Matematik (lise) öğretmenliği

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Matematik (lise) öğretmenliği"

Transkript

1 Matematik (lise) öğretmeliği

2

3 MATEMATİK (LİSE) TÜRKİYE GENELİ. DENEME SINAVI YANIT ANAHTARI. D. C. C. C. C. B. B. B. C. E. E. C. A. A. D. A. D. E. C. D 5. E 5. A 5. B 5. E 5. B 6. B 6. D 6. D 6. B 6. D 7. C 7. B 7. A 7. B 7. D 8. B 8. D 8. C 8. E 8. A 9. A 9. C 9. C 9. E 9. B 0. D 0. A 0. D 0. A 50. E Tekrar Edilmesi Gereke Koular

4 . P ^ poliomu ikici derecede ve böle de ikici derecede bir poliom olduğuda, bölüm sabit bir sayıdır. P ^ = ^-.m+ 5+ P5 ^ = ^5-.m = m + 7 m = 6 m = 9 olur. P ^ = ^ P ^ = ^ = buluur.. Parabol O ekseie teğet olduğua göre deklemi tam kare olmalıdır. Yai = 0 olmalıdır. ^ ^ ^ ^^ ^ ^ " Pozitif bir oktada teğet olduğuda m = 9 dur. Doğru yaıt E seçeeğidir.. Verile foksiyo içi tamdeğer foksiyoua uygu olarak aralık yazılırsa; ' = + # + $ + -7 $ - -7 $ - buluur. 6. Verile foksiyou görütü kümesi içi 8 f^ ^ a = veb = isea.b= 6olur. 5. I. yol : Verile bağıtı düzeleirse y- = + $ Verile bağıtıı bulua aralıklarda grafi ği çizilirse doğru yaıt E seçeeği buluur. II. yol : Bu tür grafi klerde değer vererek seçeek elemesi yapılabilir. Doğru yaıt E seçeeğidir.

5 6. Verile deklemde a = l değişke değiştirmesi yapılırsa = buluur. e a Bulua ifadeler verile deklemde yerlerie yazılırsa; l - e. = 0 a a a ^e - e.e = 0 ^ a a+ e = e a -a- = 0 a = ve a =- buluur. O alde = deklemi a= ve a=- kökleri içi; e a a = ise = e a =- ise = e - buluur. Kökler çarpımı e.e - = eolacaktır. 8. Verile ifade aşağıdaki gibi düzeleirse; ab + a + b = ab + a + b + = + ab ^ + + b+ = + ^b + ^a + = + olur. O âlde + sayısı aralarıda asal ^a+ ve ^b+ sayılarıı çarpımıdır. Bua göre seçeekler iceleirse Acak + = 9 içi a+ = ve b+ = 9 a = 0 b = 8 olur. a! Z + koşuluu sağlamaz. 7. z ve z karmaşık sayıları içi, z 8i + - = ifadesi karmaşık düzlemde merkezi (-,8) oktası ola ve yarıçapı br ola bir çember belirtir. z - = ifadesi ise karmaşık düzlemde merkezi (,0) ve yarıçapı br ola bir çember belirtir. Bu çemberleri karmaşık düzlemde çizersek; y M 8 z z - z - z M Bu iki çemberi merkezleri arasıdaki uzaklık MM = 0 olduğuda, z- z i e küçük olması içi merkezler arası uzaklıkta iki çemberi yarıçap uzuluklarıı çıkartırsak; z- z = 0-- z - z = 6 br olarak buluur. 9. II. araç I. aracı m öüde yola çıkarsa aldığı mesafe; + t + 8t + 0 şeklide ifade edilir. I. aracı II. aracı yakalayabilmesi içi katedile mesafeler eşit olmalıdır. O âlde ^ ^ Zama egatif olamayacağıda t = tür. 5

6 0. B P L O K M R N S A. Verile olayı olasılığı A olursa; PA ^ e d #. e ^0 e e olur. Karıcaı A oktasıda B ye e kısa yolda gidebileceği güzergalar; A - N - M - L - B A - N - M - O - B A - N - K - L - B A - R - K - L - B dir.. B makiesii gülük üretimi 500 ampul olursa, 500.%=5 i bozuk olur. A makiesideki üretim %0 daa fazla ( %0) 600 ampul olur ve bozuk ampul sayısı 600.%5=0 dur. Koşullu olasılığa göre seçile ampulü bozuk olduğu biliiyorsa, itimal 0 = tür boya kutusuda taesii seçme durumları: c m= = 0'dir... Ara regi ve ou oluştura aa rekleri seçme ali farklı durumdur. Bua göre itimal: dir. 0. X rastgele değişkeii alabileceği değerler bölmesi S olsu. O alde; S " 680,,,,,, olacaktır. Bu örek uzayı er bir elemaıı gerçekleşme olasılığı olacaktır. Böylece X rastgele değişkeii olasılık foksiyou 6 i P(i) / olup P ^ i= olur. i= O alde, X rastgele değişkeii beklee değeri; E ^ M, Pi ^ 6 / i buluur. 6

7 5. 6. D E 5 5 F C D C α α 90 -α A Şekilde 6 DB@ köşege ve DB = br dir. O oktası iç teğet çemberii merkezi olmak üzere 6 OF@ yarı çap ve br dir. DF = - br'dir. A oktasıda geçe köşege çizilirse, AO = br olur. O alde AOF dik üçgeide AF = FO + AO = + ^ ise AF = br olur. ADE dik üçgeide 6 DB@ köşege olduğuda 6 DF@ iç açıortay olur. D A F E O EF = = ^6 -. = 6-6 br olur. Şekilde 6 DF@ açıortay olduğua göre DE = br ise EF = br dir. İç açıortayı uzuluğu DF = DA. DE - AF. FE ^ - = = = = 6 - br olur. B E A B G % % ABCD kare ve m^dce = ise m^ceg= 90- olur. % 6CE@ = 6CG@ olduğuda m^bcg = dır. DC = BC olduğuda CDE ve BCG üçgeleri eş üçgelerdir. DC = BC ise DE = BG ve CE = CG olur. O zama CEG üçgei ikizkear dik üçgedir ve = 5 olur. ta^+ = ta^+ 5 ta ta5 = + - ta.ta5 + = = = 7olur. F β veya elemalarıda eragi birii buluduğu alt küme sayısı içi tüm alt küme sayısıda ve elemalarıı bulumadığı alt küme sayısıı çıkarırız. c m A kümesii e çok iki elemalı alt küme sayısı c m+ c m+ c m= = 7 olur. 7

8 8. 6 ^ B A, ^A B@ = ^B A + ^A B = ^B + A+ ^A + B = ^B, A+ ^A, B = A, B olacaktr. 9. Öce etkisiz elemaı bulalım. e ) = ) e = + e + e = e. ^ + = 0 ) ) ) ) ^ 0. ^,! ve ^,! olduğuda yasıma özelliği yoktur. ^! ^! olduğuda simetri özelliği vardır. ^,! içi ^,! olduğuda ters simetri özelliği yoktur. ^! ^! ^! olduğuda geçişme özelliği yoktur.. ^ ^+! b lim lim + ^ + a = = b! - lim. = ; ` + j c - + m E - =.e = e 'dir.. üç terimliside a =- ve i 0 olduğuda ve sg^- + - =- 'dir. - ' - - = ' + = - ' = # - # 7 buluur. Bua göre, i alabileceği tam sayı değerleri toplamı 5 6 5'tir. + + =. y. Verile toplam, 9 A = / k. ^k+ şeklide ifade edilir. 9 / k= = k + k k= 9 / =. k +. k k= k= = + 6 = 705 buluur. 9 / C 5 ^-, D, ^ A, ^ B,- ^ 8 olduğuda D(,) tür. Doğru yaıt E seçeeğidir.

9 5. lim ^l e l + + " = lim lf = " lim l " e + + p + + e l lim e = c m " = l e / = le = le = olur. 8. Verilelere göre, / / /!!! / / ^!!... c mc... m!!!!! ^e^e e buluur. 6. y ^ 0 olduğuda pay ve pay y ile geişletilirse, lim ^y, " ^0, si^y ^ lim y, " ^0, y. si ^y y yazabiliriz., y döüşümü yapılırsa; si^y lim lim lim y. lim si u ^y, " ^0, y y" u" 0 u elde edilir. 9. Verilelere göre düzeleme yapılırsa T T T T 8 ^A. B. ^ T A. B B 8^BA.. 8^^BA. BB T T 8^BA.. ^^BA. ^ olur. B 7. f foksiyou a oktasıı içere bir aralıkta er mertebede türevleebilir ise; a / k 0 ^k f ^a, ^ a k! k serisie, f foksiyou tarafıda a oktasıda üretile Taylor Serisi deir. O alde f ^ e ii ç f ^ e ise f ^0 f ^ e ise f ^0 f ^ 8e ise f ^0 8 ^ ^ f ^ e ise f ^0 olur. O alde f^ e foksiyouu 0 oktasıdaki Maclauri serisi; ^ / / f ^0 ^ 0.!! f ^ + = g ^ eşitliğide er iki tarafı türevi alıdığıda; ^ ^ ^ ^ ifadesi elde edilir. ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^ 9

10 . f ^ = + m+ ^m- -eğrisii döüm oktasıı apsisi = ise ^ dır. ^ ^ Böylece; f ^ = --5-olur. ^, bu eğrii =- apsisli oktasıdaki teğetii eğimii verir. ^ ^ ^ Teğetii eğimi ise bu oktadaki ormalii eğimi - olur. Bu üçgei alaı, ala foksiyouu. türevii sıfır yapa oktada maksimum değere ulaşacağıda; 8^ B ^ ^ ^ ^ =- ve = olarak buluur. Bu oktalarda agisii maksimum okta olduğuu bulmak içi işaret tablosu yaparsak; ^ = oktası maksimum oktası olur. Bu oktada üçgei yüksekliği, AH = + = br olarak buluur.. Alaı br ola bir dairei yarıçapı; r = ise r = br olarak buluur. A 0 B H O OH = olsu. (OHC) de pisagor bağıtısı uygulaırsa HC = - olarak buluur. T AH. BC ^+. - A^ABC = = = ^+. - dir. C. Verile iki itegral tek itegral ile ifade edilirse; # # # d - 8 d 8 = c - m d ^ - ^+ = # d ^- = ^+ d = c + m + c # = + + c buluur.

11 . Verile ifade de g^= # fd ^ olsu. Bu durumda, O alde; ^ ^ olacaktır.. 6 ^ ^ ^ ^ ^^ ^^ ^ ^^ ^ ^ ^ ^ ^ olacaktır. Bulua ifadede türev alıırsa ^ ^ ^ O alde f 9 ^ = + = 0 olur. Bulua foksiyoları grafi kleri aalitik düzlemde çizelim g ^ = O alde istee itegral bulua daire dilimii alaıdır. - - d..5 # = 60 = buluur. 0 Doğru yaıt E seçeeğidir. 5. # Bd S S f ^ g ^ 0 Verile itegralde, itegrali alıacak ifade de f ^ = - ve g^ = olarak alısı. O alde, f^= y= - ise + y = olur. Bu deklem yarıçapı br ola merkezcil çemberi üst yarısıdır. Ayrıca; g^ = y=, I. açıortay doğrusudur. Bulua ifadeler ortak çözülürse, f ^ = g ^ - = - = = =! verile foksiyoları kesişme oktalarıdır. 6. I. yol : Verile diferasiyel deklem değişkelerie ayrılabilir bir diferasiyel deklemdir. ^ # # ^ ^ ^ II. yol : Verile diferasiyel deklem Lieer Diferasiyel deklemdir. O alde deklemi itegral çarpaı # ^ ^

12 Deklem I^ ^ = e - ^ ^ ^ ` j # # ile çarpılırsa; ^ ^ ^ ^ ^ ^ 9. Verile parametreler düzeleirse; cost y = ve sit = si t cos t y + = + = 6 9 Doğru yaıt E seçeeğidir. 7. Verile deklem değişkelerie ayrılabilir diferasiyel deklemdir. O alde; yd ^ dy 0 d dy 0 y l l y c l c y yc yc olur. 8. Verile diferasiyel deklem değişkelerie ayrılabilir bir deklemdir. O alde; dn kdt N dn # # kdt N l N ktc kt N ce olur. t 0 aıda yatırım a lira olarak kabul edilirse t 6 aıda a lira olmalıdır. 0 t 0 ise a ce ise c a olur. 6k t 6 ise a ce 6k a a e 6k l k l buluur Verile deklemlerde biricisi merkezi M^, -,- ve yarıçapı r = br, ikicisi ise merkezi M^-5,, ve yarıçapı r = br ola küre deklemleridir. M M Küreleri merkezleri arasıdaki uzaklık MM = = = ^+ 5 + ^-- + ^ = 7br'dir. O âlde küreler arasıdaki e kısa uzaklık 7 br'dir. = - - = Doğru yaıt E seçeeğidir.

13 . Gerçekçi matematik öğretimii e öemli iki görüşü; matematiği gerçekle ilişkiledirilmesi ve matematiği bir isa aktivitesi olmasıdır. Gerçekçi matematik öğretimii altı ilkesi bulumaktadır. Etkilik ilkesi, yaparak yaşayarak öğreme alamıa gelmektedir. Gerçeklik ilkesi, matematik öğreimii de gerçek yaşamı matematikleştirilmesiyle yapılması ilkesidir. Düzey ilkesi, çeşitli alama düzeyleride geçmesi demektir. Yei bir düzeye ulaşmaı göstergesi, uygulaa etkilikleri üzeride yeteeğii yasıtabilmesi demektir. İçselleştirme ya da üiteleri etkileşimi ilkesi, gerçekçi matematik öğretimii temel özellikleride biri olarak, matematiği okul dersi olarak farklı öğreme koularıa bölümemesidir. Daa deri matematiksel açıda ise, içselleştirme ilkesie göre; matematik üiteleri birbiride bağımsız gibi düşüülmemelidir. Bağlamsal problemleri çözebilmek içi, çeşitli matematiksel araç gereçler ile birlikte, ilişkili koulara da başvurmak gereklidir. İletişim ilkeside matematik öğreme sosyal bir aktivite olarak düşüülür. Eğitim öğrecilere kedi stratejilerii ve keşifl erii paylaşabilecekleri imkâlar sumalıdır. Reberlik ilkesi, öğrecilere matematiği yeide keşif sürecide reberlik imkâı vermesidir.. Matematik, aralarıda alamlı ilişkiler bulua kedie özgü sembolleri ve termiolojisi ola bir dildir. Eğer öğrecileri matematik dilii doğru geliştirmelerii ve kullamalarıı istiyorsak olara bu dili kullaabilecekleri öğreme ortamları sumalıyız. İletişim becerisii geliştirebilmek içi; matematiksel fi kirleri fi ziksel materyallerle, modellerle, resimler ve diyagramlarla alatabilme; sözel veya yazılı ifadeleri, somut, resim, grafi k ve cebirsel yötemleri modelleyebilme; matematiksel fi kirler ve durumları açıklayabilme ve doğruluğuu gösterebilme, matematiksel dili ve sembolleri gülük dille ilişkiledirebilme, matematiksel fi kirleri değerledirebilmek ve yorumlayabilmek içi okuma, dileme ve görselleştirme becerilerii kullaabilme, matematiksel keşfetme süreci soucuda ulaştığı soucu formüle ederek geele ulaşabilme, matematiksel ifadeleri ilgili sorular doğrultusuda geişletebilme ve doğrulayabilme, matematiksel fi kirleri geliştirilmeside matematiksel gösterimleri gücüü ve rolüü değerledirebilme gibi etkilikler yaptırılmalıdır.. Matematik öğretiside, öğrecileri grafi kleri ve foksiyoları daa kolay kavramalarıı, çözümleri daa ızlı gerçekleştirerek çözülebilecek örek sayısıı arttırmalarıı amaçladığımızda matematik derslerii bilgisayar destekli olmasıı öemi alaşılmaktadır. Bilgisayarı matematik öğretimide kullaılması, matematik öğretimie yöelik yei düşüce ve alayışlara dayalı olarak gerçekleşmektedir. Yapıla araştırmalar soucuda matematik öğretimide bilgisayar tekolojilerii kullamaı yararları şu şekilde sıralamıştır: Matematik dersleride bireysel farklılıkları yaratacağı olumsuz etkileri yok edebilir ya da e aza idirebilir, kalabalık sııflarda öğretmei yüküü afi fl etebilir, bireysel öğremeyi sağlayarak eğitimi kalitesii yükseltebilir, problem çözmede karşılaşıla güçlükleri ve ataları erede olduğuu görmede ve asıl düzeltilebileceği ile ilgili bilgi vermede yardımcı olabilir. Doğru yaıt E seçeeğidir.. Lise matematik öğretim programıda, öğrecileri öz düzelemeyle ilgili özelliklerii gelişimi öemli bir yer tutmaktadır. Öz düzeleme becerisie saip oluması içi edefl eeler; matematikle ilgili koularda kedii motive etme, matematik dersi içi edefl er belirleyerek bulara ulaşmak içi kedii yöledirme, matematik derside isteeleri zamaıda ve düzeli olarak yapma, matematikle ilgili çalışmalarda kedi kedii sorgulama, matematik derside itiyacı olduğuda aileside, arkadaşlarıda ve öğretmeide yardım isteme; matematik dersie verimli bir şekilde çalışma, matematik sıavlarıda eyecalı ve paik âlde olmama; matematik derside bireyler arası ilişkilerde saygıı, değer vermei, ouru, oşgörüü, yardımlaşmaı, paylaşmaı, dürüstlüğü ve sevgii öemii bilme ve uygulama; matematik derside yapıla çalışmalarda temiz ve düzeli olma, matematik derside kedie veya başkalarıa ait malzemeleri kullaırke öze gösterme.

14 5. Matematik öğretim programı matık, cebir, trigoometri, lieer cebir, olasılık - istatistik ve temel matematik olmak üzere toplam 6 öğreme alaı ve 6 alt öğreme alaıda oluşmaktadır. 9. sııfta matık ve cebir alaları, 0. sııfta cebir ve trigoometri alaları;. sııfta cebir, lieer cebir ile olasılık ve istatistik alaları;. sııfta cebir ve temel matematik alalarıa yöelik amaç kazaımlar vardır.. sııftaki temel matematik alaıı alt öğreme alaları, limit ve süreklilik, türev, itegraldir. 8. Verile örekte öğrecileri matık öğreme alaıı, bileşik öermeler alt öğreme alaıa ait bir etkilik verilmiştir. Çükü bu verilere dayaarak öğreciler; p: Hava sıcak, q: Hava emli, r: Yağmur yağacak öermelerii oluşturmaları isteir. Bu durumda verile bilgilere göre p / q & r, p & q, q matıksal modelii kuracaktır. 6. Lise matematik programıda öğrecii kedi matematiksel alamıı işa etmesii sağlayacak öğremeöğretme ortamlarıı tasarlaması edefl eir. Bu amaçla grup çalışmaları ve sııf içi tartışmaları da etkisiyle öğrecileri bilgileri kedilerii yapıladırmasıa fırsat verilmelidir. Bu şekilde bir öğretim ortamı oluşturmak içi dikkat edilmesi gereke ilkeler; öğretim somut deeyimlerle başlamalıdır, alamlı öğreme amaçlamalıdır, matematik bilgileriyle iletişim kurmalıdır, ilişkiledirme öemsemelidir, öğreci motivasyou dikkate alımalıdır, tekoloji etki kullaılmalıdır, grup çalışmaları öemsemelidir. 7. Yapıladırmacılığı bir uygulama şekli ola 5E modelie göre ders içi uygulamalar giriş, keşfetme, açıklama derileşme ve değerledirme olmak üzere beş basamakta oluşur. Dördücü basamak ola derileşme, öğrecileri kouya ilişki alamalarıı ilerlettikleri aşamadır. Öğretme alteratif sorularla ulaşıla soucu diğer matematiksel souçlarla ilişkilerii kurdurmaya, ulaşıla souca ilişki öğrecilerii geellemeler yapmalarıa, ulaşıla ilişkii geçerli olmadığı özel durumları irdelemelerie olaak sağlamalıdır. Özellikle karşıt öreklerle ulaşıla soucu sıırları belirlemeye çalışılır. Soruu öcülüde de daa öce yapıladırdıkları bilgi ile ilgili yei bir uygulama yapıldığı içi derileşme aşamasıdır. 9. Bruer tarafıda oluşturula bu öğretim stratejisi öğreciyi merkeze ala, öğretmei reber olduğu bir öğretim stratejisidir. Stratejii özüde, kou ile ilgili örekler verilmesi, öğrecileri bu örekleri icelemesi, bir souca varmaya çalışması, daa sora kou ile ilgili olumsuz örekler verilmesi, öğrecileri olumsuz örekleri alayarak, olumlu öreklerde vardığı souçları bir süzgeçte geçirip doğru yolu bulmaları vardır. Bilişsel alaıı kavrama, aaliz ve değerledirme, duyuşsal alaı tepkide buluma ve değer verme basamaklarıdaki bilgiler içi kullaılabilir. Tümevarım yötemi kullaılır. Soru öcülüde örek durumları iceleye öğrecilere örek olmaya durumlar vermemiştir. Öğretmei III. basamakta sora örek olmaya durumlar vermesi ve öğrecileri bu durumlar ile örek durumları karşılaştırmalarıı istemesi gerekirdi.

15 50. Tami ve kotrol etme stratejiside öğreci, problemi ile ilgili bir tamide buluur, daa sora tamiii kotrol eder, doğru souca ulaşmamışsa içi yalış olduğu kousuda akıl yürütür. Doğru yaıt E seçeeğidir. 5

16

MATEMATİK (LİSE) ÖĞRETMENLİĞİ

MATEMATİK (LİSE) ÖĞRETMENLİĞİ KAMU PERSONEL SEÇME SINAVI MATEMATİK (LİSE) ÖĞRETMENLİĞİ TÜRKİYE GENELİ ÇÖZÜMLER 0 MATEMATİK (LİSE) ÖĞRETMENLİĞİ. D. D. B 7. A. E 8. C 4. A 9. C 5. E 0. D. B. C 7. C. C 8. B. A 9. A 4. C 0. D 5. E. C.

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğreciler, Matematik ilköğretimde üiversiteye kadar çoğu öğrecii korkulu rüyası olmuştur. Bua karşılık, istediğiiz üiversitede okuyabilmeiz büyük ölçüde YGS ve LYS sıavlarıda matematik testide

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

kpss ÖABT PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda SORU

kpss ÖABT PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda SORU ÖABT kpss 0 8 PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda 0 SORU ÖABT 07 PEGEM AKADEMİ YAYINLARINDAKİ 07 ÖABT'de SORULAN BENZER SORULAR Geel terimi a = + e - o ÖABT 07.

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLAİLGİLİUYARILAR: İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 018 SINAVI Kategori: Lise Matematik Soru Kitapçık

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır Güeşe bakarsaız gölgeleri göremezsiiz KOMBİNASYON Adı : Soyadı : Zeka, Tecrübe ve Çalıskalık birlesirse tüm hedeflere ulasılır Mat Müh BAHTİYAR DAĞDELEN 05-799 9 5 KOMBİNASYON KOMBİNASYON r olmak üzere,

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

TG 12 ÖABT ORTAÖĞRETİM MATEMATİK

TG 12 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hakkı saklıdır. Hagi amaçla olursa olsu, testleri tamamıı vea

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ LİNEER CEBİR DERS NOTLARI Aye KOÇ I MATRİSLER I.1. Taım F bir cisim olmak üzere her i = 1,2,..., m, j = 1,2,..., içi aij F ike a11 a12... a1 a21 a22... a 2 M M... M am1 am2... am (1) şeklide dikdörgesel

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI The Turkish Olie Joural of Educatioal Techology TOJET July 2005 ISSN: 106521 volume Issue Article 16 BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI Yard. Doç. Dr. Bahadti RÜZGAR Marmara

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

DİZİLER - SERİLER Test -1

DİZİLER - SERİLER Test -1 DİZİLER - SERİLER Test -. a,,,,, dizisii altıcı terimi. Geel terimi, a ola dizii kaçıcı terimi dir? 6. Geel terimi, a! ola dizii dördücü terimi 8 8 6. Geel terimi, a k k ola dizii dördücü terimi 6 0 6

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

kpss Önce biz sorduk 50 Soruda 34 SORU Güncellenmiş Yeni Baskı ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK

kpss Önce biz sorduk 50 Soruda 34 SORU Güncellenmiş Yeni Baskı ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK Öce biz sorduk kpss 2 0 1 8 50 Soruda 34 SORU Gücellemiş Yei Baskı ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK Komisyo ÖABT Sııf Öğretmeliği Temel Matematik ISBN 978-605-318-922-0 Kitapta yer ala bölümleri

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ AKT MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ KESİKLİ RASLANTI DEĞİŞKENLERİ & KESİKLİ DAĞILIMLAR. X aşağıdaki olasılık foksiyoua sahip kesikli bir r.d. olsu. Bua göre;. ; x =.. ; x =. 4. ; x =. 5 p X

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi- (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-. Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı bölgei

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir BÖLÜM 1: VEKTÖRLER Vektörleri taımlamak içi iki yol vardır: uzayda oktalara karşılık gele bir koordiat sistemideki oktalar veya büyüklük ve yöü ola eseler. Bu kısımda, ede iki vektör taımıı buluduğu açıklaacak

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x Ö.S.S. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. olduğuna göre, kaçtır? A B C D E Çözüm. -. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A B C D E Çözüm :... :....... . olduğuna göre, - ifadesinin

Detaylı

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINI ONU ANATII 5. ÜNİTE: DAGAAR ETİNİ e TEST ÇÖZÜERİ 31 5. Üite 1. ou Etkilik C i Çözümleri c. 1. Soruda e dalgalarıı hızı eşit erilmiş. Ayrıca şekil icelediğide m = 4 birim, m = 2 birimdir. Burada;

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı