

Öğr. Gör. Serkan AKSU http://www.serkanaksu.net. http://www.serkanaksu.net/ 1 Öğr. Gör. Serkan AKSU http://www.serkanaksu.net http://www.serkanaksu.net/ 1 JavaScript JavaScript Nedir? Nestcape firması tarafından C dilinden esinlenerek yazılmış, Netscape Navigator 2.0 ile birlikte

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

Bulanık Mantık Denetleyicileri

Bulanık Mantık Denetleyicileri Bulanık Mantık Denetleyicileri Bulanık Çıkarım BULANIK ÇIKARIM İki-değerli mantık Çok-değerli mantık Bulanık mantık Bulanık kurallar Bulanık çıkarım Bulanık anlamlandırma Bulanık Çıkarım İki-değerli mantık

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

Merkezi İşlem Birimi Kavramı (CPU)

Merkezi İşlem Birimi Kavramı (CPU) Donanım Merkezi İşlem Birimi Kavramı (CPU) Bilgisayar içerisinde meydana gelen her türlü aritmetiksel, mantıksal ve karşılaştırma işlemlerinden sorumlu olan elektronik bir aygıttır. Başlıca üç bölümden

Detaylı

GAZBETONLU. HAFİF ÇELiK YAPI. SiSTEMLERİ

GAZBETONLU. HAFİF ÇELiK YAPI. SiSTEMLERİ GAZBETONLU HAFİF ÇELiK YAPI SiSTEMLERİ Patentli Sistemimiz PACKET Gazbetonlu ÇELİK YAPI MESKEN Çelik Yapı nın kendine ait patentli yapı sistemi olan PACKET, çelik yapının bildiğiniz tüm avantajlarından

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

Mikrobilgisayarda Aritmetik

Mikrobilgisayarda Aritmetik 14 Mikrobilgisayarda Aritmetik SAYITLAMA DİZGELERİ Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Konumuz bu tarihi gelişimi incelemek değildir. Kullanılan sayıtlama

Detaylı

Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir?

Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir? Başlangıç Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir? Bilgisayar Bilgisayar, kendisine verilen bilgiler

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI Veritabanı Tasarımı ve Yönetimi Uzm. Murat YAZICI Veritabanı Tasarımı - Projenin tasarım aşamasında veritabanı tasarımı çok iyi yapılmalıdır. Daha sonra yapılacak değişiklikler sorunlar çıkartabilir veya

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

Excel' de formüller yazılırken iki farklı uygulama kullanılır. Bunlardan;

Excel' de formüller yazılırken iki farklı uygulama kullanılır. Bunlardan; 7. FORMÜLLER SEKMESİ Excel in en çok kullanılan yönü hesaplama yönüdür. Hesaplamalar Formüller aracılığıyla yapılır. Formüller sekmesi anlatılırken sık kullanılan formüller ve formül yazımı da anlatılacaktır.

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

İstediği üniversiteye giremeyenlere 4 farklı öneri

İstediği üniversiteye giremeyenlere 4 farklı öneri On5yirmi5.com İstediği üniversiteye giremeyenlere 4 farklı öneri İstediği üniversite ve bölüme yerleşemeyen adaylar yatay geçiş, dikey geçiş, çift anadal ya da yurtdışından Türkiye'deki üniversitelere

Detaylı

AKADEMİK LMS PROGRAMI ÖĞRETİM ELEMANI SORU HAZIRLAMA KILAVUZU

AKADEMİK LMS PROGRAMI ÖĞRETİM ELEMANI SORU HAZIRLAMA KILAVUZU AKADEMİK LMS PROGRAMI ÖĞRETİM ELEMANI SORU HAZIRLAMA KILAVUZU UZAKTAN EĞİTİM AKADEMİK LMS ÖĞRETİM ELEMANI SORU HAZIRLAMA KILAVUZU Hangi derse soru eklenecekse o derse tıklanır. Daha sonra; İşlemler-> Soru

Detaylı

Minterm'e Karşı Maxterm Çözümü

Minterm'e Karşı Maxterm Çözümü Minterm'e Karşı Maxterm Çözümü Şimdiye kadar mantık sadeleştirme problemlerine Çarpımlar-ın-Toplamı (SOP) çözümlerini bulduk. Her bir SOP çözümü için aynı zamanda Toplamlar-ın-Çarpımı (POS) çözümü de vardır,

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı Öğr. Gör. Cansu AYVAZ GÜVEN NESNE TABANLI PROGRAMLAMA Java Değişkenler ve Veri Tipleri Operatörler JAVA Java Java SUN bilgisayar şirketince

Detaylı

C# Programlama Dili. İlk programımız Tür dönüşümü Yorum ekleme Operatörler

C# Programlama Dili. İlk programımız Tür dönüşümü Yorum ekleme Operatörler C# Programlama Dili İlk programımız Tür dönüşümü Yorum ekleme Operatörler 1 İlk Programımız Bu program konsol ekranına Merhaba dünya! yazıp kapanır. Programı geçen derste anlatıldığı gibi derleyin, sonra

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam Microsoft Excel Microsoft Office paket programı ile bizlere sunulan Excel programı bir hesap tablosu programıdır. her türlü veriyi tablolar yada listeler halinde tutmak ve bu veriler üzerinde hesaplamalar

Detaylı

Türk Göç ve İltica Hukukunun Temelleri:

Türk Göç ve İltica Hukukunun Temelleri: Türk Göç ve İltica Hukukunun Temelleri: Yasal Statünün Belirlenmesine İlişkin Sorunlar Prof. Dr. Bülent ÇİÇEKLİ HSYK Sunum Planı 1) Terminoloji 2) Disiplin Olarak 3) Göç ve İltica Hukukunun Kaynakları

Detaylı

KLASİK MANTIK (ARİSTO MANTIĞI)

KLASİK MANTIK (ARİSTO MANTIĞI) KLASİK MANTIK (ARİSTO MANTIĞI) A. KAVRAM Varlıkların zihindeki tasarımı kavram olarak ifade edilir. Ağaç, kuş, çiçek, insan tek tek varlıkların tasarımıyla ortaya çıkmış kavramlardır. Kavramlar genel olduklarından

Detaylı

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com I Bu set 5846 sayılı yasanın hükümlerine göre kısmen ya da tamamen basılamaz, dolaylı dahi olsa kullanılamaz; teksir, fotokoi ya da başka bir teknikle çoğaltılamaz. Her hakkı saklıdır, NİTELİK YAYINCILIK

Detaylı

TORAKLAMA. - Genel Bilgi - Kontrol Yöntemi - Örnekler

TORAKLAMA. - Genel Bilgi - Kontrol Yöntemi - Örnekler TORAKLAMA - Genel Bilgi - Kontrol Yöntemi - Örnekler Genel Bilgi Topraklama Nedir? Elektrik Topraklama Nedir? tesislerinde aktif olmayan bölümler ile sıfır iletkenleri ve bunlara bağlı bölümlerin, bir

Detaylı

KİMLİK, İDEOLOJİ VE ETİK Sevcan Yılmaz

KİMLİK, İDEOLOJİ VE ETİK Sevcan Yılmaz KİMLİK, İDEOLOJİ VE ETİK Sevcan Yılmaz Adem in elması nasıl boğazında kaldı? Adem: Tanrım, kime görünelim kime görünmeyelim? Tanrı: Bana görünmeyin de kime görünürseniz görünün. Kovuldunuz. Havva: Ama

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

TEKNOLOJİ VE TASARIM Dersine giriş.. 11.11.2013 1

TEKNOLOJİ VE TASARIM Dersine giriş.. 11.11.2013 1 TEKNOLOJİ VE TASARIM Dersine giriş.. 11.11.2013 1 Giriş Yaşamımızın tartışmasız en önemli gündemini teknolojik gelişmeler ve tasarım harikası ürünler oluşturuyor..bu sunu sizlere dersimizin amacı ve içeriğini

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

MATEMAT K 1 ÜN TE II KÜMELER

MATEMAT K 1 ÜN TE II KÜMELER ÜN TE II KÜMELER 1. TANIM 2. KÜMELER N GÖSTER M a) Liste yöntemi ile gösterimi b) Venn flemas ile gösterimi c) Ortak özelik yöntemi ile gösterimi 3. KÜMELER N KARfiILAfiTIRILMASI a) Kümenin elaman say

Detaylı