Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1.1.1. Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis)"

Transkript

1 1. FAKTÖR ANALİZİ Faktör analizi (Factor Analysis) başta sosyal bilimler olmak üzere pek çok alanda sıkça kullanılan çok değişkenli analiz tekniklerinden biridir. Faktör analizi p değişkenli bir olayda (p boyutlu uzay) birbiri ile ilişkili değişkenleri bir araya getirerek, az sayıda yeni (ortak) ilişkisiz değişken bulmayı amaçlar. Yani, temel bileşenler analizi gibi bir boyut indirgeme ve bağımlılık yapısını yok etme yöntemidir. Birbiriyle ilişkili çok sayıdaki değişkeni az sayıda, anlamlı ve birbirinden bağımsız faktörler haline getiren faktör analizinin önemli amacı, değişken sayısını azaltmak, aynı özelliklere sahip değişkenleri sınıflandırmak ve değişkenler arasındaki ilişkilerden yararlanarak bazı yeni yapılar ortaya koymaktır. Şekil 1: Faktör Analizi Uygulamadan Önce Değişkenlerin Durumu Şekil 2: Faktör Analizi Uygulandıktan Sonra Değişkenlerin Durumu Görüldüğü gibi benzer özelliklere sahip 12 değişken faktör analizi yapılarak 4 faktör olarak gruplandırılabilir. 1.1.Faktör Analizi Türleri Faktör analizi uygulanış biçimine ve uygulama amacına göre farklı isimlerle anılan bir yöntemdir. Bunlar aşağıda kısaca ele alınmıştır Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis) 1

2 Verilerin Kovaryans veya Korelasyon matrisinden yararlanılarak birbirleri ile ilişkili p sayıda değişkenden daha az sayıda (k p) ve birbirinden bağımsız yeni değişkenler (faktör) türetmek üzere yararlanılan faktör analizidir. Genellikle faktör analizi denildiğinde açıklayıcı faktör analizi akla gelir. Bu yöntem ile p sayıda değişkenden orjinal değişkenliği yüksek oranda açıklayan daha az sayıda faktör belirlenir ve bu faktörlerin faktör yükleri, faktör katsayıları, faktör skorları hesaplanır ve orjinal değişkenlerle yüksek oranda ilişkili fakat kendi aralarında ilişkisiz skorlar türetilir Doğrulayıcı faktör analizi (CFA, Confirmatory Factor Analysis) Açıklayıcı faktör analizi ile belirlenen faktörlerin, hipotezle belirlenen faktör yapılarına uygunluğunu test etmek üzere yararlanılan faktör analizidir. Hipotetik olarak; faktörler (latent variables) ile faktörleri belirlemede büyük rol oynayan değişkenler (manifest variables) arasında önemli ilişkinin bulunmadığı hipotezini test etmek amacıyla yararlanılan bir yöntemdir. Açıklayıcı faktör analizi ile belirlenen faktörler ile veri matrisindeki değişkenlerden yararlanılarak faktörler ile değişkenler arasında bir uyum yani yüksek korelasyon olup olmadığı araştırılır Q tipi faktör analizi (Q-type Factor Analysis) p değişkeni incelenen n birimin korelasyon matrisinden yararlanarak yapılan faktör analizidir. Birimlerin benzerliklerini inceleyerek birimler arasındaki benzerliklerden daha az sayıda homojen birim gruplamaları ortaya koymaya çalışan bir yöntemdir. Bu yöntemde X veri matrisi transpoze edilerek R matrisi hesaplanır ve değişkenlerde boyut indirgeme yerine n birim için k boyutlu faktör belirlemek amaçlanır. Bir anlamda n birimin alt gruplara ayrılmasını sınıflanmasını amaçlar. Transpoze X matrisi elde edildikten sonra yapılan tüm işlemler açıklayıcı faktör analizi yöntemi ile yapılır R tipi faktör analizi (R-Type Factor Analysis) Açıklayıcı faktör analizi ile benzerdir. Değişkenlerin R matrisinden yararlanılarak yapılan bir faktör analizi uygulamasıdır O-Tipi faktör analizi (O-mode Factor Analysis) 2

3 Veri matrisinde sıraların ölçümleri, sütunların yılları ifade ettiği durumlarda ölçümlerin hangi yıllarda kümelenme gösterdiğini araştırmaya yarayan yöntemdir. Eski bir zaman serisi analizi yöntemi olarak ele alınabilir. Zaman periyodlarında verilerin davranışını açıklamaya yardım eden bir yöntemdir. İleri zaman serisi analizi yöntemlerinin geliştirilmiş olması nedeniyle yaygın kullanımı olan bir yaklaşım değildir T-Tipi faktör analizi (T-mode Factor Analysis) Veri matrisinde satırların birimleri, sütunların ise yılları gösterdiği durumlarda tek değişkenli bir yapıda birimlerin yıllara göre kümelenmelerini ortaya çıkarmak için yararlanılan bir yöntemdir. Bu yöntem tek değişkenli bir kümelenmeyi ortaya çıkarmak için kullanılan eski bir faktör analizi yaklaşımıdır S-Tipi faktör analizi (S-mode Factor Analysis) Veri matrisinde satırların yılları, sütunların olayları (fenomenleri, kategorileri) ve gözelerde ise bir değişkene ilişkin ölçüm değerlerin yer aldığı durumlarda fenomenlerin zaman periyodlarına göre kümelenmelerini incelemeye yardımcı olan bir yöntemdir. Bir fenomende yer alan kategorilere göre değişkenin yıllara göre gösterdiği gruplanmaları ortaya çıkarmak amacıyla yararlanılan bir yöntemdir. Günümüzde O-tipi, T-tipi ve S-tipi faktör analizi, veri analizinde yaygın olarak yararlanılmamaktadır. Çünkü bu yöntemler tek değişkenli yöntemlerdir. Faktör analizi ise çok değişkenli bir değişkenler arası ilişkileri incelemeye yarayan bir yöntem olarak kullanılmaktadır. Değişkenler arasında düşük korelasyon varsa ya da korelasyon matrisin birim matris ise veri setine faktör analizi uygulamasının bir anlamı yoktur. Faktör analizi terimi, birbirinden farklı fakat aynı zamanda birbiriyle ilişkili teknikleri içerir. Bunlar : Principal Component Analysis (Temel Bileşenler Analizi) Principal Factor Analysis Image Factoring Maximum Likelihood Factoring 3

4 Alpha Factoring Unweigted Least Squares Factoring Generalized veya Weighted Least Squares Factoring Sayılan bu faktör analizi yöntemlerinden en yaygın kullanılanı, Temel Bileşenler Analizidir (Principal Compenent Analysis PCA). Faktör modelinin seçimi araştırmanın amacına bağlıdır. Faktör analizinin matematiksel modeli, standardize edilmiş i değişkeni için şu şekildedir: = A İ1 F 1 + A İ1 F 1 + A İ2 F A ik F k + u Bu eşitlikte F'ler, genel faktörler; U, Unique faktör ve A'lar ise k adet faktörü birleştiren sabitlerdir. Unique faktörlerin birbirleriyle ve genel faktörlerle korelâsyonlarının olmadığı kabul edilmektedir. Faktörler gözlenen değişkenlerden çıkartılmaktadırlar ve onların doğrusal bileşenleri olarak tahmin edilebilirler. J inci faktör olan Fj'nin genel tahmin eşitliği: F j = = W ij X 1 + W j2 X W jp X P Wi, skor sayılarını ve p, değişken sayısını göstermektedir Temel Bileşenler Analizi Çok değişkenli istatistiksel analizde n tane bireye (nesne) ilişkin p tane değişken (özellik) incelenmektedir. Bu özelliklerden birçoğunun birbiriyle ilişkili (bağımlı) ve p sayısının çok büyük olması analizde sorun yaratmaktadır. Örneğin insanın anatomik özellikleri değişkenleri ifade ediyor olsun. Bu durumda karın çevresi, ağırlık, göğüs çevresi, boy uzunluğu, kol uzunluğu, omuz genişliği, bacak uzunluğu vs. çok sayıda değişken bulunmaktadır. Bu değişkenlerin bazıları birbirleri ile ilişkilidir. Oysaki bu durum değişkenlerin (yaklaşık da olsa) bağımsızlığı kuralını zedeler. Ayrıca çok sayıda değişkenle çalışmak, işlem yükünü artıracağı ve elde edilecek sonuçların yorumunda bazı güçlüklere neden olacağı için arzulanan bir durum değildir. Bilgisayar olanaklarının çok geliştiği günümüzde işlem yükü bir sorun olarak görülmese de, çok sayıda değişkene ilişkin analiz sonuçlarının yorumlanması ve özetlenmesi gerçekten zor olabilmektedir. Böyle durumlarda başvurulan tekniklerden 4

5 en önemlisi Temel Bileşenler Analizi (Principal Component Analysis) dir. Genel olarak değişkenler arasındaki bağımlılık yapısının yok edilmesi ve/ya boyut indirgeme amacıyla kullanılan Temel Bileşenler Analizi başlı başına bir analiz olduğu gibi, başka analizler için veri hazırlama tekniği olarak da kullanılmaktadır Faktör analizi ile temek bileşenler analizi arasındaki benzerlikler Faktör analizi ve temel bileşenler analizleri veri setini, başlangıçtaki boyuttan daha küçük sayıda boyutla açıklamayı amaçlayan çok değişkenli bir analiz tekniğidir. Temel bileşenler analizinde olduğu gibi faktör analizinde de orjinal değişkenlerden, bağımsız yeni (hipotetik) değişkenlerin elde edilmesi çoğu kez birincil amaç olabilmekle birlikte bu iki teknik arasında bazı önemli farklılıklar bulunmaktadır. Bu farklılıklardan ilki temel bileşenler analizi, verilerin kovaryans matrisinin biçimi üzerinde herhangi bir varsayım yapılmaksızın verilerin dönüşümünü amaçlarken, faktör analizinde verilerin de tanımlanmış bir modele uyduğu varsayılmaktadır ve bu varsayım ortak faktörler ile özel (artık) faktörlerin aşağıdaki koşulları sağlama zorunluluğunu getirmektedir. E (f ) = 0; Var (f) = I; E (u) = 0; Kov (uj,uj) = 0 i j iken Kov (f,u) = 0 Bu koşulların sağlanamaması durumunda faktör analizinden doğru olmayan sonuçlara ulaşılabilmektedir. İkinci farklılık ise temel bileşenler analizi, gözlenmiş değişkenlerden temel bileşenlere Y = T'Z biçimindeki bir dönüşümü hedef alırken, faktör analizinde belirlenmiş faktörlerden gözlenmiş değişkenlere Z = AF biçimindeki dönüşüm öngörülmektedir. Faktörleşme yöntemlerinden bir tanesinin temel bileşenler tekniğini kullanıyor olması ve bilgisayar programlarının da genellikle bu tekniğe dayanması, araştırmacıları çoğu kez bu iki tekniğin aynı olduğu gibi yanlış bir düşünceye yöneltmektedir. Oysa ki temel bileşenler analizindeki asıl eşitlik olan Y = T'Z bağıntısının (T dönüşüm matrisinin simetrik olması nedeniyle) Z = TY biçimindeki tersini yazmak mümkündür. Bu nedenle dönüştürülmüş model ilk m ve geriye kalan p-m bileşene karşılık gelecek biçimde ikiye ayrılacak olursa 5

6 (Z = TY = TY1 +TY2 olarak), ilk m bileşeninin toplam varyansın büyük bölümünü açıklayacağı ve bu nedenle TY2 teriminin ihmal edilebileceği düşünüldüğünde Z = TY1 eşitliği ile Z = AF eşitliği aynı olacaktır. Bu nedenle, faktör analizi ile temel bileşenler analizi aynı olmamakla birlikte, faktör analizindeki artık varyansının çok küçük olduğu durumlarda bu iki yöntemden elde edilen sonuçlar birbirine çok yakın olacaktır. Ayrıca, faktör analizinin ölçekten bağımsız olması ve her bir faktörün varyansları 1 olacak şekilde standartlaştırılmış olması, temel bileşenler analizinden farklı olduğu diğer iki noktadır. Nitekim temel bileşenler analizinde elde edilen katsayıların (özvektörler), faktör analizindeki faktör yükleri biçiminde yorumlanabilmesi için herhangi bir özvektördeki katsayıların, ilişkin öz değerin karekökü ile çarpılması gerektiği söylenmiş ve bulunan sonuçlarla orjinal değişkenlerin çarpımından asıl temek bileşen sonuçlarının bulunacağı belirtilmişti Faktör Analizinin Aşamaları Faktör analizinde dört temel aşama söz konusudur. Bunlar, veri setinin faktör analizi için uygunluğunun değerlendirilmesi, faktörlerin elde edilmesi, faktörlerin rotasyonu ve faktörlerin isimlendirilmesidir Veri Setinin Faktör Analizi İçin Uygunluğunun Değerlendirilmesi Veri setinin faktör analizi için uygun olup olmadığını değerlendirmek amacıyla 3 yöntem kullanılır. Bunlar; korelasyon matrisinin oluşturulması, Barlett testi, ve Kaiser-Meyer-Olkin (KMO) testleridir. Analizde kullanılan tüm değişkenler için korelasyon matrisinin oluşturulması Veri setinin faktör analizi için uygun olup olmadığının tespit edilmesinde ilk adım, değişkenler arasındaki korelasyon katsayılarının incelenmesidir. İstenen, değişkenler arasındaki korelasyonların yüksek olmasıdır. Çünkü değişkenler arasındaki korelasyonlar ne kadar yüksek ise, değişkenlerin ortak faktörler oluşturma olasılıkları o kadar yüksektir. Başka bir ifade ile değişkenler arasında yüksek korelasyonların varlığı, değişkenlerin ortak faktörlerin değişik biçimlerdeki ölçümleri olduğunu gösterir. Değişkenler arasında düşük korelasyonların varlığı ise, değişkenlerin ortak faktörler oluşturmayacaklarının işaretidir. 6

7 Barlett testi (Barlett test of Sphericity) Korelasyon matrisinde değişkenlerin en azından bir kısmı arasında yüksek oranlı korelasyonlar olduğu olasılığını test eder. Analize devam edilebilmesi için Korelasyon matrisi birim matristir sıfır hipotezinin reddedilmesi gerekir. Eğer sıfır hipotezi reddedilirse, değişkenler arasında yüksek korelasyonlar olduğunu, başka bir deyişle veri setinin faktör analizi için uygun olduğunu gösterir. Kaiser Meyer-Olkin (KMO) örneklem yeterliliği ölçütü Gözlenen korelasyon katsayıları büyüklüğü ile kısmi korelasyon katsayılarının büyüklüğünü karşılaştıran bir indekstir. KMO oranın (0,5) in üzerinde olması gerekir. Oran ne kadar yüksek olursa veri seti faktör analizi yapmak için o kadar iyidir denilebilir. KMO verileri ve yorumları aşağıdaki gibidir: KMO DEĞERİ YORUM 0,90 MÜKEMMEL 0,80 ÇOK İYİ 0,70 İYİ 0,60 ORTA 0,50 ZAYIF 0,50 nin altı KABUL EDİLEMEZ Faktörlerin Elde Edilmesi Bu aşamada, amaç değişkenler arasındaki ilişkileri en yüksek derecede temsil edecek az sayıda faktör elde etmektir. Kaç faktör elde edileceği ile ilgili çeşitli kriterler söz konusudur. Öz değer (Eigenvalues) istatistiği Öz değer istatistiği 1 den büyük olan faktörler anlamlı olarak kabul edilir. Öz değer istatistiği 1 den küçük olan faktörler dikkate alınmaz. Scree test Scree test grafiği (çizgi grafiği) her faktöre ilişkili toplam varyansı gösterir. Grafiğin yatay şekil aldığı noktaya kadar olan faktörler, elde edilecek maksimum faktör sayısı olarak kabul edilir. Toplam varyansın yüzdesi yöntemi 7

8 Her ilave faktörün toplam varyansın açıklanmasına katkısı %5 in altına düştüğünde maksimum faktör sayısına ulaşılmış demektir. Joliffe kriteri 0,7 nin altında ki tüm faktörler modelden çıkarılır. Açıklanan varyans kriteri Varyansın %90 ını açıklayan faktör sayısı yeterli kabul edilir. Faktör sayısının araştırmacı tarafından belirlenmesi Araştırmacının faktör sayısına kendisinin karar vermesidir Faktörlerin Rotasyonu Faktör rotasyonundan amaç, isimlenebilir ve yorumlanabilir faktörler elde etmektir. Rotasyonda en çok kullanılan yöntem orthogonal rotasyondur. Orthogonal rotasyonda elde dilen faktörler birbirleri ile korelasyon içinde değillerdir. Orthogonal rotasyonda üç teknik kullanılır. Bunlar sırasıyla, varimax (en çok kullanılan tekniktir), equamax ve quartimax tır. Promax ve Direct Oblimin yöntemleri ise oblique rotasyon yapılmak istendiğinde kullanılan tekniklerdir. Veri seti çok büyük ise Promax rotation, Direct Oblimin rotation a tercih edilir. KAYNAKÇA ALTUNIŞIK, R., ÇOŞKUN, R., YILDIRIM, E. ve BAYRAKTAROĞLU, S. (2010). Sosyal Bilimlerde Araştırma Yöntemleri. 6.Baskı, Sakarya: Sakarya Kitabevi. BÖKE, K.(Ed.).(2011). Sosyal Bilimlerde Araştırma Yöntemleri (3.baskı). İstanbul: Alfa Basım Yayım Dağıtım Ltd.Şti. BÜYÜKÖZTÜRK, Ş., Faktör Analizi: Temel Kavramlar ve Ölçek Geliştirmede Kullanımı, Kuram ve Uygulamada Eğitim Yönetimi, Sayı: 32, Güz 2002, s: NAKİP, M. (2005). Pazarlama Araştırmalarına Giriş (SPSS Destekli). Ankara, 2.Baskı: Seçkin Yayınları. PROCTOR, T.,(2003). Pazarlama Araştırmasının Temelleri (1.Baskı), (İ. ER çev.), İstanbul: Bilim Teknik Yayınevi. 8

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK Çok Değişkenli İstatistikler Faktör Analizi Faktör Analizinin Amacı: Birbirleriyle ilişkili p tane değişkeni bir araya getirerek az sayıda ilişkisiz ve kavramsal olarak

Detaylı

T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ. Ayhan Çakır 1250D91213

T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ. Ayhan Çakır 1250D91213 T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ Ayhan Çakır 0D9 Danışman: Prof. Dr. Hüner Şencan İstanbul Aralık 04 İÇİNDEKİLER

Detaylı

PSK 510 Research Methods and Advanced Statistics

PSK 510 Research Methods and Advanced Statistics PSK 510 Research Methods and Advanced Statistics Lecture 09: PCA and FA Doğan Kökdemir, PhD http://www.kokdemir.info dogan@kokdemir.info 1 İstatistik Las Meninas - Picasso 2 Gerçek Las Meninas - Diego

Detaylı

TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ

TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ Doktora Tezi Araştırma Önerisi

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER. 1.1. Sosyal Bilimlerde Nedensel Açıklamalar

1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER. 1.1. Sosyal Bilimlerde Nedensel Açıklamalar 1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER Daha önceki derslerimizde anlatıldığı bilimsel araştırmalar soruyla başlamaktadır. Ancak sosyal bilimlerde bu soruların cevaplarını genel geçerli sonuçlar

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

EK -13: NİCEL ANALİZLERDE KULLANILAN YÖNTEMLER NACE REV Lİ KODDA İMALAT SANAYİ FAALİYETLERİNİN TEKNOLOJİ SINIFLAMASI,EUROSTAT

EK -13: NİCEL ANALİZLERDE KULLANILAN YÖNTEMLER NACE REV Lİ KODDA İMALAT SANAYİ FAALİYETLERİNİN TEKNOLOJİ SINIFLAMASI,EUROSTAT EK -13: NİCEL ANALİZLERDE KULLANILAN YÖNTEMLER NACE REV.2.00 2 Lİ KODDA İMALAT SANAYİ FAALİYETLERİNİN TEKNOLOJİ SINIFLAMASI,EUROSTAT EKLER 3 YILDIZ ANALİZİ TEMEL BİLEŞENLER ANALİZİ Temel bileşenler analizi

Detaylı

Faktör analizinde yer alan döndürme metotlarının karşılaştırmalı incelenmesi üzerine bir uygulama

Faktör analizinde yer alan döndürme metotlarının karşılaştırmalı incelenmesi üzerine bir uygulama ORİJİNAL MAKALE / ORIGINAL ARTICLE Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2011;1(3): 22-26 ISSN: 2146-443X Düzce Üniversitesi sbedergi@duzce.edu.tr Faktör analizinde yer alan döndürme metotlarının

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri ÖNSÖZ Gerçekte herhangi bir olguyu etkileyen dinamikler çok karmaşıktır ve her alanda olayların akışını etkileyen faktörler çok sayıda (genellikle sonsuz sayıda) özellik tarafından belirlendiğinden çok

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

Ýletiþim Becerileri Deðerlendirme Ölçeðinin Faktör Analizi Metodu Ýle Geliþtirilmesi

Ýletiþim Becerileri Deðerlendirme Ölçeðinin Faktör Analizi Metodu Ýle Geliþtirilmesi Ýletiþim Becerileri Deðerlendirme Ölçeðinin Faktör Analizi Metodu Ýle Geliþtirilmesi * Yalçýn KARAGÖZ Ýlker KÖSTERELÝOÐLU Özet: Bu çalýþmada; öðrenme süreci içinde öðrencilerin kendileri için anlam taþýyan

Detaylı

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması 2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması Mahmut YARDIMCIOĞLU Özet Genel anlamda krizler ekonominin olağan bir parçası haline gelmiştir. Sıklıkla görülen bu krizlerin istatistiksel

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN (14 Eylül 2017) 08:30-09:00 Kurs Kayıt Açılış Konuşması 09:00-10:00 Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesio Çok Değişkenli İstatistiksel Yöntemlere Giriş o Basit Doğrusal

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI ÖZET

İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI ÖZET Muğla Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (İLKE) Bahar 2007 Sayı 18 İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA 1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA Araştırmacı kişi ya da kurumlar birinci el veri elde etye yönelik araştırma yapmaya karar verdiklerinde çoğu zaman araştırma yapacağı grubun tüm

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Çocuklara Yabancı Dil Öğretiminin Duyuşsal Hedefleri Ölçeği

Çocuklara Yabancı Dil Öğretiminin Duyuşsal Hedefleri Ölçeği Çocuklara Yabancı Dil Öğretiminin Duyuşsal Hedefleri Ölçeği Şad, S. N., & Gürbüztürk, O. (2015). The affective objectives in early foreign language teaching: A scale development study. International Journal

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

THY İŞLETMESİNİN HİZMET KALİTESİ AÇISINDAN DEĞERLENDİRİLMESİ ÜZERİNE BİR PİLOT ARAŞTIRMA

THY İŞLETMESİNİN HİZMET KALİTESİ AÇISINDAN DEĞERLENDİRİLMESİ ÜZERİNE BİR PİLOT ARAŞTIRMA THY İŞLETMESİNİN HİZMET KALİTESİ AÇISINDAN DEĞERLENDİRİLMESİ ÜZERİNE BİR PİLOT ARAŞTIRMA Bu çalışmanın amacı, tüketicilerin Türk Hava Yollarından bekledikleri hizmet kalitesi arasında fark olup olmadığını

Detaylı

1. ÖLÇME DÜZEYLERİ VE ÖLÇEKLERİN KULLANILMASI Ölçme Düzeylerinin Karşılaştırılması Nominal (Sınıflandırma) Ölçeği

1. ÖLÇME DÜZEYLERİ VE ÖLÇEKLERİN KULLANILMASI Ölçme Düzeylerinin Karşılaştırılması Nominal (Sınıflandırma) Ölçeği 1. ÖLÇME DÜZEYLERİ VE ÖLÇEKLERİN KULLANILMASI Ölçme, kişilerin veya nesnelerin özelliklerine puan, sayı ya da sembol verilmesi işlemidir. Bu işlemin ortaya çıkarılması süreci ne tür bir bilgi arandığı

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

TRB2 BÖLGESİ'NDE BULUNAN İLÇELERİN SOSYO-EKONOMİK GELİŞMİŞLİK SIRALAMASI

TRB2 BÖLGESİ'NDE BULUNAN İLÇELERİN SOSYO-EKONOMİK GELİŞMİŞLİK SIRALAMASI 2013 TRB2 BÖLGESİ'NDE BULUNAN İLÇELERİN SOSYO-EKONOMİK GELİŞMİŞLİK SIRALAMASI TEMEL BİLEŞENLER ANALİZİ Doğu Anadolu Kalkınma Ajansı 31.10.2013 Bu çalışmada TRB2 Bölgesi'nde bulunan 29 ilçe arasındaki ekonomik

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : UYGULAMALI SAHA ARAŞTIRMALARI Ders No : 0020090028 Teorik : 2 Pratik : 2 Kredi : 4 ECTS : 6 Ders Bilgileri Ders Türü Öğretim

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri)

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Bilim ve Bilimsel Araştırma

Bilim ve Bilimsel Araştırma Bilim ve Bilimsel Araştırma Bilim nedir? Scire / Scientia Olaylar ve nesneleri kavramak, tanımak ve sınıflandırmak üzere çözümleyen, olgular arasındaki nesnellik ilişkilerini kuran, bu ilişkileri deney

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi 5. HAFTA PFS 107 EĞİTİMDE Yrd. Doç Dr. Fatma Betül Kurnaz betulkurnaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler Standart Hata... Hata! Yer işareti tanımlanmamış.

Detaylı

AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli

AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli Veri seti bulunur Değişkenler sürüklenerek kutucuklara yerleştirilir Hata terimi eklenir Mouse sağ tıklanır ve hata terimi tanımlanır.

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

250 BÜYÜK FİRMA VERİLERİNİN DEĞİŞKEN BAZINDA İNCELENMESİ

250 BÜYÜK FİRMA VERİLERİNİN DEĞİŞKEN BAZINDA İNCELENMESİ 250 BÜYÜK FİRMA VERİLERİNİN DEĞİŞKEN BAZINDA İNCELENMESİ Prof. DR. Necmi GÜRSAKAL I. GİRİŞ Çalışmamızın ilk bölümünde 2002 yılına ilişkin 250 büyük firma verilerini değişken bazında inceleyerek bazı yorumlar

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-5

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-5 HAYVANCILIK DENEMESİNDE FAKTÖR ANALİZİ YÖNTEMLERİNİN KARŞILAŞTIRMALI OLARAK İNCELENMESİ Examınıng Factor Analyses Methods Comparatıvely and Applyıng to Anımal Husbandry Trıal Yadigar POLAT Zootekni Anabilim

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SAHA ARAŞTIRMA METOD VE TEKNİKLERİ Ders No : 0020090021 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : Ders Bilgileri Ders Türü Öğretim

Detaylı

ORTAOKUL ÖĞRENCİLERİ İÇİN BEDEN EĞİTİMİ VE SPOR DERSİ DEĞER ÖLÇEĞİNİN GELİŞTİRİLMESİ

ORTAOKUL ÖĞRENCİLERİ İÇİN BEDEN EĞİTİMİ VE SPOR DERSİ DEĞER ÖLÇEĞİNİN GELİŞTİRİLMESİ ORTAOKUL ÖĞRENCİLERİ İÇİN BEDEN EĞİTİMİ VE SPOR DERSİ DEĞER ÖLÇEĞİNİN GELİŞTİRİLMESİ Mehmet GÜLLÜ* Mehmet Akif YÜCEKAYA**, 1 *İnönü Üniversitesi, Spor Bilimleri Fakültesi,Türkiye **İnönü Üniversitesi,

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

YYÜ TAR BİL DERG (YYU J AGR SCI) 2012, 22(2): 69-76 Geliş Tarihi(Received):27.12.2011 Kabul Tarihi (Accepted): 28.02.2012

YYÜ TAR BİL DERG (YYU J AGR SCI) 2012, 22(2): 69-76 Geliş Tarihi(Received):27.12.2011 Kabul Tarihi (Accepted): 28.02.2012 YYÜ TAR BİL DERG (YYU J AGR SCI) 2012, 22(2): 69-76 Geliş Tarihi(Received):27.12.2011 Kabul Tarihi (Accepted): 28.02.2012 Araştırma Makalesi/Research Article (Original Paper) Türkiye de İllerin Bitkisel

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

FAKTÖR ANALİZİ İLE ÖĞRETİM ÜYESİ DEĞERLEME ÇALIŞMASI Sait PATIR (*)

FAKTÖR ANALİZİ İLE ÖĞRETİM ÜYESİ DEĞERLEME ÇALIŞMASI Sait PATIR (*) Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 4, 2009 69 FAKTÖR ANALİZİ İLE ÖĞRETİM ÜYESİ DEĞERLEME ÇALIŞMASI Sait PATIR (*) Özet: Bu çalışma, öğretim üyesinin performansının

Detaylı

1. GEÇERLİLİK VE GÜVENİLİRLİLİK

1. GEÇERLİLİK VE GÜVENİLİRLİLİK 1. GEÇERLİLİK VE GÜVENİLİRLİLİK Bilimsel araştırma sürecinde araştırmacı temelde bir açıklama bir soruya cevap aramaktadır. Bu cevabın doğruluğu, yanlışlığı ya da hatalı ölçümü ile ilgili olarak ise bilimsel

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

SINAVLARINDAKĐ BAŞARI DURUMUNA GÖRE ĐLLERĐN SIRALANMASI

SINAVLARINDAKĐ BAŞARI DURUMUNA GÖRE ĐLLERĐN SIRALANMASI Ekonometri ve Đstatistik Sayı:17 2012 45-68 ĐSTANBUL ÜNĐVERSĐTESĐ ĐKTĐSAT FAKÜLTESĐ EKONOMETRĐ VE ĐSTATĐSTĐK DERGĐSĐ FAKTÖR ANALĐZĐ ĐLE ÜNĐVERSĐTEYE GĐRĐŞ SINAVLARINDAKĐ BAŞARI DURUMUNA GÖRE ĐLLERĐN SIRALANMASI

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı