TEKNİK FOTOĞRAFÇILIK. XII-XIII. Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEKNİK FOTOĞRAFÇILIK. XII-XIII. Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ"

Transkript

1 TEKNİK FOTOĞRAFÇILIK XII-XIII. Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ

2 Giriş Mikroskopların gelişimde aşağıda yer alan görüntüleme partikülleri önemlilik arz eder. (1) Işık fotonları (2) Elektronlar veya iyonlar

3 Giriş Işık mikroskobisinde ışık fotonları görüntüleme partikülleridir; ışık fotonları konvansiyonel cam merceklerle odaklanır. Elektron mikroskobisinde ise görüntülemede elektronlardan faydalanılır. Elektriksel alanda ivmelendirilmiş elektronlar manyetik alanda saptırılır.bu doğrultuda elektromanyetik merceklerden geçen elektronlar fokuslanır. Elektronların yüksek enerjisi doğrultusunda birkaç nm seviyesinde ayırma gücü elde edilir.

4 Giriş Enerji tahriğine bağlı olarak katı maddeden dört değişik şekilde elektron eldesi (koparımı) bulunmaktadır: 1. foto-emisyon (fotonlarla bombardman ile koparma) 2. termal emisyon (ısıtma sonucu elektron serbestleşmesi) 3. alan emisyonu (güçlü elektriksel alanla koparma) 4. kinetik emisyon (elektron veya iyon bombardmanı ile koparma)

5 Giriş

6 Giriş Şekil 4.1. Ayırma gücü ve büyütme açısından numune incelemede kullanılan yöntemlerin karşılaştırılması.

7 Esaslar Mikroskobik cisimler spektrumun görünür bölgesindeki absorbsiyon yeteneklerine göre ikiye ayrılır ve böylece ışık mikroskoplarının konstruksiyonunda iki temel tip görülür: (1) Transmisyon tipi ışık mikroskobu (2) Refleksiyon tipi ışık mikroskobu

8 Esaslar Transmisyon tipi ışık mikroskobu Saydam cisimler, gelen ışığın bir kısmını inceleme yapılabilecek şekilde transmitte edebilirler. Bu objelerde alttan gelen ışık objenin içinden geçerek üstte bulunan objektife ulaşır. Bu tür optik mikroskoplar, örneğin biyolojide kullanılır.

9 Esaslar Refleksiyon tipi ışık mikroskobu Saydam olmayan cisimler, gelen ışığın tamamını absorbladığı için bunların incelenmesi sadece yansıyan ışığın altında olmaktadır. Metaller ve alaşımlar gibi transparan olmayan objelerde metallerin yüksek ışık refleksiyon katsayısından faydalanılır. Bu tür optik mikroskoplar, jeoloji, malzeme bilimi vb. de kullanılır. Metalografik numune incelemelerinin bu tür ışık mikrokobunda yapılması nedeniyle bu mikroskoplar metal mikroskobu olarak da anılır

10 Esaslar (a) Şekil 4.2. Işık mikroskop düzeneği ve ışık yolunu gösteren kesit: a) Küçük bir metal mikroskobu (eski model). b) reflekte ve transmitte ışık için modifiye edilmiş modern bir mikroskop. (b)

11 Esaslar Şekil 4.3. Bir ışık mikroskobunda görüntü oluşumunun şematik gösterimi (Le Chatelier prensibi).

12 Esaslar Şekil 4.4. Ötektik altı bir demir-karbon alaşımının görüntüsü; primer kristaller ve ledeburit ötektiği; a-c artan büyütme oranı.

13 Esaslar Şekil 4.4. Ötektik altı bir demir-karbon alaşımının görüntüsü; primer kristaller ve ledeburit ötektiği

14 Esaslar Şekil 4.4. Ötektik altı bir demir-karbon alaşımının görüntüsü; primer kristaller ve ledeburit ötektiği

15 Esaslar Dalga optik kuramı z nd sin z = maksimumun düzen sayısı, λ = ışığın dalga boyu (mavi ışık için λ=0, mm, kırmızı ışık için λ=0, mm), d = iki nokta arasındaki mesafe, α = odak noktasından ölçülen kırılma çizgilerinin yarı açılma açısı (giriş açısı), n = cisim veya numune ile optik sistem arasındaki ortamın kırılma indisidir.

16 Esaslar Ayırma Gücü d nsin A A nsin A : numerik apertür

17 Esaslar Görüntülenecek cisim için en kısa mesafe n sinα çarpımı bir ışık demetinin açılımını ve tek büyütme ile objektifin gücünü karakterize eder. Bu açıklık, objektifin numerik aperturu (AOb) diye adlandırılmaktadır. Ama özellikle ışık kaynağının aperturu (ABe, diyafram) gibi mikroskobun ayırma gücünü etkileyen başka etkenler de bulunduğu için (ABe genelde AOb ye eşit) görüntülenecek cisim için en kısa mesafe, dmin aşağıdaki gibidir: d min genelde 0,5 < k < 1,0 iken A Ob A Be k nsin

18 Esaslar En büyük mikroskobik ayırma gücü için kısa dalga boylu (düşük λ) ışık kullanarak ( apokromat objektifle mavi ışık) maksimum kırılma indisine sahip ortamda (A=1,66 ya sahip monobromnaftalin daldırma çözeltisi) çalışarak maksimum açılma açısında çalışarak (α = 72 derece).

19 Esaslar Netlik Derinliği (T) Numune yüzeyinden hangi derinliğe kadar net görüntülenebileceğini verir. Cismin optik eksen yönünde görüntünün netliğinde herhangi bir değişiklik olmadan kaydırılabileceği mesafedir. Bu kavram optiğin kalitesinden ziyade sadece geçerli optik kanunlar tarafından belirlenmektedir. T A 1 mm A = numerik apertur β = görüntüleme ölçeği

20 Esaslar Stereo Mikroskop Bazen mikroyapı öğelerinin hacimsel düzeneği, kırılma yüzeyleri ve benzer oluşumları fotografik görüntüleme ile sabitlemek gerekir. Bu numunenin aynı bölgesinin birbirinden çok az sapan iki yönden görüntüleyerek başarılmaktadır. Makro görüntülemede birinci görüntülemeden sonra kamerayı biraz kaydırarak ikinci görüntüyü almak yeterli olmaktadır. Küçük görüntü kameraları için özel stereo parçalar bulunmaktadır. Yüksek büyütmeler isteniyorsa bir Stereo Mikroskop gerekmektedir. Burada büyütmeler yaklaşık 1:100 e ulaşmaktadır

21 Esaslar (a) (b) Şekil 4.5. Stereo mikroskop ile alınmış transformatör çeliği (%4 Si) döküm yapısının sahip stereo görüntüsü. Matriks HBr (hidrojen bromür) ile dağlanmış. Metalik olmayan kalıntılar ile karbürlerin yapısı ve hacimsel konumları dağlamadan etkilenmez.

22 Donanım Objektif çeşitleri akromat (en düşük düzeltme seviyeli) yarı apokromat (orta düzeltme seviyeli) apokromat (en yüksek düzeltme seviyeli)

23 Donanım Şekil 4.6. Mikroskopta kullanılan objektifler. (a) Akromatik objektif, (b) Fluorit (yarı apokromatik) objektif, (c) Apokromatik objektif, (d) Objektif üzerinde yazılı spesifikasyonlar.

24 Donanım Şekil 4.7. Tipik bir okuların boyuna kesiti. Sabit apertur diyaframı, ara görüntünün oluştuğu mercek 1 ve 2 arasında bulunmaktadır. Okular, mikroskopla çalışan kişinin rahatça görebilmesi için korumalı bir gözetleme deliğine sahiptir.

25 Donanım Mercek hataları küresel hata (sferik aberrasyon) kromatik hata (kromatik aberrasyon, en sık gözlenen hata!) astigmatizm difraksiyon hatası (difraksiyon aberrasyon)

26 Donanım Kromatik hata Bu hata, ışık kırılmasının dalga boyu ile olan ilişkisine dayanmaktadır. Uzun dalga boyundaki ışığa göre kısa dalga boyundaki ışıkta oluşturulan görüntü, görüntünün elde edildiği merceğe daha yakındır. Çeşitli renklerdeki (dalga boyundaki) ışınlar bir toplar merceğinin aynı odak noktasında buluşmamaktadır. Aksine merceğe en yakın odak noktasında mavi ışınlar, bir uzağındakinde yeşil ışınlar ve en uzağında ise kırmızı ışınlar oluşmaktadır. Normal beyaz ışık kırmızı, turuncu, sarı, yeşil, mavi, indigo-mavi ve mor gibi spektral renklerinin karışımından oluştuğu için beyaz ışık merceğin arkasında bir odak noktasında buluşmayacaktır, aksine mercek düzlemine dik olan bir çizgide toplanacaktır. Bunun sonucu olarak görüntü merceğin arkasında renkli bir şekilde arka arkaya çözülecektir.

27 Donanım Bir mikroskobun aydınlatma (ışıklandırma) düzeni için aşağıda verilen koşullar sağlanmalıdır : (a) (b) (c) Cismin üzerindeki ışık yoğunluğu, görüntünün hassas bir göz ile hem okularda, hem de ışığı yutan mat bir plaka üzerinde gözlenebilmesini sağlayacak bir şekilde ayarlanmalıdır. Fotografik görüntü almada, ışıklandırma süresi olabildiğince kısa olması için ışık yoğunluğu yüksek tutulmalıdır. Işık demetinden ayrılan ve görüntüye hiç bir şekilde katkısı olmayan rahatsız edici refleksler, ışık girişinden uzak tutulmalıdır. Apertur ve ışık demetinin düşme yönü bütün inceleme konumları için optimal ayarlanmalıdır.

28 Donanım Şekil 4.8. Köhler aydınlatma presibinin genel bir düzeneğinin şematik gösterimi.

29 Donanım Şekil 4.9. Mikroskopta düz cam ayna ve prizma ile elde edilen ışık yolu.

30 Kontrast Oluşumu & Görüntüleme Cismin ayrıntılarını görmek için yalnızca bunların aramesafesinin ayırdedilebilir en küçük mesafeden büyük olması yeterli gelmemektedir. Ayrıca cismin ayrıntılarını optik özellikleri açısından ayırdedebilmek, yani görüntüdeki yüzeyde bulunan ögelerin görünebilir kontrastlar vermesi de önemlidir. Renk ve aydınlık kontrastları direkt gözle algılanabilir veya fotografik anlamda görüntülenebilir. Cismi dağlama veya enterferans katmanları ile yüzeyde tabaka oluşturma gibi çeşitli metalografik metotlarla etkileyerek kontrast artırılabilinir.

31 Kontrast Oluşumu & Görüntüleme Aydınlık alan aydınlatması ile kontrast Görüntülemenin cisim tarafından yansıyan (reflekte olan) ışık tarafından oluşturulması durumunda aydınlık alan ışıklandırması söz konusudur. Burada optik eksene dik olan düz yüzeyler aydınlık görünmektedir. Bu kontrast standart görüntüleme modudur

32 Kontrast Oluşumu & Görüntüleme Karanlık alan aydınlatması ile kontrast Yalnız dağınık dağılmış (difuz saçılmış) ışık görüntüyü oluşturuyor ise karanlık alan ışıklandırılması söz konusudur. Bu durumda optik eksene dik olan düz yüzeyler karanlık görünmektedir. Karanlık alan ışıklandırmanın avantajı, yaygın ışık saçılımı nedeni ile cismin dış yüzeyindeki rölyef ayrıntılarının kontrastça daha zengin eldesidir

33 Kontrast Oluşumu & Görüntüleme (a) (b) Şekil Elektrolitik demir, %1 lik nital ile dağlanmış. a) aydınlık alan, b) karanlık alan görüntüsü.

34 Kontrast Oluşumu & Görüntüleme Polarize ışık kontrastı Normal beyaz ışık, ilerleme yönüne dik olarak herbir yöne salınmaktadır. Bu tür polarize olmayan bir ışık, belli yönde birbirine bağlanmış iki kalkspat/kalsit kristali (Nicol prizması) içinden geçirildiğinde yalnızca bir düzlemde titreşir; ışık polarize olmuştur. Polarize ışık, ikinci bir Nikol prizmasından (analizatör) geçemez. Yalnızca eğer polarizatör ve analizatör kristalleri arasında optik aktif (anizotrop) bir madde bulunduğunda polarize ışık analizatörden de geçebilir, çünkü optik aktif maddeler polarize ışığın titreşim düzlemini değiştirir ve böylece önceden karanlık olan görüntüleme yüzeyi aydınlanır.

35 Kontrast Oluşumu & Görüntüleme (a) Şekil Saf aluminyum a) tane sınırı dağlanmış, aydınlık alan, b) florobor asitiyle anodik oksidasyon, polarize ışık. (b)

36 Kontrast Oluşumu & Görüntüleme (a) (b) Şekil Çelik içerisindeki silikat tipi kalıntılar, parlatılmış numune. a) paralel Nikols ile görüntülenmiş, b) çapraz Nikols ile görüntülenmiş.

37 Kontrast Oluşumu & Görüntüleme Faz kontrastı Faz kontrası yönteminde parlatılmış numune yüzeyinde reflekte olan ışığın mikroyapısal fazların sertliğine bağlı olarak oluşan düşük yükseklik farklarından faydalanılır. Farklı yüksekliklerde reflekte olan ışık faz kaymasına uğrar. Gözümüzle algılayamadığımız bu faz kaymaları, mikroskopta ışık yolunda fokus düzlemin sokacağımız bir faz plakası ile aydınlık-karanlık efektine dönüşür. Böylece Ă arası çok küçük yükseklik farkları görülebilir.

38 Kontrast Oluşumu & Görüntüleme (a) (b) Şekil Alaşımlı bir çeliğin ferrit ve östenit den oluşan çift fazlı mikroyapısı, dağlanmış. a. aydınlık alan, b. pozitif faz kontastı: ferrit daha aşağıda, sert olan östenit yukarda

39 Kontrast Oluşumu & Görüntüleme (a) Şekil Alaşımlı çelik, sertleştirilmiş ve temperlenmiş; karbür içeren mikroyapı. a) %1 lik nital ile dağlanmış: aydınlık alan, b) dağlanmamış: aydınlık alan ve faz kontrastı. (b)

40 Kontrast Oluşumu & Görüntüleme Enterferans kontrast Işık mikroskopisinde enterferans katman yöntemi, parlatılan numune yüzeyinde enterferans tabakalarının oluşturulması ve böylece refleksiyon-enterferans filtrelerinin oluşturulmasına dayanmaktadır. Böyle bir kısmi absorpsiyon göstermeyen tabakanın etkisi, numune yüzeyine gelen ışık dalgalarının, metal/tabaka ve tabaka/hava arayüzeylerinde çoklu refleksiyonlar ile zayıflamasına bağlıdır. Böylece mikroyapı öğeleri arasındaki kontrastın artışı elde edilir. Bu kontrast artışı, iki faz arasında yansıyan ışığın şiddet farklılığının artırılması yanısıra renk kontrastının da artırılmasına bağlı bir olaydır.

41 Kontrast Oluşumu & Görüntüleme (a) (b) (c) Şekil Yüksek hız çeliğinde değişik kontrast yöntemlerinin uygulanması: (a) Enterferans kontrast (b) MC karbürlerin potensiyostatik olarak amonyumasetat ile kaplama dağlaması, (c) Materyal kontrast, SEM.

42 Tarama Elektron Mikroskobu Elektron Mikroskobisinde Esaslar 2 değişik tip elektron mikroskobu geliştirilmiştir: (1) Numune yüzeyini tarayarak görüntüleyen tür: tarama elektron mikroskobu d 10 nm (2) Numune içinden geçerek görüntüleyen tür: transmisyon elektron mikroskobu; 100 kv ivmelendirme voltajında: = nm d= 17 Å

43 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Elektron Saçılması Katot-anot düzeneğinde üretilerek numune üzerine gönderilen elektron demetindeki elektronlara birincil elektronlar (primary electrons) denir. Demetle gelen primer elektronlar numuneye ulaştıklarında numune atomlarının elektrostatik alanları ile etkileşir ve bu atomların yörüngelerindeki elektronlarla saçılır (çarpışır). Primer elektronlar elektrostatik alanla yön değiştirirler. Bu durumda primer elektronun yönü değişirken elektron hızı değişmediği için enerjisi de değişmez. Bu tip elektronların bir kısmı bu şekilde numune yüzeyinden geri çıkabilirler.

44 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Elektron Saçılması Enerjileri primer elektronlarla aynı olan veya enerji kaybetmiş ancak primer elektron enerjisine yakın enerjiye sahip elektronlara geri saçılmış elektronlar (back scattered electrons, BSE) denir. Primer elektronlar atom yörüngelerindeki elektronlarla da çarpışabilirler. Dış yörüngedeki elektronların çarpışma ile atomlardan sökülebilmeleri için az bir enerji yeterlidir. Bu elektronlara ise ikincil elektronlar (secondary electrons, SE) denir.

45 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Elektron Saçılması İç yörüngedeki elektronlarla primer elektronların çarpışması sonucunda bu yörüngedeki elektronlar da yerlerinden sökülebilirler. Bu şekilde iç yörüngede meydana gelen boşluklar, dış yörüngedeki elektronlar tarafından doldurulduğunda ise iki konum arasındaki fark X- ışını olarak yayınır. Yörüngeler arası enerji farkı sabit olduğu için ve yörüngeler arasında yüksek olasılıklı transferler de kısıtlı olduğundan, yayınan X-ışınlarının büyük bir kısmı belirli enerjilerde yayınır. Bunlara karakteristik X-ışınları adı verilir. X-ışını yayınması yerine enerji farkı dış yörüngeden bir elektronun serbest kalması ile karşılanırsa bu elektrona Auger elektronu (AE) denir.

46 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Elektron Saçılması Elastik Saçılma: Numune atomlarının elektrostatik alanlarında yanlız yönünü değiştiren elektronların enerjileri aynı kalır. Hiçbir enerji transferinin yer almadığı bu tip saçılmalara elastik saçılma denir. Geri saçılan elektronların bir kısmı bu şekilde oluşur. İnelastik Saçınma; Primer elektronlar numune elektronlarının elektrostatik alanları ve yörünge elektronları ile çarpıştıklarında enerjilerinin bir kısmı veya tamamını kaybederler. Bu tip saçılmaya ise inelastik saçınma denir. Geri saçılan elektronların bir kısmı ile ikincil elektronların tamamı bu şekilde oluşur.

47 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Elektron Saçılması Şekil 5.1. Elektron demeti numune etkileşimi.

48 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Karakteristik Oluşumlar Geri Saçılmış Elektronlar (BSE): Atom çekirdeklerindeki bir ve birçok elastik saçılma ile içeri giren birincil elektronların bir kısmı tekrar dışarı çıkabilir. enerji kaybetmeden (ilk primer enerjileriyle): elastik saçılmış grup kısmi enerji kaybıyla (önceden inelastik saçılma): inelastik saçılmış grup

49 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Karakteristik Oluşumlar İkincil Elektronlar (SE): Madde içi dış yörünge elektronları birincil elektronlarla inelastik çarpışmalarla (örneğin valans elektronları) enerji kazanırlar ve böylece kendi atomunu terkederler. Auger Elektronları (AE):Yüksek enerjili birincil elektronlar atomun iç kabuğundan da elektron dışarı atılabilir. Dış kabuktan gelecek bir elektronla bu boşluk doldurularak enerji dengesi sağlanır. İki kabuk arası enerji farkı serbestleşir: Bu enerjiyi alan dış bir elekron emitte edilir: bu elektrona Auger elektronu denir. X-ışın kuantı olarak emitte edilir: bu emisyona karakteristik X-ışınının fotonu denir.

50 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi Karakteristik Oluşumlar Şekil 5.2. Sekonder (SE) ve Geri Saçınan (BSE) elektronların belirli enerji aralıklarında (E) bulunma olasılıkları (PE).

51 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi X-ışın Oluşumu Bremsstrahlung (Frenleme Işınımı) Maddenin atom çekirdeklerinin Coulomb alanına giren birincil elektronlar yönlerinden saptırılır ve frenlenir (enerji kaybı). Bu kinetik enerji kaybı ısı ve X-ışın foton oluşumuna yolaçar. Yönsel saptırma ve frenleme oldukça değişik oluştuğundan emitte edilen elektromanyetik ışının sürekli bir enerji spektrumuna sahiptir. Bu spektrumun kısa dalga tarafındaki sınır tamamen frenlemede elde edilen kinetik enerji (ki bu primer elektron enerjisi) miktarındadır.

52 Tarama Elektron Mikroskobu Elektron Numune Etkileşimi X-ışın Oluşumu Karakteristik Işınım Elektron üst-alt kabuk geçişi sonucu enerji X-ışın fotonu olarak gönderiliyorsa buna karakteristik ışınım denir. Bu ışınım element spesifiktir (her enerji belirli bir elemente ait).

53 Tarama Elektron Mikroskobu Optik Düzenek & Mercek Hataları Şekil 5.3. Ayırma Gücü (), Netlik Derinliği (T) ve Büyütme (M) açısından Işık Mikroskobu (LM) ile Tarama Elektron Mikrosko-bunun (SEM) farkı.

54 Tarama Elektron Mikroskobu Optik Düzenek & Mercek Hataları Şekil 5.4. Tarama Elektron Mikroskobunda görüntünün oluşumu.

55 Tarama Elektron Mikroskobu Optik Düzenek & Mercek Hataları Kondenser Mikroskobun içindeki ilk mercekler kondenser (yoğunlaştırıcı) merceklerdir. Kondenser mercek sistemi bir veya birkaç mercekten oluşabilir. Kondenser merceği kesişme noktasındaki demetin küçültülmüş bir görüntüsünü oluşturur. Objektif Objektif merceği kondenser mercekten çıkan demetin, numune üzerine odaklanmasından sorumludur. Objektif mercekle numune arasındaki uzaklığa çalışma aralığı denir. Çalışma aralığı kısa tutulduğunda odaklanan demet çapı incelir. Dolayısıyla ayırma gücü yükselir. Saptırma Bobinleri Tarama Elektron Mikroskobunda demetin numune üzerinde tarama işlemini yapabilmesi için demetin periyodik olarak sağa sola ve aynı anda yukarı aşağıya kaydırılabilmesi gerekmektedir. Bu kaydırma işlemi saptırma bobinleri adı verilen sargıların yarattığı manyetik alanlarla yapılır.

56 Tarama Elektron Mikroskobu Kontrast Oluşumu Topografik Kontrast & Gölgeleme Efekti Şekil 5.9. Sekonder ve geri saçınan (BSE) elektronlar için gölge efekti oluşumu.

57 Tarama Elektron Mikroskobu Kontrast Oluşumu Topografik Kontrast & Gölgeleme Efekti Şekil Köşe efekti ile elektron veriminin değişimi.

58 Tarama Elektron Mikroskobu Kontrast Oluşumu Materyal Kontrast Şekil SE ve BSE elektron verimi ile atom numarası ilişkisi, : SE verimi, : BSE katsayısı, Ordnungszahl Z: Atom numarası Z.

59 Tarama Elektron Mikroskobu Kontrast Oluşumu Materyal Kontrast

60 Tarama Elektron Mikroskobu Kontrast Oluşumu Diğer Kontrast Mekanizmaları Oryentasyon kontrastı, Potansiyel kontrastı, Manyetik kontrast

61 Tarama Elektron Mikroskobu Kontrast Oluşumu Kontraslama Örnekleri Sekonder Elektron (SE) Geri Saçılan Elektron (BSE-kompozisyon)

62 Tarama Elektron Mikroskobu Kontrast Oluşumu Kontraslama Örnekleri Karakteristik X-ışını Haritalama Geri Saçılan Elektron (BSE-topografi)

63 Tarama Elektron Mikroskobu Kontrast Oluşumu Kontraslama Örnekleri Absorbe Edilen Elektron Potansiyel Kontrast

64 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil SEM, topografik kontrast, saat vidası.

65 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil SEM, topografik kontrast, iğne ucu ve iğne deliği.

66 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil SEM, topografik kontrast, fitalik asit kristalleri.

67 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil Döküm çelik numunede ledeburitik mikroyapı, dağlanmış numune. SEM, topografik kontrast ve materyal kontrast. Açık/koyu gri: matriks, beyaz/aydınlık: M2C karbürü.

68 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil Şekil 5.32 deki aynı çeliğin toz metalurjik üretiminden toz tanesi, aşırı dağlanmış numunede karbür iskeleti. SEM, topografik kontrast. Koyu gri/siyah: aşırı dağlanmış matriks, açık gri: M2C karbürü.

69 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil Şekil 5.33 deki çeliğin toz metalurjik üretiminden toz tanesi yüzeyinin morfolojisi; MC karbürlerinde heterojen çekirdeklenme sonucu eşeksenli kristal büyümesi. SEM, topografik kontrast.

70 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil Ferritik-perlitik mikroalaşımlı yapı çeliği, dağlanmış mikroyapı. SEM görüntüsü, topografik kontrast.

71 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil Sert metal mikroyapısı, SEM görüntüsü, materyal kontrast; beyaz/açık gri: WC, açıkgri-koyu gri: TiC/TaC/NbC karışık karbür, siyah: Co.

72 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Şekil mm çapında bronz lastik teli numunesinin kırılma yüzeyinin SEM görüntüsü.

73 Tarama Elektron Mikroskobu Elektronmetalografik Uygulamalar Diğer Uygulamalar Şekil mm çapında bronz lastik teli numunesinin kırılma yüzeyinin boyuna kesitinin Işık mikroskobundaki parlatılmış ve dağlanmış konumdaki görüntüleri.

Görüntüleme ve kontrastlama

Görüntüleme ve kontrastlama KOCAELĠ ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ ve MALZEME MÜHENDĠSLĠĞĠ BÖLÜMÜ Görüntüleme ve kontrastlama IĢık mikroskobu - donanım Bir mikroskobun aydınlatma (ışıklandırma) düzeni için aşağıda verilen

Detaylı

MİKROYAPISAL GÖRÜNTÜLEME & TANI

MİKROYAPISAL GÖRÜNTÜLEME & TANI MİKROYAPISAL GÖRÜNTÜLEME & TANI PROF. DR. ŞADİ KARAGÖZ KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ İÇERİK III. METALOGRAFİ III.1. Metalografi Teknikleri III.1.1. Numune Hazırlama Yöntemi III.1.2. Numune Hazırlama

Detaylı

MİKROYAPISAL GÖRÜNTÜLEME & TANI

MİKROYAPISAL GÖRÜNTÜLEME & TANI MİKROYAPISAL GÖRÜNTÜLEME & TANI III-Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ Fotografik Emulsiyon & Renk Duyarlılığı Şekil 1.9. Göz eğrisi ile değişik film malzemelerinin karşılaştırılması. Fotografik

Detaylı

TARAMA ELEKTRON MİKROSKOBU SCANNING ELECTRON MICROSCOPE (SEM)

TARAMA ELEKTRON MİKROSKOBU SCANNING ELECTRON MICROSCOPE (SEM) GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU TARAMA ELEKTRON MİKROSKOBU SCANNING ELECTRON MICROSCOPE (SEM) Yrd. Doç. Dr. Volkan KILIÇLI Arş.

Detaylı

2. Ayırma Gücü Ayırma gücü en yakın iki noktanın birbirinden net olarak ayırt edilebilmesini belirler.

2. Ayırma Gücü Ayırma gücü en yakın iki noktanın birbirinden net olarak ayırt edilebilmesini belirler. DENEYİN ADI: Işık Mikroskobu DENEYİN AMACI: Metallerin yapılarını incelemek için kullanılan metal ışık mikroskobunun tanıtılması ve metalografide bunun uygulamasına ilişkin önemli konulara değinilmesi.

Detaylı

Optik Mikroskop (OM) Ya Y pıs ı ı ı ve v M erc r e c kle l r

Optik Mikroskop (OM) Ya Y pıs ı ı ı ve v M erc r e c kle l r Optik Mikroskop (OM) Yapısı ve Mercekler Optik Mikroskopi Malzemelerin mikro yapısını incelemek için kullanılan en yaygın araç Kullanıldığı yerler Ürün geliştirme, malzeme işleme süreçlerinde kalite kontrolü

Detaylı

GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU OPTİK MİKROSKOP

GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU OPTİK MİKROSKOP GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU OPTİK MİKROSKOP Yrd. Doç. Dr. Volkan KILIÇLI ANKARA 2012 OPTİK MİKROSKOP Hemen hemen bütün metalografik

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot Paslanmaz Çelik Gövde Yalıtım Sargısı Egzoz Emisyonları: Su Karbondioksit Azot Katalizör Yüzey Tabakası Egzoz Gazları: Hidrokarbonlar Karbon Monoksit Azot Oksitleri Bu bölüme kadar, açıkça ifade edilmese

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

X IŞINLARININ ELDE EDİLİŞİ

X IŞINLARININ ELDE EDİLİŞİ X IŞINLARININ ELDE EDİLİŞİ Radyografide ve radyoterapide kullanılan X- ışınları, havası boşaltılmış bir tüp içinde, yüksek gerilim altında, ısıtılan katottan çıkan elektron demetinin hızlandırılarak anota

Detaylı

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN TOKLUK VE KIRILMA Doç.Dr.Salim ŞAHĠN TOKLUK Tokluk bir malzemenin kırılmadan önce sönümlediği enerjinin bir ölçüsüdür. Bir malzemenin kırılmadan bir darbeye dayanması yeteneği söz konusu olduğunda önem

Detaylı

2. HAFTA MİKROSKOPLAR

2. HAFTA MİKROSKOPLAR 2. HAFTA MİKROSKOPLAR MİKROSKOPLAR Hücreler çok küçük olduğundan (3-200 µm) mikroskop kullanılması zorunludur. Soğan zarı, parmak arası zarlar gibi çok ince yapılar, kesit almadan ve mikroskopsuz incelenebilir.

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

mercek ince kenarlı (yakınsak) mercekler kalın kenarlı (ıraksak) mercekle odak noktası odak uzaklığı

mercek ince kenarlı (yakınsak) mercekler kalın kenarlı (ıraksak) mercekle odak noktası odak uzaklığı MERCEKLER Mercekler mikroskoptan gözlüğe, kameralardan teleskoplara kadar pek çok optik araçta kullanılır. Mercekler genelde camdan ya da sert plastikten yapılan en az bir yüzü küresel araçlardır. Cisimlerin

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir.

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir. SERKAN TURHAN 06102040 ABDURRAHMAN ÖZCAN 06102038 1878 Abbe Işık şiddetinin sınırını buldu. 1923 De Broglie elektronların dalga davranışına sahip olduğunu gösterdi. 1926 Busch elektronların magnetik alanda

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

Malzeme muayene metodları

Malzeme muayene metodları MALZEME MUAYENESİ Neden gereklidir? Malzemenin mikroyapısını tespit etmek için. Malzemelerin kimyasal kompozisyonlarını tesbit etmek için. Malzemelerdeki hataları tesbit etmek için Malzeme muayene metodları

Detaylı

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan IŞIK Görme olayı ışıkla gerçekleşir. Cisme gelen ışık, cisimden yansıyarak göze gelirse cisim görünür. Ama bu cisim bir ışık kaynağı ise, hangi ortamda olursa olsun, çevresine ışık verdiğinden karanlıkta

Detaylı

GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU

GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU GĐRĐŞ TEM (Transmission Electron Microscope) Büyütme oranı 1Mx Çözünürlük ~1Å Fiyat ~1000 000 $ Kullanım alanları Malzeme Bilimi Biyoloji ÇALIŞMA PRENSĐBĐ Elektron tabancasından

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon Nanomalzemelerin Karakterizasyonu Yapısal Karakterizasyon Kimyasal Karakterizasyon 1 Nanomalzemlerin Yapısal Karakterizasyonu X ışını difraksiyonu (XRD) Çeşitli elektronik mikroskoplar(sem, TEM) Atomik

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK C IŞIĞIN KIRILMASI (4 SAAT) 1 Kırılma 2 Kırılma Kanunları 3 Ortamların Yoğunlukları 4 Işık Işınlarının Az Yoğun Ortamdan Çok Yoğun Ortama Geçişi 5 Işık Işınlarının

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

Mercekler Testlerinin Çözümleri. Test 1 in Çözümleri

Mercekler Testlerinin Çözümleri. Test 1 in Çözümleri 6 Mercekler Testlerinin Çözümleri 1 Test 1 in Çözümleri cisim düzlem ayna görüntü g 1 1. çukur ayna perde M N P ayna mercek mercek sarı mavi g 1 Sarı ışık ışınları şekildeki yolu izler. Mavi ışık kaynağının

Detaylı

10. Sınıf. Soru Kitabı. Optik. Ünite. 5. Konu Mercekler. Test Çözümleri. Lazer Işınının Elde Edilmesi

10. Sınıf. Soru Kitabı. Optik. Ünite. 5. Konu Mercekler. Test Çözümleri. Lazer Işınının Elde Edilmesi 10. Sını Soru itabı 4. Ünite Optik 5. onu Mercekler Test Çözümleri azer Işınının Elde Edilmesi 4. Ünite Optik Test 1 in Çözümleri 1. çukur ayna sarı mavi perde ayna Sarı ışık ışınları şekildeki yolu izler.

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

MİKROYAPISAL GÖRÜNTÜLEME & TANI

MİKROYAPISAL GÖRÜNTÜLEME & TANI MİKROYAPISAL GÖRÜNTÜLEME & TANI IV. Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ Sensitometri Sensitometri olarak adlandırılan bilim dalı, fotografik katmanlar üzerine ışığın fiziksel ve kimyasal etkilerinin

Detaylı

ÇELİKLERİN ISIL İŞLEMLERİ. (Devamı)

ÇELİKLERİN ISIL İŞLEMLERİ. (Devamı) ÇELİKLERİN ISIL İŞLEMLERİ (Devamı) c a a A) Ön ve arka yüzey Fe- atomları gösterilmemiştir) B) (Tetragonal) martenzit kafesi a = b c) Şekil-2) YMK yapılı -yan yana bulunan- iki γ- Fe kristali içerisinde,

Detaylı

SEM İncelemeleri için Numune Hazırlama

SEM İncelemeleri için Numune Hazırlama SEM İncelemeleri için Numune Hazırlama Giriş Taramalı elektron mikroskobunda kullanılacak numuneleri, öncelikle, Vakuma dayanıklı (buharlaşmamalı) Katı halde temiz yüzeyli İletken yüzeyli olmalıdır. Günümüzde

Detaylı

I. Histoloji nedir? II. Niçin Histoloji öğreniyoruz? III. Histolojik inceleme nasıl yapılır?

I. Histoloji nedir? II. Niçin Histoloji öğreniyoruz? III. Histolojik inceleme nasıl yapılır? Histolojiye Giriş I. Histoloji nedir? II. Niçin Histoloji öğreniyoruz? III. Histolojik inceleme nasıl yapılır? Histology (Eski Yunanca,Grekçe ): /histo- doku /logia- bilim Histoloji DOKU BİLİMİ demektir

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY ALETLİ ANALİZ YÖNTEMLERİ X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY X-IŞINI SPEKTROSKOPİSİ X-ışını spektroskopisi, X-ışınlarının emisyonu, absorbsiyonu ve difraksiyonuna (saçılması) dayanır. Kalitatif

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

Optik Özellikler. Elektromanyetik radyasyon

Optik Özellikler. Elektromanyetik radyasyon Optik Özellikler Işık malzeme üzerinde çarptığında nasıl bir etkileşme olur? Malzemelerin karakteristik renklerini ne belirler? Neden bazı malzemeler saydam ve bazıları yarısaydam veya opaktır? Lazer ışını

Detaylı

X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ

X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ 1. EMİSYON (YAYINMA) SPEKTRUMU ve SPEKTROMETRELER Onyedinci yüzyılda Newton un güneş ışığının değişik renkteki bileşenlerden oluştuğunu ve bunların bir

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 5 : IŞIK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 5 : IŞIK (MEB) ÖĞRENME ALANI : ĐZĐKSEL OLAYLAR ÜNĐTE 5 : IŞIK (MEB) D- MERCEKLER VE KULLANIM ALANLARI (4 SAAT) 1- ler ve Özellikleri 2- Çeşitleri 3- lerin Kullanım Alanları 4- Görme Olayı ve Göz Kusurlarının 5- Yansıma

Detaylı

DİCLE ÜNİVERSİTESİ TIP FAKÜLTESİ DÖNEM I HÜCRE BİLİMLERİ 2 KOMİTESİ MİKROSKOP ÇEŞİTLERİ ÇALIŞMA PRENSİPLERİ. Doç.Dr. Engin DEVECİ MİKROSKOP KULLANIMI

DİCLE ÜNİVERSİTESİ TIP FAKÜLTESİ DÖNEM I HÜCRE BİLİMLERİ 2 KOMİTESİ MİKROSKOP ÇEŞİTLERİ ÇALIŞMA PRENSİPLERİ. Doç.Dr. Engin DEVECİ MİKROSKOP KULLANIMI DİCLE ÜNİVERSİTESİ TIP FAKÜLTESİ DÖNEM I HÜCRE BİLİMLERİ 2 KOMİTESİ MİKROSKOP ÇEŞİTLERİ ÇALIŞMA PRENSİPLERİ Doç.Dr. Engin DEVECİ MİKROSKOP KULLANIMI Histoloji: Dokuların yapısını inceleyen bilim dalı olduğu

Detaylı

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-ışınlarının oluşum mekanizması fotoelektrik olaya neden olanın tam tersidir.

Detaylı

Elementel Analiz için X-ışını Spektrometresi

Elementel Analiz için X-ışını Spektrometresi Elementel Analiz için X-ışını Spektrometresi X-ray Spectroscopy for Elemental Analysis Giriş X-ışını spektroskopisi kimyasal elementel analiz için karakteristik x- ışınını kullanan bir tekniktir. Bu teknik

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

X IŞINLARININ NİTELİĞİ VE MİKTARI

X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINI MİKTARINI ETKİLEYENLER X-ışınlarının miktarı Röntgen (R) ya da miliröntgen (mr) birimleri ile ölçülmektedir. Bu birimlerle ifade edilen değerler ışın yoğunluğu

Detaylı

MMM291 MALZEME BİLİMİ

MMM291 MALZEME BİLİMİ MMM291 MALZEME BİLİMİ Ofis Saatleri: Perşembe 14:00 16:00 ayse.kalemtas@btu.edu.tr, akalemtas@gmail.com Bursa Teknik Üniversitesi, Doğa Bilimleri, Mimarlık ve Mühendislik Fakültesi, Metalurji ve Malzeme

Detaylı

Şekil 1. Elektrolitik parlatma işleminin şematik gösterimi

Şekil 1. Elektrolitik parlatma işleminin şematik gösterimi ELEKTROLİTİK PARLATMA VE DAĞLAMA DENEYİN ADI: Elektrolitik Parlatma ve Dağlama DENEYİN AMACI: Elektrolit banyosu içinde bir metalde anodik çözünme yolu ile düzgün ve parlatılmış bir yüzey oluşturmak ve

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği Faz dönüşümleri 1. Basit ve yayınma esaslı dönüşümler: Faz sayısını ve fazların kimyasal bileşimini değiştirmeyen basit ve yayınma esaslı ölçümler.

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

ELK462 AYDINLATMA TEKNİĞİ

ELK462 AYDINLATMA TEKNİĞİ Kaynaklar ELK462 AYDINLATMA TEKNİĞİ Aydınlatma Tekniği, Muzaffer Özkaya, Turgut Tüfekçi, Birsen Yayınevi, 2011 Aydınlatmanın Amacı ve Konusu Işık ve Görme Olayı (Hafta1) Yrd.Doç.Dr. Zehra ÇEKMEN Ders Notları

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

KIRIK YÜZEYLERİN İNCELENMESİ

KIRIK YÜZEYLERİN İNCELENMESİ GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU KIRIK YÜZEYLERİN İNCELENMESİ Yrd. Doç. Dr. Volkan KILIÇLI ANKARA 2012 KIRIK YÜZEYLERİN İNCELENMESİ

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Faz ( denge) diyagramları

Faz ( denge) diyagramları Faz ( denge) diyagramları İki elementin birbirleriyle karıştırılması sonucunda, toplam iç enerji mimimum olacak şekilde yeni atom düzenleri meydana gelir. Fazlar, İç enerjinin minimum olmasını sağlayacak

Detaylı

1. Şekildeki düzlem aynaya bakan göz K, L, M noktalarından hangilerini görebilir? A-)K ve L B-)Yalnız L C-)Yalnız K D-)L ve M E-)K, L ve M

1. Şekildeki düzlem aynaya bakan göz K, L, M noktalarından hangilerini görebilir? A-)K ve L B-)Yalnız L C-)Yalnız K D-)L ve M E-)K, L ve M FİZİK DÖNEM ÖDEVİ OPTİK SORULARI 1. Şekildeki düzlem aynaya bakan göz K, L, M noktalarından hangilerini görebilir? A-)K ve L B-)Yalnız L C-)Yalnız K D-)L ve M E-)K, L ve M 2. Üstten görünüşü şekildeki

Detaylı

Uludağ Üniversitesi Mikroskopi Çalıştayı. 9 Aralık Optik Bilgisi ve Mikroskop

Uludağ Üniversitesi Mikroskopi Çalıştayı. 9 Aralık Optik Bilgisi ve Mikroskop Uludağ Üniversitesi Mikroskopi Çalıştayı 9 Aralık 2017 Optik Bilgisi ve Mikroskop Mikroskop ; 1590 lı yıllarda Hollandalı gözlükçü Zaccharias Janssen in buluşudur. 1655 İngiliz Robert Hooke ilk birleşik

Detaylı

Deney Sorumlusu: Araş. Gör. Oğuzhan DEMİR İlgili Öğretim Üyesi: Doç. Dr. Harun MİNDİVAN METALOGRAFİ DENEYİ

Deney Sorumlusu: Araş. Gör. Oğuzhan DEMİR İlgili Öğretim Üyesi: Doç. Dr. Harun MİNDİVAN METALOGRAFİ DENEYİ Deney Sorumlusu: Araş. Gör. Oğuzhan DEMİR İlgili Öğretim Üyesi: Doç. Dr. Harun MİNDİVAN METALOGRAFİ DENEYİ 1. DENEYİN AMACI Metalografik yöntem ile malzemelerin geçmişte gördüğü işlemler, sahip olduğu

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

7.SINIF FEN BİLİMLERİ AYNALAR VE IŞIK KARMA SORULAR

7.SINIF FEN BİLİMLERİ AYNALAR VE IŞIK KARMA SORULAR 1. 4. I. Düzlem aynada görüntü aynaya göre simetriktir. II. Çukur aynalarda görüntü cismin bulunduğu yere göre düz-büyük veya tersküçük olabilir. III. Tümsek aynalarda cismin görüntüsü daima küçük ve düzdür.

Detaylı

3. K. Yanıt B dir. Nihat Bilgin Yayıncılık. v 1 5.

3. K. Yanıt B dir. Nihat Bilgin Yayıncılık. v 1 5. 4 şığın ırılması Test Çözümleri Test 'in Çözümleri.. cam şık az yoğun ortamdan çok yoğun ortama geçerken normale yaklaşarak kırılır. Bu nedenle dan cama geçen ışık şekildeki gibi kırılmalıdır. anıt B şık

Detaylı

LENS ABERASYONLARI. Bu konu için ayrıca Ünite 19 a bakınız. Fizik-Fizik Geometrik Optik derslerinde de anlatılacaktır.

LENS ABERASYONLARI. Bu konu için ayrıca Ünite 19 a bakınız. Fizik-Fizik Geometrik Optik derslerinde de anlatılacaktır. Ünite 27 LENS ABERASYONLARI ÜNİTENİN AMAÇLARI Bu üniteyi çalıştıktan sonra: Optik sistemlerin kusurlarını aberasyonu (sapınç) anlayacak, Gözlük camlarının dezavantajlarını öğreneceksiniz. ÜNİTENİN İÇİNDEKİLER

Detaylı

MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş

MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş Yrd. Doç. Dr. Ersoy Erişir 2012-2013 Bahar Yarıyılı 1. Deformasyon ve kırılma mekanizmalarına giriş 1.1. Deformasyon

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

Yoğunlaştırılmış Güneş enerjisi santralinin yansıtıcıları aynaların kullanım alanlarından yalnızca biridir.

Yoğunlaştırılmış Güneş enerjisi santralinin yansıtıcıları aynaların kullanım alanlarından yalnızca biridir. Aynalar aakakakak Günlük yaşamımızda sıklıkla kullandığımız eşyalardan biri ayna. Peki ilk aynalar nasıl yapılmış? Çeşitleri neler? Hangi amaçlarla kullanılıyor? Hiç merak ettiniz mi? Haydi gelin aynanın

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

MALZEME BİLİMİ. Malzeme Bilimine Giriş

MALZEME BİLİMİ. Malzeme Bilimine Giriş MALZEME BİLİMİ Malzeme Bilimine Giriş Uygarlığın başlangıcından beri malzemeler enerji ile birlikte insanın yaşama standardını yükseltmek için kullanılmıştır. İlk uygarlıklar geliştirdikleri malzemelerin

Detaylı

32 Mercekler. Test 1 in Çözümleri

32 Mercekler. Test 1 in Çözümleri Mercekler Test in Çözümleri. Mercek gibi ışığı kırarak geçiren optik sistemlerinde hava ve su içindeki odak uzaklıkları arklıdır. Mercek suyun içine alındığında havaya göre odak uzaklığı büyür. Aynalarda

Detaylı

METALOGRAFİK MUAYENE DENEYİ

METALOGRAFİK MUAYENE DENEYİ METALOGRAFİK MUAYENE DENEYİ 1. DENEYİN AMACI: Metalografik muayene ile malzemenin dokusu tespit edilir, malzemenin dokusuna bakılarak malzemenin özellikleri hakkında bilgi edinilir. 2. TANIMLAMALAR: Parlatma:

Detaylı

İleri Elektronik Uygulamaları Hata Analizi

İleri Elektronik Uygulamaları Hata Analizi İleri Elektronik Uygulamaları Hata Analizi Tuba KIYAN 01.04.2014 1 Tarihçe Transistör + Tümleşik devre Bilgisayar + İnternet Bilişim Çağı Transistörün Evrimi İlk transistör (1947) Bell Laboratuvarları

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI T.C. MİLLÎ EĞİTİM BAKANLIĞI 05-06. SINIF DEĞERLENDİRME SINAVI - 4 05-06.SINIF FEN BİLİMLERİ TESTİ (LS ) DEĞERLENDİRME SINAVI - 4 Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAISI : 80 SINAV

Detaylı

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi.

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi. X-IŞINI FLORESANS SPEKTROSKOPİSİ 1. DENEYİN AMACI X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi. 2. TEORİK BİLGİ X-ışınları, yüksek enerjiye sahip elektronların

Detaylı

MERCEKLER BÖLÜM 6. Alıştırmalar. Mercekler ÇÖZÜMLER OPTİK 179 I 1 I 2

MERCEKLER BÖLÜM 6. Alıştırmalar. Mercekler ÇÖZÜMLER OPTİK 179 I 1 I 2 MERCEER BÖÜM 6 Alıştırmalar ÇÖZÜMER Mercekler 5 6 θ θ 7 θ θ 4 8 PTİ 79 5 =4 = =4 = 6 T =/ = = = 7 T =/ = =4 = 4 8 T T = =4/ = = = 80 PTİ 4,5 Her aralığa diyelim = = olur Çukur aynanın odak uzaklığı, =

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

Metalografi Nedir? Ne Amaçla Kullanılır?

Metalografi Nedir? Ne Amaçla Kullanılır? METALOGRAFİ Metalografi Nedir? Ne Amaçla Kullanılır? Metalografi, en bilinen şekliyle, metallerin iç yapısını inceleyen bilim dalıdır. Metalografi, metallerin iç yapısını inceleyerek onların özelliklerini

Detaylı

MERCEKLER. Kısacası ince kenarlı mercekler ışığı toplar, kalın kenarlı mercekler ışığı dağıtır.

MERCEKLER. Kısacası ince kenarlı mercekler ışığı toplar, kalın kenarlı mercekler ışığı dağıtır. MERCEKLER İki küresel yüzey veya bir düzlemle bir küresel yüzey arasında kalan saydam ortamlara mercek denir. Şekildeki gibi yüzeyler kesişiyorsa ince kenarlı mercek olur ki bu mercek üzerine gelen bütün

Detaylı

Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır.

Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır. Ekran Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır. Ekrandaki tüm görüntüler noktalardan olusur. Ekrandaki en küçük noktaya pixel adı verilir. Pixel sayısı ne kadar fazlaysa

Detaylı

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir?

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir? İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ 10.03.2015 DEPREMLER - 2 Dr. Dilek OKUYUCU Deprem Nedir? Yerkabuğu içindeki fay düzlemi adı verilen kırıklar üzerinde biriken enerjinin aniden boşalması ve kırılmalar

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler Kimyasal Bağlar; Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler İki ana gruba ayrılır Kuvvetli (birincil,

Detaylı

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MEM-317 MALZEME KARAKTERİZASYONU ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI Yrd. Doç. Dr. Volkan KILIÇLI ANKARA 2012 Fe- Fe 3 C

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

MMT407 Plastik Şekillendirme Yöntemleri

MMT407 Plastik Şekillendirme Yöntemleri K O C A E L İ ÜNİVERSİTESİ Metalurji ve Malzeme Mühendisliği Bölümü MMT407 Plastik Şekillendirme Yöntemleri 3 Şekillendirmenin Metalurjik Esasları Yrd. Doç. Dr. Ersoy Erişir 2012-2013 Güz Yarıyılı 3. Şekillendirmenin

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

10. SINIF KONU ANLATIMLI

10. SINIF KONU ANLATIMLI MEREER 0. SINI ONU ANATIMI 4. ÜNİTE: OPTİ 6. onu MEREER ETİNİ ÇÖZÜMERİ Ünite 4 Optik 4. Ünite 6. onu (Mercekler) 5.. A nın evapları d d d d d Işın şekildeki gibi bir yol izler.. Mercekler aynı maddeden

Detaylı

MALZEME BİLİMİ (DERS NOTLARI)

MALZEME BİLİMİ (DERS NOTLARI) MALZEME BİLİMİ (DERS NOTLARI) Bölüm 4. Malzemelerde Atom ve İyon Hareketleri Doç.Dr. Özkan ÖZDEMİR Doç. Dr. Özkan ÖZDEMİR Hedefler Malzemelerde difüzyon uygulamalarını ve prensipleri incelemek. Difüzyonun

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

STEREO MIKROSKOP NEDIR?

STEREO MIKROSKOP NEDIR? STEREO MİKROSKOP STEREO MIKROSKOP NEDIR? Stereo mikroskoplar ışık mikroskobundan farklı olarak sabit dürbün mantığı ile çalışan, 3 boyutlu görüntü elde etmeyi sağlayan bir mikroskop türüdür. Belirli noktalara

Detaylı