Notların Belirlenmesi 1. Elektronik Laboratuvarı Kuralları 2. Deneyler Yapılırken Dikkat Edilmesi Gereken Noktalar 2

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Notların Belirlenmesi 1. Elektronik Laboratuvarı Kuralları 2. Deneyler Yapılırken Dikkat Edilmesi Gereken Noktalar 2"

Transkript

1 İÇİNDEKİLER SAYFA NO Notların Belirlenmesi 1 Elektronik Laboratuvarı Kuralları 2 Deneyler Yapılırken Dikkat Edilmesi Gereken Noktalar 2 Elektronik Laboratuvarı Rapor Yazım Kılavuzu 3 Örnek Rapor Kapağı 4 1.Ohm Yasası, Kirchhoff Yasaları ve Osiloskop 5 2.Kondansatörlerin Tanıtılması, Bir Direnç Üzerinden Dolup Boşalması ve 24 RC Süzgeç Devresi 3.Giriş-Çıkış Empedansları, Türev Alıcı ve Entegre Edici Devreler 33 4.Yarıiletken Diyotlar, Kırpıcı ve Kıskaç Devreleri 41 5.Yarım Dalga-Tam Dalga Doğrultucular, Köprü Doğrultucular, Filtreleme 54 6.Transistörler ve Karakteristikleri 64 7.Transistörlü DC Gerilim Regülasyonu 79 8.Transistörlü Yükselticiler 87 9.J-FET Karakteristikleri 97

2 ELEKTRONİK I LABORATUVARI Öğretim Üyesi: Doç. Dr. Yusuf YERLİ Laboratuvar Sorumluları: Arş. Gör. Dr.: Nurcan DOĞAN BİNGÖLBALİ, Arş. Gör.: Arif KÖSEMEN Deneyler: Toplam 9 deney yapılacaktır (Deney1-Deney9). Öğrenciler katılmadıkları sadece bir deneyi yılsonunda, telafi deneyi olarak yapabilirler. Tüm deneylere katılmış olan öğrencilerden isteyenler, 50 nin altında not aldıkları sadece bir deneyi notlarını yükseltmek için telafi döneminde tekrar edebilirler. Notların Belirlenmesi: 1. Devam Zorunluluğu: Her öğrenci vize alabilmek için en az 8 deneye (telafi deneyi dahil) katılmak zorundadır. Deney Notu: Her deneyden önce ön çalışmalarla ilgili sorular sorulacaktır. Ayrıca her deneyden sonra rapor hazırlama kılavuzunda belirtildiği şekilde bir grup raporu hazırlanacaktır. Öğrencilerin o deneyden alacağı notu, laboratuvar çalışması ve rapor notu belirleyecektir. Öğrencilerin katılmadıkları deneylerin notu sıfır olarak belirlenecektir. Yılsonunda deney notu ortalaması, tüm deney notlarının toplanıp 9 a bölünmesiyle elde edilecektir. Birbirinin kopyası olduğu belirlenen raporlar 10 puan ile cezalandırılacaktır. 2. Dönemiçi Sınavları: Dönem içinde, deneyler arasındaki bir hafta yazılı bir sınav yapılacaktır. Dönemiçi sınavının yapıldığı günlerde deney yapılmayacaktır. 3. Dönemsonu Sınavı: Tüm deneyler tamamlandıktan sonra deneylerde elde edilen bilgileri sınamaya yönelik dönemsonu sınavı uygulamalı olarak yapılacaktır. Bir öğrencinin dönemsonu sınavına girebilmesi için telafi deneyleri bittikten sonra en az 8 deneye katılmış olması zorunludur. 4. Başarı Notu: Dönemsonu başarı notu aşağıdaki ağırlıklara göre hesaplanacaktır: Deney notu ortalaması :%25 Dönemiçi Sınavı :%25 Dönemsonu Sınavı :%50 Uygulama 1

3 ELEKTRONİK LABORATUVARI KURALLARI Elektronik Laboratuvarı, öğrencilerin Elektronik bilgilerini pratik yönden geliştirmeyi ve bu konuda yeni bilgiler edinmelerini sağlamak amacıyla hazırlanmıştır. Laboratuvar çalışmalarının verimli olabilmesi için deneylerin aşağıdaki kurallara uygun olarak yapılması gerekmektedir: 1. Öğrenciler, laboratuvar çalışmalarından bir yarar elde edebilmek için yapacakları deneye ilişkin kılavuzu önceden mutlaka okumalı ve her deneye hazırlıklı gelmelidir. Deneylerden önce öğrencilere ön çalışmalarla ilgili sözlü sorular sorulacaktır. 2. Deneye ilk 10 dakikada geç gelen öğrenciler uyarılırlar. İkinci defa bir deneye geç gelen öğrenci o deneye alınmaz. Deneye 10 dakikadan daha geç gelen öğrenciler deneye alınmazlar. 3. Deneylerin süresi 2 saat olarak öngörülmüştür. Deney süresince laboratuvardan çıkmak yasaktır. Deneylerini erken bitiren gruplar laboratuvar dersi sona ermeden önce çıkabilirler. 4. Her deneyin raporu ertesi haftaki laboratuar saatinde mutlaka getirilmelidir. Raporu getirmeyenler o deneyden sıfır puan almış olurlar. 5. Yönetmelik gereğince öğrenci deneylere %80 oranında devam etmek mecburiyetindedir. Devam, her deneyde yoklama yapılarak tespit edilecektir. 6. Öğrencinin gelmediği deneyden alacağı not sıfırdır. 7. Öğrencinin yalnızca bir deneyi telafi etme hakkı vardır. 8. Deneyde kullanılacak olan malzeme (elektronik elemanlar, el aletleri, kablolar) deneyi yaptıracak olan öğretim elemanından sayılarak teslim alınacaktır. Deney sonunda aynı malzeme eksiksiz olarak geri verilecektir. Gruplar, kaybettikleri veya zarar verdikleri malzemenin yerine yenisini koymak zorundadır. Bu nedenle deney süresince başka grupların malzemelerini almayınız ve kendi malzemelerinizi başka gruplara vermeyiniz. 9. Diğer grupları rahatsız etmemek ve daha olumlu bir çalışma ortamı sağlamak için laboratuvarda mümkün olduğu kadar sessiz çalışınız. DENEYLER YAPILIRKEN DİKKAT EDİLMESİ GEREKEN NOKTALAR: 1. Devreleri kurarken gerilim kaynağı mutlaka kapalı olmalıdır. 2. Devreye gerilim verilmeden önce yapılan bağlantıların doğruluğu kontrol edilmeli. a. Devrelerin besleme ve toprak hatları doğru olarak bağlandı mı? b. Besleme gerilimi ve toprak hattı arasında kısa devre oluşabilir mi? c. Çıkış olan bir hatta yanlışlıkla giriş işareti uygulanmış olabilir mi? d. Çıkışlar yanlışlıkla kısa devre edilmiş olabilir mi? e. Bağlantılar, deneyde istenen işlemi gerçekleştirmek üzere doğru olarak yapıldı mı? 3. Tüm bağlantıların doğruluğundan emin olduktan sonra devreye besleme gerilimi verilmeli. Eğer devre beklendiği gibi çalışmıyorsa hemen besleme gerilimi kapatılarak devre kontrol edilmeli. Kontrol işleminde 2. maddede belirtilen noktalara dikkat edilmeli. 4. Doğru çalıştığından şüphe edilen elemanların devre ile bağlantıları kesilmeli ve bu elemanlar ayrı olarak test edilmelidir. 5. Devre üzerinde değişiklik yaparken (eleman ekleme/çıkarma, bağlantı değiştirme) gerilim kaynağı mutlaka kapalı olmalıdır. 6. Tüm uğraşılara rağmen hata bulunamıyorsa laboratuvarda görevli öğretim elemanından yardım istenmelidir. 2

4 Elektronik Laboratuvarı Rapor Yazım Kılavuzu Laboratuvar raporları, bilimsel bir çalışmada elde edilen sonuçları sunmak üzere aşağıdaki kurallara uygun olarak hazırlanacaktır. 1. Grup elemanları her deneyden sonra ortak bir grup raporu hazırlayacaklardır. Raporlar beyaz A4 kâğıtlarının tek yüzüne, mümkünse bilgisayar ile ya da okunaklı bir el yazısı ile yazılarak hazırlanacaktır. Çizimler bilgisayar ya da cetvel kullanarak bir mühendis özeniyle yapılacaktır. 2. Raporlar bilimsel ve teknik bir anlatım tarzı kullanılarak Türkçe olarak yazılacaktır. 3. Raporlar, deneyi yapan tüm öğrencilerin isimlerinin ve imzalarının yer aldığı tek tip kapak sayfası ile başlayacaktır. 4. Raporlar bir sonraki deneyde mutlaka getirilmelidir. Raporlarınızı deneyi yaptıran öğretim üyelerine doğrudan vermeyiniz. Teslim zamanından daha geç getirilen raporlar kabul edilmeyecektir. Eğer teslim tarihi tatil gününe denk geliyorsa tatilden sonraki ilk iş günü rapor teslim edilecektir. Teslim edilmeyen raporların notu sıfır olarak belirlenecektir. 5. Raporlar aşağıdaki bölümlerden oluşacaktır: Deney No ve Adı: Amaç: Deneyde hangi konuların incelenmesi ve öğrenilmesi amaçlanmaktadır? Verilerin değerlendirilmesi: Bu bölümde deneyde kullanılan devre şemaları çizilecek ve veriler tablolar halinde verilecektir. Grafikler çizilecek, hesaplamalar yapılacaktır. Daha sonra veriler deney kılavuzunda tarif edildiği gibi değerlendirilecektir. Sonuçlar: Deneyin her bölümü için elde edilen sonuçlar (tablo, çizim, gözlem) düzgün ve okunaklı bir şekilde yazılacak ve yorumlanacaktır. Eğer deneyde istenmişse teorik olarak beklenen değerler ile deneyde elde edilen sonuçlar karşılaştırılacaktır. Tamamlayamadığınız bölümler için de beklenen sonuçları yazınız. Sorular: Deney kılavuzunda sorulan sorularının cevapları rapora yazılacaktır. Yorum ve Görüşler: Öğrenciler isterlerse deneyle ilgili yorum ve görüşlerini bu bölüme yazabilirler. 3

5 GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ FİZİK BÖLÜMÜ ELEKTRONİK I LABORATUVARI DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : RAPOR TESLİM TARİHİ : GRUP NO : DENEYİ YAPANLAR : Numara Adı Soyadı İmza DENEYİ YAPTIRAN ÖĞRETİM ELEMANI: 4

6 Deney No : E1 Deneyin Adı : Ohm Yasası, Kirchhoff Yasaları ve Osiloskop Deneyin Amacı yasalarının öğretilmesi. Ön Bilgi : : Elektrik büyüklüklerini ölçme tekniklerinin, ohm ve Kirchhoff Elektrik ve elektronikle uğraşanların en çok karşılaştıkları temel ve çok önemli yasa, ohm yasasıdır. Bu yasaya göre, bir iletkenin iki ucuna bir potansiyel farkı uygulanırsa, iletkenden geçen akımla uygulanan voltaj arasında bir doğru bağıntı vardır, diğer bir deyimle voltajla akımın oranı sabittir. Bu sabite o iletkenin direnci denir ve birimi ohm'dur. Bu bağıntı Denk. 1.1 deki gibidir. V IR Ohm yasasında direncin değerinin sabit olması gerçekten tartışmaya açıktır. Tabiatta hiç bir iletkenin direncinin değeri tamamen sabit değildir. Örneğin; bilinen en iyi dirençlerin bile değerleri sıcaklık parametresi ile değişir. Ancak bu bağımlılık çok küçük olduğundan dikkate alınmaz ve küçük sıcaklık aralıklarında direncin değeri sabit kabul edilir. Örneğin, metal iletkenlerin dirençleri bu tür davranış gösterirler ve özel isimleri ile ohmik direnç olarak isimlendirilirler. R R T T ifadesinde, doğrusal sıcaklık katsayısıdır. Değeri çok küçüktür, ancak geniş sıcaklık aralıklarında, sıcaklık ölçmek için kullanılabilir. R 0 referans direncidir. Örnek olarak Şekil 1.1 'de platin telin sıcaklığa bağlı direnci verilmiştir. R T Şekil 1.1: Platin telin sıcaklığa bağlı direnç eğrisi. Ohmik dirençler dışında, değeri büyük ölçüde değişik parametrelere bağlı olan dirençler için empedans terimi kullanılır. Örneğin sığaların empedansı, X C 1 jwc 1.3 biçiminde frekansa ve bobinlerin empedansı da, 5

7 I 2 I 3 X L jwl biçiminde yine frekansa bağlıdır. Bunlardan başka, yarı iletkenlerden yapılan özel amaçlı dirençler de vardır. Bunların dirençleri çok büyük ölçüde doğrusal olmayan biçimde sıcaklığa, üzerinden geçen akıma, uygulanan voltaja ya da üzerine düşen ışık şiddetine bağlıdır. Kirchhoff yasaları, ohm yasası ile birlikte devrenin çözümlenmesinde esas teşkil ederler ve iki tanedir. 1. Kirchhoff Gerilim Yasası(KGK) ya da Kirchhoff voltaj yasası, kapalı bir ilmekte toplam voltajın sıfır olduğunu ifade eder, Şek Bu yasa genişletilmiş ohm yasasıdır. 2. Kirchhoff Akım Yasası(KAY) da bir düğüm noktasına gelen ve çıkan akımların toplamının sıfır olmasıdır. Bu yasa gerçekte yük korunumunun bir sonucudur, Şekil 1.3. V i V R I V V R I R 1 V 2 + V 1 - I I V R 2 Şekil 1.2: Kirchhoff gerilim yasasını gösteren örnek devre. I i I I I I I I 1 I 5 I 4 Şekil 1.3: Kirchhoff akım yasasını gösteren örnek devre. Voltaj, Akım ve Direnç Ölçümleri Elektrik ile ilgili gözlemler, elektrik ölçü araçları ile yapılır. Başlıca temel gözlem araçları, voltmetre, ampermetre, ohmmetredir. Günümüzde artık, potansiyel farkı, akım şiddeti ve direnç ölçen araçlar bir arada yapılmaktadır. Biz buna Avometre diyoruz. Elektronikle uğraşan bir kimsenin çok iyi bir ölçme bilgisine sahip olması gerekir. Bir 6

8 devre tasarlanır, üzerinde hesaplamalar yapılır ve sonrada devre kurularak üzerinde ölçümler yapılarak devrenin doğru çalışıp çalışmadığı kontrol edilir. Bir elektronik laboratuvarında ya da atölyesinde bulunması gereken en önemli ölçme cihazları voltmetre, ampermetre ve ohmmetredir (AVOMETRE). Avometreler, anolog ve sayısal olmak üzere iki farklı yapıda olabilirler. Analog ölçü cihazları, ya da bildiğimiz ibreli cihazların temel elemanı GALVANOMETRE' dir. Galvanometrenin iç yapısı Şekil 1.4 de görüldüğü gibi, bir sürekli mıknatıs, bir eksen etrafında serbestçe dönebilen bobin ve bir geri çekme yayından ibarettir. Mıknatıs kutupları arasındaki düzgün manyetik alan içinde bir bobinden akım geçirildiği zaman bobin üzerine bir x B torku uygulanır. Burada µ, bobinin manyetik dipol momenti ve B, manyetik alan vektörüdür. Bu tork bobini, bir yönde çevirir ve bobine bağlı yayın uyguladığı geri çekme kuvveti yüzünden, dönme belirli bir açıya kadar olur. Manyetik alan şiddeti ve yay sabiti değişmez olduğundan, bobin ve buna bağlı ibrenin dönme açısı yalnızca bobinden geçen akıma bağlıdır. 1.7 N S Şekil 1.4 Bir galvanometrenin yapısı. Bobin sargısının direnci çok düşük olduğundan galvanometrenin direnci yok denecek kadar azdır. Ayrıca, hassasiyet için sargı çok ince telden yapıldığı için, galvanometreler oldukça küçük akımlarda çalışırlar. Eğer galvanometre, voltmetre olarak kullanılacaksa, buna seri büyükçe bir direnç bağlanır ve galvanometreden geçen akımın değeri küçülürken, voltmetrenin direnci büyür, Şek Buna karşılık, eğer galvanometreye paralel olarak küçük değerli bir direnç bağlanırsa, akım bölünür ve galvanometrenin direnci küçülür. 7

9 (a) I G R Şekil 1.5: Bir galvanometrenin, a) voltmetreye, b) ampermetreye dönüştürülmesi (b) I I R I G R G Voltmetre, bir devrede, voltaj ölçülecek uçlar arasında devreden büyük miktar akım çekerek, başka bir deyişle, devreye ek bir yük getirerek devreyi etkilememelidir. Bunun içinde ek direnci büyük olmalıdır (30k/volt ). Bunun yanında, ampermetre akım ölçülecek kola seri bağlanarak, o koldaki tüm akımın ampermetre üzerinden geçmesi sağlanır. Bu da sıfıra yakın bir direnç etkisi göstererek devreye ek bir yük getirmemesi ile başarılır. Voltmetre ve ampermetrenin öğrenilmesinden sonrası ohm yasası yardımı ile bu aletlerle bir iletkenin direnci kolaylıkla bulunabilir. Bunun için küçük bir voltaj kaynağının devreye eklenmesi gerekir. Ölçülecek direnç üzerinden bir akım geçirilerek geçen akım miktarı direnç değeri ile ters orantılı olduğundan(ohm yasası), ölçülen akım dirence kalibre edilebilir, Şek r G R r: iç direnç R:ölçülecek direnç V + - Şekil 1.6: Bir ohmmetrenin yapısı. Benzer şekilde bir direnç üzerinde harcanan güç, 2 2 P IV V R I R 1.6 yardımı ile kolayca hesaplanabilir yada galvanometre doğrudan güç ölçer duruma getirilebilir. Sayısal avometrelerin çalışma ilkesi tamamı ile analog cihazların aynısıdır. Tek farkları analog cihazlardaki mıknatıs ve bobinlerden yapılan galvanometre yerine başka bir sistem kullanılır. İbreli gösterge yerine Analog/Sayısal dönüştürücü vardır. Ölçümler sayısal olarak okunur. 8

10 Avometrenin Kullanılması Amper-Volt-Ohm metre(avometre), her üç ölçümü de kolayca yapabilecek şekilde tasarlanmış ve yapılmıştır. Ölçüm yöntemlerini anlatırken analog cihaz üzerinde duracağız. Gerçekte sayısal cihazların kullanılışı da tamamı ile analog cihazların aynısıdır. Avometre, en çok kullanılan biçimi ile bir gösterge (ibre), çok konumlu fonksiyon seçici anahtar, bir potansiyometre ve iki giriş terminalinden oluşur. Bunun yanında bazı cihazların çok yüksek voltaj ya da yüksek akım ölçümleri için ayrı bir giriş terminalleri ve daha fazla fonksiyon seçimi için birden fazla seçici anahtar bulunabilir. Bazen diyot ve transistör test etmek için ek aksesuarlar olabilir. Avometre, iki kablo(ölçüm uçları) ile ölçüm yapılacak noktalara bağlanır. Kablolar, isteğe göre iğne uçlu veya kıskaçlı olabilir. Alışkanlık olması bakımından şu noktaları belirtmek gerekir. Kırmızı renkli kablo pozitif (+), siyah renkli kablo negatif () uçlara bağlanır ve kullanım sırasında kabloların renginden pozitif ya da negatif ölçüm noktaları kolayca bilinir. Bu kablolar, bir devre yada cihaz üzerinde ölçüm yapılacak noktalara dokundurularak veya kıskaçla tutturularak temas sağlanır. Direnç ölçümü yapılırken şu noktalara dikkat edilmelidir: a) Direnç ölçümü sırasında, ohmmetrenin sıfır ayarı yapılmalıdır. b) Direnci ölçülecek devre elamanı serbest olmalı, bir elektrik devresine bağlı olmamalıdır. c) Direnç ölçümü bittiğinde, pil enerjisini harcamamak için avometrenin çoklu düğmesi direnç ölçüsü bölgesinden ayrılmalıdır. Elektrik Sinyalleri Alternatif akım (aa veya ac) ve doğru akım (da veya dc) olmak üzere ikiye ayrılır. Bu yüzden Avometreler, hem alternatif hem de doğru akımları ölçebilecek şekilde yapılmışlardır. Bu yüzden fonksiyon seçici anahtar, direnç ölçümü ile birlikte beş ayrı bölgeye ayrılmıştır. Bunlar; aa voltaj, dc voltaj, aa akım, dc akım ve direnç bölgeleridir. Bazı cihazlar, örneğin aa akım ölçme konumuna sahip olmayabilirler ya da bazı türleri transistör veya diyot testi için ek konumlara sahiptir. Burada hemen bir kuralı belirtelim: Fonksiyon seçici anahtar hangi ölçüm yapılacaksa o bölgede olmalıdır. Örneğin aa ölçümü yapacaksanız, fonksiyon seçici anahtar da bölgesinde ise doğru akım ölçemeyeceğiniz gibi cihazı da bozabilirsiniz. 9

11 Fonksiyon seçici anahtar her bir bölgesi kendi içinde basamaklara ayrılmıştır. Örneğin aa bölgesi; 1200, 300, 60, 12 Volt yada direnç bölgesi x10k, x1k, x100, x1 basamaklarına ayrılmıştır. Buna göre, ölçüm yapılacak büyüklük, (voltaj, akım veya direnç) hangi mertebede ise, fonksiyon seçici anahtarın da o mertebeyi içine alan konumda olması gerekir. Örneğin şehir şebeke voltajını ölçecekseniz (yaklaşık 220V ac dir). Fonksiyon seçici anahtarın da, buna en yakın olan 300 konumunda olması gerekir. Uygun konum seçmezseniz, ya ibre çok az saptığında rahat ölçüm alamazsınız, ya da ibre fazla sapar cihazı tahrip edebilirsiniz. Bu genel hususların belirtilmesinden sonra, ölçümlerin nasıl yapılacağı üzerinde durabiliriz. Voltaj ve akım ölçümleri ilke olarak birbirlerine benzerler. Göstergede, kadran üzerinde, ölçüm yapacağınız büyüklüğün ölçeğini bulunuz, çok konumlu anahtar konumlarının aynısı veya tam katlarıdır. İbre tam saptığı zaman ölçülen voltaj yada akım, çok konumlu anahtarın gösterdiği rakamdır. Yani çok konumlu anahtar hangi konumda ise cihazın ölçebileceği en büyük değer o rakamdır. Örneğin fonksiyon seçici anahtar 300V(ac)de ise ibre tam saptığı zaman 300V(ac) ölçüyor demektir. İbre daha fazla sapıyorsa fonksiyon seçici anahtarı daha büyük konuma, çok az sapıyor ise bir küçük konuma almanız gerekir. Güç Kaynakları Şehir şebekeleri alternatif akım taşır. Voltaj değerleri çoğu elektronik cihazların gerek duyduğu değerden çok büyüktür. Ancak bu aa voltajın değerinin küçültülmesi ve da voltaja çevrilmesi mümkündür. Bu işlemi yapan cihazlara adaptör veya daha geniş anlamıyla GÜÇ KAYNAĞI denmektedir. Bir güç kaynağı bir besleme kablosuyla şehir elektriğine bağlanır. Ön panelinde AÇ-KAPA anahtarı, pozitif ve negatif çıkış terminalleri ve çıkış voltaj ayarı kontrol düğmesi bulunur. Bunların dışında güç kaynağının kalitesini ve kullanışını kolaylaştıran akım sınırlayıcı kontrol düğmesi, çıkış voltaj ve akım göstergesi de bulunabilir. DİKKAT! Güç kaynağı kullanılırken artı(+) ve eksi(-) uç kabloları birleştirmeyin (kısa devre yapmayınız). Deney Seti ve Deney Tabloları (Protoboard) Elektronik deney setleri, çeşitli elektronik devrelerin kolayca kurulabilmelerini, test edilmelerini ve gerekiyorsa çeşitli elemanlarının kolayca değiştirilip denenebilmelerini sağlayan çok amaçlı bir düzenektir. 10

12 Deney tablaları (protoboard) üzerinde lehimleme, vidalama gibi bir ek işlem yapmadan her türlü devrenin kolayca kurulduğu bir sistemdir. Tablanın üzeri devre elemanlarının kolayca takılıp alınabileceği deliklerden oluşmuştur. En üsteki ve en alttaki ikişerli yatay sıralar boydan boya, ortadaki dikey iki blok yukardan aşağıya iletken tellerle bağlanmıştır. Direnç Renk Kodları ve Okunuşları Dirençler sıkıştırılmış karbon veya çeşitli metal alaşımlarından yapılan bir elektronik devre elemanıdır. Üzerlerinde harcanacak güç sınırlıdır. Eğer fazla güç harcanırsa ısınarak yanabilirler. Devre tasarlanırken direnç üzerinde harcanacak güç hesaplanarak ona göre direnç seçmek gereklidir. Standart dirençlerin değerleri genel olarak iki şekilde belirtilir. Birinci olarak, üretici firma tarafından direnç üzerine direncin değeri (, kmolarak) ve güçleri (1/8 W, 1/4 W, 1 W olarak) yazılır. İkinci olarak, dirençlerin değerleri ve toleransları renk kodu denilen işaretleme ile belirtilir. Bu renk kodları ve anlamları, örnekleriyle birlikte aşağıda gösterilmiştir. Renkler Karşılık gelen rakamlar Siyah 0 Kahverengi 1 Kırmızı 2 Turuncu 3 Sarı 4 Yeşil 5 Mavi 6 Mor 7 Gri 8 Beyaz 9 Altın % 5 Gümüş % 10 Band yoksa % 20 Örnek: Sembol Kodlama Direnç Değeri: abx10 c Tolerans 10 c b a ALTIN SARI KIRMIZI KAHVE Bu direncin değeri: abx10 c = 12x10 4 Ω = Ω = 20 k 11

13 Osiloskop Elektrik ölçümlerinde kullanılan temel ölçü cihazlarından en önemlisi olan osiloskop, ampermetre, voltmetre vs. gibi diğer ölçü cihazlarından çok daha fazla bilgiyi tek başına bize verir. Örneğin bir voltmetre ile ölçüm yaptığımız zaman sadece sinyal voltajının KOK (rms) değerini ölçebiliriz. Sinyalin frekansı, fazı, şekli, gürültü bileşeni, ac-dc bileşeni hakkında ayrıntılı bilgi alamayız. Ancak bir osiloskopta bu bilgileri ve daha fazlasını elde ederiz. Ölçü duyarlılığı, geniş frekans aralığında çalışması ve sinyalin canlı grafiğini göstermesi en önemli özelliği ve üstünlükleridir. Osiloskop, elektrik değişkenlerin ve parametrelerin fonksiyonlarını bir ekran üzerinde çizen elektronik bir aygıttır. Ekranda görülen şekil, gerilimin zamana göre değişim grafiğidir, yani sinyalin voltajıdır. Sinyalin osiloskoba bağlanması Herhangi bir sinyali gözlemek için sinyal osiloskoba ön paneldeki BNC konnektöründen bağlanır. Bu bağlantı normal bir kabloyla yapılabilir. Ancak böyle bir kablo çevreden gelen gürültü sinyallerini de girişe uygular. Dolayısıyla biz ekranda uygulanan sinyal yanında çevredeki parazit sinyalleri de gözleriz. Bazen bu gürültü sinyalleri, gözlenecek sinyalleri bastırabilirler. Normal bir kablo tıpkı bir anten gibi davranır. Şebeke sinyali yakın radyo istasyonlarının sinyali gibi çeşitli gürültüleri girişe uygular. Gürültüleri önlemenin en iyi yolu, osiloskop için hazırlanmış özel bir prob kullanmaktır. Bu problar, uçlarına özel tutucular, girişinde RC süzgeçler olan ve özel koaksiyel kablodan yapılmış, gürültüyü önleyici özellikteki problardır. Osiloskopla yapılan ölçümler Kullanacağımız osiloskoplar, ekranda ölçülü olarak zamana göre değişen voltaj grafiğini gösterirler. Ancak bu grafikten pek çok ölçümü kolaylıkla yapabiliriz. Osiloskopla yapılan ölçümler 1-Doğrudan yapılan ölçümler 2- Dolaylı yapılan ölçümler olmak üzere ikiye ayrılır. Şimdi sırasıyla bu ölçümlerin nasıl yapılacağını görelim. 1-Doğrudan yapılan ölçümler Bir osiloskopla doğrudan yapılan ölçümler voltaj ve zamandır (periyot). Osiloskopta en çok kullanılan periyodik sinyaller, sinüs dalga, üçgen dalga ve kare dalgadır. Her üç dalga şekli; tepe değeri (genlik), tepeden tepeye genlik, periyot (veya 12

14 frekans) ve faz parametrelerine sahiptir. Bu dalga şekilleri tamamen periyodiktir. Şekil 1.7 da bu dalga şekilleri ve parametreleri gösterilmiştir. Bu parametreler dışında dalga şekilleri, KOK veya rms değerlerinde belirtilir. Sinüzoidal dalga için bu değer, V V T KOK V T veya V V T T KOK olarak bulunur. Bu ifadelerle V T voltajın tepe değeri (genliği) ve V T-T 'de tepeden tepeye genlik olarak kullanılmaktadır. Bazı kaynaklarda bu ifadeler V p ve V p-p olarak da verilir. 2 2 V T T V T V T V T V T-T V T-T V T-T Şekil 1.7: Periyodik Dalga Şekilleri Bu sinyallerin dışında gözlenebilecek diğer periyodik olan veya olmayan dalga şekillerinin bazıları Şek. 1.8 da gösterilmiştir. Bunlar sırasıyla sönümlü sinüs dalga, basamak ve gürültü sinyalleridir. Bunların dışında Şekil 1.9 de dc+ac bileşik sinyali, genlik ve frekans modülasyonlu sinyaller de gösterilmiştir. t t t Sönümlü sinyal Basamak sinyali Gürültü sinyali Şekil

15 ac dc 0 V dc + ac sinyali t t Genlik modülasyonu Şekil 1.9 Frekans modülasyonu Voltaj Ölçümü: Şekil 1.10 de verilen sinüs dalgayı göz önüne alarak voltaj ölçümünün nasıl yapıldığına bakalım. Önce sinüs dalganın en büyük ve en küçük değerlerinin doldurduğu aralık sayılır. Sonra Volt/Div seçici düğmesinin gösterdiği rakam, bununla çarpılarak sinüs dalganın tepeden tepeye volt değeri bulunur. Ancak burada dikkat edilecek diğer bir husus prob zayıflatmasıdır. Prob zayıflatması 1 veya 10 olarak seçilebilir. Eğer zayıflatma 1 ise sonuç değişmez. Eğer zayıflatma 10 ise, bulunan sonuç 10 ile çarpılmalıdır. Genlik: Tepeden tepeye 5 bölme Volt/Div = 2V Time/Div = 0.2ms Prob zayıflatması = 1 V T-T = 5 bölme x 2V = 10V Periyot = T = 6 bölme x 0.2ms = 1.2ms Periyot(T): 6 bölme Şekil 1.10: Osiloskopla Voltaj Ölçümü 14

16 Frekans ve Periyot ölçümü: Bir sinyal tekrarlanıyorsa, bir frekansı ve bir de periyodu vardır. Frekans Hertz (Hz) biriminde ifade edilir ve bir saniyedeki tekrarlanan sinyal sayısına eşittir. Periyot ta sinyalin kendini tekrarlamaya başlamadan önce bir tam dalganın oluşması için geçen süredir. Periyot ve frekans birbirinin tersidir ( f 1 T Periyot ölçümü, voltaj ölçümü ile hemen hemen aynı şekilde yapılır. Önce yatay eksen üzerinde sinyalin tam bir salınımının doldurduğu aralıklar (bölmeler) sayılır. Bu sayım Time/Div seçici düğmesinin gösterdiği rakamla çarpılarak sinyalin periyodu bulunur. Periyodun tersi alınarak frekans elde edilir (Şekil 1.10 ve 1.11 e bakınız). ). Periyot Saniye Şekil 1.11 NOT: En hassas ölçüm, sinyalin ekranı doldurmasıyla, elde edilir. Bunun için Volt/DIV ve Time/Div seçicileri ile oynayarak, sinyalin ekrana sığan en büyük görüntüsü elde edilir. 2-Dolaylı Ölçümler Voltaj ölçümüne bağlı; akım, direnç ve güç ölçümleri ile zaman ölçümüne bağlı; frekans ve faz ölçümleri bizim kullanacağımız dolaylı ölçümlerdir. Hassasiyet bakımından biz genellikle alternatif sinyallerin tepeden tepeye değerlerini ölçeriz. Tepe değeri (genlik) bunun yarısıdır. KOK değeri ise sinüs dalgaları için, V KOK V T 2 veya V KOK VT T 2 2 olarak verilir. 15

17 Akım, Direnç ve Güç Ölçümü Osiloskopla akım ölçümü için değeri bilinen bir direnç kullanmak gereklidir. Direnç uçlarındaki gerilim düşmesi osiloskopla ölçülerek akım, Akım = Volt / Direnç, I=V/R ifadesinden bulunur. Güç ölçümü yapmak için, yukarıda anlatıldığı şekilde direnç yada akım değerleri ölçüldükten sonra, voltajın da ölçülmesiyle güç; Güç=Volt Akım =(Volt) 2 /Direnç P=V I=V 2 /R ifadesinden hesaplanır. Faz Ölçümü Faz kayması benzer iki sinyal arasındaki zaman farkını ifade eder. Sinüzoidal dalgalar dairesel harekete bağlı olduğundan faz farkını çok iyi gösterirler. Bir sinüs dalgasının bir tam salınımı tam bir daireye karşılık gelir. Bu da 360 demektir. Dolayısıyla bir sinüs dalgasının faz açısı, derece kullanarak temsil edilebilir. Şekil 1.12, bir tam sinüs salınımının 360 lik bir devri nasıl tamamladığını gösterir. Şekil 1.12:Tam bir sinüs dalga Faz ölçümü, biraz daha karmaşıktır ve iki ayrı yoldan yapılabilir. En çok kullanılan metot X-Y ölçümü yöntemi, ya da lissajous şekli yöntemidir. Lissajous şekli, iki ayrı periyodik sinyalin vektörel toplamıdır. Örneğin, x ekseninde bir sinüzoidal, y ekseninde de ayrı bir sinüzoidal sinyal bulunsun. Bunların aralarındaki faz farkı, frekansları W 1, W 2 genlikleri x 0 ve y 0 olmak üzere, bu iki sinyalin vektörel toplamı, V = (x 0 sinw 1 t)i + (y 0 sin(w 2 t+))j olacaktır. Yukarıda verdiğimiz denklem, faz farkının aldığı değerlere ve frekans oranlarına göre Şek de verilen referans şekillerinden birine uyar. Bu referans şekillere 16

18 bakılarak X-Y işlemiyle gözlediğimiz şekillerin frekans ve faz ilişkisini ölçebiliriz. Bunun yanında frekans ve faz ölçümü için aşağıda vereceğimiz ifadeler, oldukça büyük önem taşırlar. Şekil 1.13 X-Y işlemi ile elde edilen şekillere örnekler. X-Y işlemiyle (Lissajous şekliyle) frekans ölçümü için eksenlerden birine frekansı bilinen bir sinyal uygulanır. Diğer eksene de frekansı bilinmeyen sinyal uygulanır. Ekranda gözlenen kapalı eğrinin dış kenarlarına x ve y eksenleri çizilir. Kapalı eğrinin her iki eksene teğet noktası sayılır ve f x n x f y n y orantısı kullanılarak bilinmeyen frekans bulunur. İfadede f x ve f y, x ve y eksenlerine uygulanan sinyallerin frekanslarıdır. n x ve n y, sayılan x ve y eksenlerine teğet nokta sayılarıdır. Şekil 1.14 da verilen örneğe bakınız. y n x = 3, n y = 2, f x = 50 Hz. f y f x nx n y f y = 75 Hz x Şekil 1.14:X-Y işlemi ile frekans ölçümü. 17

19 Değişik frekans ve faz ilişkileri için, Şekil 1.13 de görülen LISSAJOUS yöntemi ile sadece frekansları aynı olan sinyallerin faz farkları bulunabilir. Şekil 1.15 örneğine bakınız. b a b sin a b sin 1 a (Faz açısı) Şekil 1.15: Aynı frekansa sahip iki sinyalin faz farkının ölçülmesi. Faz farkı ölçümümde diğer bir yöntem ÇİFT İZ yöntemidir. Osiloskopta her iki sinyali ekranda aynı anda görüntüleyerek yapılan ölçümdür. Temel ilke frekansları aynı iki sinyal arasındaki zaman farkının ölçümüne dayanır. Şekil 1.16 frekansları aynı benzer iki sinüs dalgasını gösterir. Burada T, sinüs dalganın periyodudur. t ise her iki sinyalin sıfır geçiş noktaları arasındaki zaman farkıdır. Bu zaman farkı osiloskoptan ölçülerek derece cinsinden faz farkı t 360 T bağıntısından bulunur. Yanda görülen sinüs dalgaları arasındaki faz farkı aşağıdaki gibi bulunur. Time/div =1ms t = 3x1ms, T = 10x1ms T t Şekil 1.16: Çift iz yöntemi ile faz farkı ölçümü. 18

20 DENEYLER Araçlar: Deney tablası, Osiloskop, Sinyal üreteci, Güç kaynağı, Avometre, Bağlantı telleri, Dirençler: 4 tane 1k (½W), 1 tane 2.2k (½W), 100, 3.3k, 68k, 100k, Kondansatör: Bir adet 47nF A- Ohm Kanunu 1- Aşağıdaki devreyi kurunuz. A 12V R V Şekil 1.17: Ohm kanunu devresi 2-Tablo 1.1 de verilen voltaj değerlerine karşılık gelen akım değerlerini ölçerek bu tabloya yazınız. Tablo 1.1 V (volt) I (Amp.) 3- Voltaj-Akım grafiğini çizerek grafiği yorumlayınız. Grafikten direnç değerini bularak ölçeceğiniz direnç değeri ile karşılaştırınız B- Kirchhoff Akım Kanunu 1- Şekil 1.18 deki birleşik devreyi kurunuz. 2- Ana kollardan (R1 ve R4) ve diğer kollardan (R2 ve R3) geçen akımları ölçünüz ve Tablo 1.2 ye yazınız. 3- Her bir koldan geçen akımı hesapla da bulunuz ve düğüm noktası akım kanununu doğrulayınız. Hesapladığınız değerleri Tablo 1.2 ye giriniz. Hesaplanan ve ölçülen değerleri deneysel hatalar içersinde karşılaştırınız. Farklılıkları açıklayınız. 19

21 R1 1.0kohm R2 1.0kohm R3 1.0kohm V R4 1.0kohm 12V Şekil 1.18: Akım kanunu için birleşik devre Tablo 1.2 Direnç numarası Ölçülen I Hesaplanan I R1 R2 R3 R4 C- Kirchhoff Gerilim Kanunu 1- Şekil 1.19 daki birleşik devreyi kurunuz. 2- Her bir direnç üzerindeki gerilimi ölçünüz ve Tablo 1.3 e yazınız. 3- Her bir direnç üzerindeki gerilimi hesapla da bulunuz ve kapalı halka gerilim kanununu doğrulayınız. Hesapladığınız değerleri Tablo 1.3 e giriniz. Hesaplanan ve ölçülen değerleri deneysel hatalar içersinde karşılaştırınız. Farklılıkları açıklayınız. R2 R1 1.0kohm 1.0kohm R3 1.0kohm V R4 1.0kohm 12V Şekil 1.19 Gerilim kanunu devresi 20

22 Tablo 1.3 Direnç numarası Ölçülen V Hesaplanan V R1 R2 R3 R4 D- Osiloskopla Faz Farkı Ölçümü 1- Şekil 1.20 deki devreyi kurunuz. C = 47nF, R = 100, 3.3k, 68k, 100k. Sırasıyla her bir direnç için tekrarlayınız. C S.Ü CH I osiloskop CH II Şekil 1.20: Faz farkı ölçme devresi 2- Sinyal üretecinin çıkışını 6V T-T ve 1kHz sinüs dalgaya ayarlayınız. 3- Osiloskopta Lissajous şekliyle faz farkını ölçünüz. 4- Osiloskobunuzu dual konumuna alarak çift iz yöntemiyle de faz farkını ölçünüz. 5- Bu ölçümleri sırasıyla yukarıda verilen dört farklı direnç için yaparak sonuçları Tablo 1.4 e giriniz. Her iki yöntemle bulunan sonuçları karşılaştırınız. Tablo 1.4 Dirençler k 68 k 100 k Lissajous Yöntemi Çift iz Yöntemi a b t T 21

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI LABORATUVAR YÖNERGESİ CİHAZLARIN TANITIMI DENEYLERDE DİKKAT EDİLMESİ

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1 DİRENÇ DEVRELERİNDE OHM VE KİRSHOFF KANUNLARI Arş. Gör. Sümeyye

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ A. DENEYİN AMACI : Seri ve paralel RC devrelerinin ac analizini yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler. C. DENEY İLE

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ AMAÇLAR 6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ 1. Değeri bilinmeyen dirençleri voltmetreampermetre yöntemi ve Wheatstone Köprüsü yöntemi ile ölçmeyi öğrenmek 2. Hangi yöntemin hangi koşullar

Detaylı

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi: DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI Malzeme ve Cihaz Listesi: 1. 12 k direnç 1 adet 2. 15 k direnç 1 adet 3. 18 k direnç 1 adet 4. 2.2 k direnç 1 adet 5. 8.2 k direnç 1 adet 6. Breadboard 7. Dijital

Detaylı

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-21001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını öğrenmek. Devre elemanı üzerinden akım akmasını sağlayan

Detaylı

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI DENEY NO: DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI Bu deneyde direnç elamanını tanıtılması,board üzerinde devre kurmayı öğrenilmesi, avometre yardımıyla direnç, dc gerilim ve dc akım

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

ELE 201L DEVRE ANALİZİ LABORATUVARI

ELE 201L DEVRE ANALİZİ LABORATUVARI ELE 201L DEVRE ANALİZİ LABORATUVARI Deney 1 Temel Elektronik Ölçümler İMZA KAĞIDI (Bu sayfa laboratuvarın sonunda asistanlara teslim edilmelidir) Ön-Çalışma Lab Saatin Başında Teslim Edildi BU HAFTA İÇİN

Detaylı

Ölçme ve Devre Laboratuvarı Deney: 1

Ölçme ve Devre Laboratuvarı Deney: 1 Ölçme ve Devre Laboratuvarı Deney: 1 Gerilim, Akım ve Direnç Ölçümü 2013 Şubat I. GİRİŞ Bu deneyin amacı multimetre kullanarak gerilim, akım ve direnç ölçümü yapılmasının öğrenilmesi ve bir ölçüm aletinin

Detaylı

5. AKIM VE GERĐLĐM ÖLÇÜMÜ

5. AKIM VE GERĐLĐM ÖLÇÜMÜ 5. AKIM VE GERĐLĐM ÖLÇÜMÜ AMAÇLAR 1. Döner çerçeveli ölçü aletini (d Arsonvalmetre) tanımak.. Bu ölçü aletinin akım ve gerilim ölçümlerinde nasıl kullanılacağını öğrenmek. ARAÇLAR Döner çerçeveli ölçü

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır.

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır. Ohm Kanunu Bir devreden geçen akımın şiddeti uygulanan gerilim ile doğru orantılı, devrenin elektrik direnci ile ters orantılıdır. Bunun matematiksel olarak ifadesi şöyledir: I V R Burada V = Gerilim (Birimi

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. 1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. 1.2.Teorik bilgiler: Yarıiletken elemanlar elektronik devrelerde

Detaylı

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız. ÖLÇME VE KONTROL ALETLERİ Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız. Voltmetre devrenin iki noktası arasındaki potansiyel

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir.

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir. DENEY 35: FREKANS VE FAZ ÖLÇÜMÜ DENEYĐN AMACI: 1. Osiloskop kullanarak AC dalga formunun seklini belirlemek. 2. Çift taramalı osiloskop ile bir endüktanstın akım-gerilim arasındaki faz açısını ölmek. TEMEL

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

ELE 201L DEVRE ANALİZİ LABORATUVARI

ELE 201L DEVRE ANALİZİ LABORATUVARI ELE 201L DEVRE ANALİZİ LABORATUVARI Deney 2 Thevenin Eşdeğer Devreleri ve Süperpozisyon İlkesi 1. Hazırlık a. Dersin internet sitesinde yayınlanan Laboratuvar Güvenliği ve cihazlarla ilgili bildirileri

Detaylı

6. TRANSİSTÖRÜN İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ 6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DENEY 6: KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI 1. Açıklama Kondansatör doğru akımı geçirmeyip alternatif akımı

Detaylı

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları. BÖLÜM 8 Doğru Akım Devreleri Elektromotor Kuvveti emk iç direnç Seri ve Paralel Bağlı Dirençler Eşdeğer direnç Kirchhoff Kuralları Düğüm kuralı İlmek kuralı Devreleri Kondansatörün yüklenmesi Kondansatörün

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI A. DENEYİN AMACI : Thevenin ve Norton teoreminin daha iyi bir şekilde anlaşılması için deneysel çalışma yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre 2. DC Güç Kaynağı 3. Değişik değerlerde

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p)

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) T.C. FİZİK-2 LABORATUARI DENEY RAPORU ÖĞRENCİNİN Numarası : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) Teorisi Aşağıdaki soruları

Detaylı

DENEY 3 Ortalama ve Etkin Değer

DENEY 3 Ortalama ve Etkin Değer A. DENEYİN AMACI : Ortalama ve etkin değer kavramlarının tam olarak anlaşılmasını sağlamak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal üreteci 2. Osiloskop 3. 741 entegresi, değişik değerlerde dirençler

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI K.T.Ü ElektrikElektronik Müh.Böl. Temel Elektrik Laboratuarı I KICHOFF'UN KIML E GEĠLĠMLE YSSININ DENEYSEL SĞLNMSI KICHOFF'UN KIML YSSI: Bir elektrik devresinde, bir düğümde bulunan kollara ilişkin akımların

Detaylı

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DENEY 1-3 DC Gerilim Ölçümü DENEYİN AMACI 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-22001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI AMAÇ: Dirençleri tanıyıp renklerine göre değerlerini bulma, deneysel olarak tetkik etme Voltaj, direnç ve akım değişimlerini

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ ELEKRİK DERELERİ-2 LABORAUARI II. DENEY FÖYÜ 1-a) AA Gerilim Ölçümü Amaç: AA devrede gerilim ölçmek ve AA voltmetrenin kullanımı Gerekli Ekipmanlar: AA Güç Kaynağı, AA oltmetre, 1kΩ direnç, 220Ω direnç,

Detaylı

MANYETİK İNDÜKSİYON (ETKİLENME)

MANYETİK İNDÜKSİYON (ETKİLENME) AMAÇ: MANYETİK İNDÜKSİYON (ETKİLENME) 1. Bir RL devresinde bobin üzerinden geçen akım ölçülür. 2. Farklı sarım sayılı iki bobinden oluşan bir devrede birinci bobinin ikinci bobin üzerinde oluşturduğu indüksiyon

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

DENEY 1 Basit Elektrik Devreleri

DENEY 1 Basit Elektrik Devreleri ULUDAĞ ÜNİVESİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM203 Elektrik Devreleri Laboratuarı I 204-205 DENEY Basit Elektrik Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney

Detaylı

Ölçüm Temelleri Deney 1

Ölçüm Temelleri Deney 1 Ölçüm Temelleri Deney 1 Deney 1-1 Direnç Ölçümü GENEL BİLGİLER Tüm malzemeler, bir devrede elektrik akımı akışına karşı koyan, elektriksel dirence sahiptir. Elektriksel direncin ölçü birimi ohmdur (Ω).

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI DC SERİ JENERATÖR KARAKTERİSTİKLERİNİN İNCELENMESİ DERSİN

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Bu bölüm, çeşitli şekillerde birbirlerine bağlanmış bataryalar, dirençlerden oluşan bazı basit devrelerin incelenmesi ile ilgilidir. Bu tür

Detaylı

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr 2. HAFTA BLM223 Yrd. Doç Dr. Can Bülent FİDAN hdemirel@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2. AKIM, GERİLİM E DİRENÇ 2.1. ATOM 2.2. AKIM 2.3. ELEKTRİK YÜKÜ

Detaylı

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi

Detaylı

Osiloskop ve AC Akım Gerilim Ölçümü Deney 3

Osiloskop ve AC Akım Gerilim Ölçümü Deney 3 Osiloskop ve AC Akım Gerilim Ölçümü Deney 3 DENEY 1-6 AC Gerilim Ölçümü DENEYİN AMACI 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. GENEL BİLGİLER AC

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı RİZE ÜNİERSİESİ MYO Bilgisayar eknolojileri Bölümü Bilgisayar Programcılığı *** BİLP 07 EMEL ELEKRONİK İZE SNA *** Not: Kalem, silgi vs. alışverişi kesinlikle yasaktır. Kurala uymayanların sınav kağıdı,

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) 9.1 Amaçlar 1. µa741 ile PWM modülatör kurulması. 2. LM555 in çalışma prensiplerinin

Detaylı

- Gerilme ve Gerinme ikinci dereceden tensörel büyüklüklerdir. (3 puan)

- Gerilme ve Gerinme ikinci dereceden tensörel büyüklüklerdir. (3 puan) MAK437 MT2-GERİLME ÖLÇÜM TEKNİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ I. öğretim II. öğretim A şubesi B şubesi ÖĞRENCİ ADI NO İMZA TARİH 30.11.2013 SORU/PUAN

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU No Soru Cevap 1-.. kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. 2-, alternatif ve doğru akım devrelerinde kullanılan

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 7. Bölüm Özeti 28.04.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 7. Bölüm Özeti 28.04.2015 Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 7. Bölüm Özeti Ankara Aysuhan OZANSOY Bölüm 7: Doğru Akım Devreleri 1. Dirençler 2. Elektrik Ölçü Aletleri 3. Kirchoff

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

1.5 DĠRENÇLERĠN ÖLÇÜLMESĠ

1.5 DĠRENÇLERĠN ÖLÇÜLMESĠ 1.5 DĠRENÇLERĠN ÖLÇÜLMESĠ Dirençler Ohmmetre ile ölçülür. Ohmmetrelerin ölçtüğü direnç omik dirençtir. Ohmmetreler kendi bünyelerinde bir DC (doğru akım) kaynağı bulunan aletlerdir. Direnç ölçümü yapılırken

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

MULTİMETRE. Şekil 1: Dijital Multimetre

MULTİMETRE. Şekil 1: Dijital Multimetre MULTİMETRE Multimetre üzerinde dc voltmetre, ac voltmetre,diyot testi,ampermetre,transistör testi, direnç ölçümü bazı modellerde bulunan sıcaklık ölçümü ve frekans ölçümü gibi bir çok ölçümü yapabilen

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 7: MOSFET Lİ KUVVETLENDİRİCİLER Ortak Kaynaklı MOSFET li kuvvetlendirici

Detaylı

EEM 311 KONTROL LABORATUARI

EEM 311 KONTROL LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEM 311 KONTROL LABORATUARI DENEY 03: DC MOTOR FREN KARAKTERİSTİĞİ 2012-2013 GÜZ DÖNEMİ Grup Kodu: Deney Tarihi: Raporu

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

SICAKLIK ALGILAYICILAR

SICAKLIK ALGILAYICILAR SICAKLIK ALGILAYICILAR AVANTAJLARI Kendisi güç üretir Oldukça kararlı çıkış Yüksek çıkış Doğrusal çıkış verir Basit yapıda Doğru çıkış verir Hızlı Yüksek çıkış Sağlam Termokupldan (ısıl İki hatlı direnç

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ . Amaçlar: EEM DENEY ALERNAİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKRİSİK ÖZELLİKLERİ Fonksiyon (işaret) jeneratörü kullanılarak sinüsoidal dalganın oluşturulması. Frekans (f), eriyot () ve açısal frekans

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DERE E KISA DERE KARAKTERİSTİKERİ DENEY 4-04. AMAÇ: Senkron jeneratör olarak çalışan üç faz senkron makinanın

Detaylı

DENEY 7: GÖZ ANALİZİ METODU UYGULAMALARI

DENEY 7: GÖZ ANALİZİ METODU UYGULAMALARI A. DENEYİN AMACI : Devre analizinin önemli metodlarından biri olan göz akımları metodu nun daha iyi bir şekilde anlaşılması için metodun deneysel olarak uygulanması. B. KULLANILACAK ARAÇ VE MALZEMELER

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR Teorik Bilgi Deney de sabit çıkış gerilimi üretebilen diyotlu doğrultucuları inceledik. Eğer endüstriyel uygulama sabit değil de ayarlanabilir bir gerilime

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ FİZ 102 FİZİK LABORATUARI II FİZİK LABORATUARI II CİHAZLARI TANITIM DOSYASI Hazırlayan : ERDEM İNANÇ BUDAK BİYOMEDİKAL MÜHENDİSİ Mühendislik

Detaylı

TEK FAZLI DOĞRULTUCULAR

TEK FAZLI DOĞRULTUCULAR ELEKTRĠK-ELEKTRONĠK ÜHENDĠSLĠĞĠ GÜÇ ELEKTRONĠĞĠ LABORATUAR TEK FAZL DOĞRULTUCULAR Teorik Bilgi Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan 50-60 Hz lik AC güç şeklindedir ve uygulamada

Detaylı

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ AMAÇLAR Ohm yasasına uyan (ohmik) malzemeler ile ohmik olmayan malzemelerin akım-gerilim karakteristiklerini elde etmek. Deneysel akım gerilim değerlerini kullanarak

Detaylı

9. ÜNİTE OHM KANUNU KONULAR

9. ÜNİTE OHM KANUNU KONULAR 9. ÜNİTE OHM KANUNU KONULAR 1. FORMÜLÜ 2. SABİT DİRENÇTE, AKIM VE GERİLİM ARASINDAKİ BAĞINTI 3. SABİT GERİLİMDE, AKIM VE DİRENÇ ARASINDAKİ BAĞINTI 4. OHM KANUNUYLA İLGİLİ ÖRNEK VE PROBLEMLER 9.1 FORMÜLÜ

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI:

Detaylı