Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method"

Transkript

1 KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9 Genetik Algoritma ile Kuru Bir Trafonun Ağırlık Optimizasyonu ve Sonlu Elemanlar Metodu ile Analizi Mehmed ÇELEBĐ Atatürk Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü, Erzurum Geliş Tarihi: /5/9 Kabul Tarihi: 8/3/ ÖZET: Bu çalışmada daha önce analitik yöntemle tasarımı yapılmış.5 kva lık bir trafonun [] Genetik Algoritma (GA) ile ağırlık optimizasyonu yapılmış ve sonuçları irdelenmiştir. Trafo maliyeti açısından ağırlık önemli bir kriter olduğundan ağırlık minimize edilmek suretiyle demir kesiti azaltılmış olup, ağırlık düşürülmeye çalışılmıştır. Buna bağlı olarak trafonun matematiksel modeli çıkarılıp değişken tasarım parametreleri elde edilip, GA ya uyarlanmıştır. GA uygulaması esnasında rasgele ve sınırlı olmak üzere iki farklı mutasyon operatörü kullanılmış, elde edilen farklı sonuçlar karşılaştırılmıştır. Simülasyonlar 3 kere tekrar edilip ortalamaları alınmış ve bu şekilde daha sağlıklı bir değerlendirme yapılmıştır. Elde edilen simülasyon sonuçlarına göre, ağırlıkta yaklaşık olarak mutasyon metoduna göre % ile 3 civarında bir azalma gözlenmiştir. Daha sonra, optimizasyon sonlu elemanlar metodu (SEM) ile analiz edilmiş ve tasarımın uygunluğu gösterilmiştir. Anahtar Kelimeler: Genetik Algoritma, Mutasyon, Elektrik Makineleri Tasarımı, Sonlu Elemanlar Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method ABSTRACT : In this paper, the cost optimization of a.5 kva dry transformer by Genetic Algorithm is proposed which it is designed previously [] and the results are analyzed. The weight of a transformer is one of the basic criteria relating to the transformer cost, the cross section area of iron is reduced during the minimization process. The mathematical model of the transformer is proposed relating to the design parameters, and this model is adapted to GA simulation. Two difrent mutation operator, random and partial mutation operators are applied, and the results are compared. Finally a ratio of % - %3 weight reduction is determined and the optimization is validated by finite element analysis. Keywords : Genetic Algorithm, Mutation, Electric Machine Design, Optimization, Finite Element Analysis.. GĐRĐŞ Mühendislik uygulamalarında optimizasyonun önemli bir yeri olmasına paralel, bilgisayarın ve uygulamalarının yaygınlaşmasıyla, analitik ve sayısal yöntemler yoğun olarak kullanılmaya başlanmıştır. Günümüzde, disiplinler arası yakınlaşma ile birlikte, tıp bilim dallarının mühendislik alanında sayısal uygulamaları görülebilir. Buna örnek olarak yapay sinir ağları ve genetik algoritma verilebilir. Yapay sinir ağları, insan anatomisindeki sinir ağlarının ve işleyişinin, algoritmik olarak programlanması ve derlenmesidir. Disiplinler arası yakınlaşma sonucu ortaya çıkan bir başka algoritma da 97 lerde John Holland tarafından ortaya atılan ve öğrencileri tarafından geliştirilen Genetik Algoritmadır. Genetik algoritmalar biyolojik süreci modelleyerek fonksiyonları optimize eden evrim algoritmalarıdır ve temelini ise popülasyon genetiği oluşturur []. Elektrik makineleri tasarımında GA nın kullanıldığı çalışmalardan bazıları Tablo de verilmiştir. Bu çalışma daha önce sunulan çıkık kutuplu senkron makinenin ağırlık optimizasyonu ile ilgili [3] yayının devamı niteliğinde olup, evvelce tasarımı yapılmış.5 kva lık bir kuru trafonun [] GA ile e ağırlık optimizasyonu yapılmıştır. Daha sonra elde edilen simülasyon sonuçları değerlendirilmiştir. Tablo. Bazı GA Uygulamaları. Makine Tipi Tasarım Parametresi Parametre Sayısı Fırçasız Doğru Akım [4] Malzeme Maliyeti 7 Genel [5] Ağırlık 7 Kısa Devre Kasli Asenkron [6] Verim, Tork 38 Tabi Mıknatıslı Senkron [7] Verim 7 Tabi Mıknatıslı Senkron [8] Akı ve Tork yoğunluğu 7 Akı anahtarlamalı [9] Verim 7

2 KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9. GENETĐK ALGORĐTMALAR GA, biyolojik süreci modelleyerek fonksiyonları optimize eden evrim algoritmalarıdır. Her bir rdi, kromozomlar şeklinde temsil eden popülasyonlardan oluşur. Popülasyonun uygunluğu belirli kurallar dahilinde maksimize veya minimize edilir. Bu metot uzun çalışmaların neticesinde ilk defa John Holland (975) tarafından uygulanmaya başlandı ve onun öğrencisi olan David Goldberg popüler oldu. David Goldberg tezinde; gaz boru hattının kontrolünü içeren bir problemin çözümünü Genetik Algoritma (GA) ile gerçekleştirdi. GA nın avantajları şu şekilde sıralanabilir. Sürekli ve ayrık parametreleri optimize eder. Türevsel bilgiler gerekmez. Ağırlık fonksiyonu geniş bir spektrumda araştırır. Çok sayıda parametrelerle çalışma imkanı vardır. Paralel bilgisayarlar kullanılarak çalıştırılabilir. Global optimum değeri bulabilir. Birden fazla parametrelerin optimum çözümlerini elde edebilir. Genetik algoritmaların temel olarak izledikleri işlem sırası şu şekilde özetlenebilir: veya gerçek sayılarla uygulanabilir. Bu çalışmada gerçek sayılarla simüle edilmiştir. 3. GA NIN TRAFO UYGULAMASI Genetik algoritmada ilk bulunması gereken sisteme ait bir amaç fonksiyonu ve ona bağlı sınır şartlarıdır. Bu matematiksel bağıntı elde edildikten sonra, sınır şartları ile birlikte algoritmaya uyarlanır. Bu çalışmada pek tabi olarak girişe ait parametreler sabit olup tasarım kriterlerinde sınır şartları tespit edilecektir. Bütün elektrik makineleri tasarımlarında ağırlık en önemli faktördür ve kullanılan malzeme yani ağırlık ile birebir ilişkisi vardır. Dolayısıyla, matematiksel modelimiz ağırlık fonksiyonu şeklinde elde edilip sınır şartları vs. ona göre tespit edilecektir. Öncelikle trafonun görünür gücüne bağlı şekil ve deki karakteristiklerden [] trafonun bakır ve demir kayıpları elde edilir. Bakir kayiplari (W) Trafo bakir kaybi Trafo güçleri (kva) Şekil. Trafonun Görünür Gücüne Bağlı Olarak Bakır Kayıpları 5 Trafo demir kaybi 5 75 Demir Kayiplari (W) Şekil. GA Đşlem Sırası. GA parametreleri biyolojideki genleri temsil ederken, parametrelerin toplu kümesi de kromozomu oluşturmaktadır. Her yeni nesil rasgele bilgi değişimi ile oluşturulan, diziler içinde hayatta kalanların birleştirilmesi ile elde edilmektedir []. GA ikili Trafo Güçleri (kva) Şekil. Trafonun Görünür Gücüne Bağlı Olarak Demir Kayıpları

3 KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9 Bu değerler elde edildikten sonra kayıp oranı ξ, Pcu ξ = () P olur. Öte yandan özgül bakır kaybı, p cu =.7s (Watt/kg) () dır. Burada s, akım yoğunluğudur ve. ile 3.5 A/cm sınırları arasında değişmelidir []. Dolayısıyla GA optimizasyonu uygulamasındaki ilk sınır şartımız tanımlanmış olur.. < s < 3.5 (A/cm ) (3) Özgül demir kayıpları ise, B 4 p = p ξ (Watt / kg) (4) dir ve burada, p =.3; kayıp faktörü, ξ =.5; saçların işlenmesi sonucunda husule gelen ilave kayıp faktörü, B = kuru trafolarda çekirdek endüksiyonudur (gauss). Trafo tasarımında önemli hesaplardan birisi de demir kesitinin elde edilmesidir. Demir kesiti aşağıdaki ifadeden elde edilir []. 3 S q = C (cm ) (5) 3 f Burada, q, demir kesiti (cm ), f, frekanstır. C ise trafo demir kesiti uygunluk faktörüdür ve hava ile soğuyan bir trafo için aşağıdaki sınırlar arasında alınabilir: 5.9 < C <.6 (cm joule -/ ) (6) Dolayısıyla GA için ikinci sınır şartı da tanımlanmış olur. Demir çekirdeğinin çapı D, 4q D = (cm) (7).677π dır. Boyunduruk bacak kesiti q, bacak kesiti q den % daha fazla olması gerektiğinden, q = q /. (cm ) (8) dur. Alt gerilim (ikincil) ve üst gerilim sargısı (birincil) sarım sayısı sırasıyla ve nolu eşitliklerde gösterilmiştir. U w = () 8 3 *4.44 f. φ. U w = () 8 3 *4.44 f. φ. Alt ve üst gerilim sargısı sargı kesitleri sırasıyla, I I = q (cm ) () s s q = olur. Pencere veya bacak yüksekliği, w I = (mm) (3) Ls As dir. Buradaki A s özgül amper-sarım değeri aşağıdaki karakteristikten elde edilir. As kuru trafolarda özgül amper-sarım görünür güç (kva) Şekil 3. Kuru Trafolarda Özgül Amper-Sarıma Đlişkin Karakteristik L = L s (cm) (4) olur. Trafodaki pencere genişliği a, wk q a =.4 (cm) (5). cu L s olduğuna göre, pencere bakır doldurma faktörü k cu aşağıdaki karakteristikten bulunur. olur. Burada boyunduruk bacak endüksiyonu B j, boyunduruk endüksiyonundan % daha fazla olması gerektiğinden, B j = B /. (gauss) (9)

4 KSÜ Mühendislik Bilimleri Dergisi, (), 9 33 KSU Journal of Engineering Sciences, (), 9 kcu kuru trafolar için kcu sabiti G = γ (.3L q + (M +.8D) q ) () 3 s Burada, γ = 7.6; demir özgül ağırlığı, M =.85D +.L s dir. Bacaktaki özgül demir kaybı, p b 5 ( B) = p ξ (Watt/kg) () dır. Burada, ξ =.5; saçların işlenmesi sırasında husule gelen ilave kayıp faktörü, p = kayıp faktörüdür. Bu durumda her üç bacağın ağırlığı, G b 4 = 3. γ q L (kg) (3) s görünür güç (kva) Şekil 4. Kuru Trafolarda Pencere Doldurma Faktörüne Đlişkin Karakteristik Alt ve üst gerilim sargılarının ortalama uzunlukları, lm =.* π (* D a) (cm) (6) lm = π ( D + *.4 +.*. + *.) dir, a = alt gerilim sargısının radyal yüksekliğidir (mm). Son olarak artık alt ve üst gerilim sargıları bakır ağırlıklarını bulunabilir, G G cu cu = 3. = 3. 3 γ cu 5 γ w q l m w q l cu m (kg) (7) dir. Burada, γ cu = 8.9, bakır özgül ağırlığıdır. Trafo ağırlık hesabına ait olarak bakır ağırlıkları bulunmuş olur. Bakır kayıplarının elde edilmesi için, 75 C ye indirgenmiş alt ve üst gerilim sargısı dirençleri sırasıyla 8 nolu eşitlikte gösterilmiştir. l w l w r = ρ r = ρ (8) m q m q Daha sonra at ve üst gerilim sargıları bakır kayıpları pek tabi olarak, cu = r P = 3I rk Pcu 3I (9) olur. Burada, k, akım yığılmalarından alt gerilim sargısında oluşan direnç artma faktörüdür. Toplam bakır kaybı ise, P = P + P () cu cu cu olursa, her üç bacağın demir kaybı, P = G p (W) (4) b b b dır. Özgül boyunduruk demir kaybı ise, p 4 ( B j ) = p ξ (W) (5) şeklindedir. Bütün boyunduruktaki demir kaybı, P = G p (W) (6) ve demir gövdede meydana gelen toplam demir kaybı son olarak, P = P + P (W) (7) b dır. Trafonun toplam kaybı ise, P = P + P (W) (8) k cu dır. GA uygulaması birincil ve ikincil ağırlık fonksiyonlarımız olan trafonun i ve toplam ağırlığı sırasıyla 9 ve 3 nolu eşitliklerde gösterilmiştir. S η = (9) S + 3 P k G + top = Gcu + Gcu + G G b (kg) (3) Sonuç olarak 3, 6, 9 ve 3 nolu eşitlikleri kullanarak GA için uygulanacak matematiksel model 3 nolu eşitlikte gösterilmiştir. Toplam bakır ağırlığı 7 nolu eşitlikte elde edildikten sonra, toplam boyunduruk demir ağırlığı aşağıdaki gibidir.

5 KSÜ Mühendislik Bilimleri Dergisi, (), 9 34 KSU Journal of Engineering Sciences, (), 9 x = s; x = C;. < x < 3.5 X = [ x; x] 5.9 < x <.6 M ( X ) = G( X ) = G + G + G S η( X ) = S + 3 P k cu cu + G b (3) şeklinde elde edilmiş olur. Burada M(X), ağırlıktan oluşan ağırlık fonksiyonudur. Ağırlık azaltılmaya çalışılırken inde % 9 nın altında kalmaması önemlidir. 4. SĐMÜLASYON SONUÇLARI Simülasyonlar 3. na kadar yapılmış olup, daha sağlıklı sonuçlar elde edebilmek için her bir nda 3 yüz kere simüle edilmiş ve ortalama değerleri şekil 5-8 arasında gösterilmiştir. Elde edilen sonuçların bazıları ise Tablo de özetlenmiştir. Şekil de GA tasarımı Ansoft programı kullanılarak sonlu elemanlar metodu gerçeklenmiştir. Ağırlık fonksiyonu- muz trafonun ağırlığı ve inden oluştuğu için ağırlık ve sonuçları ayrı ayrı gösterilmektedir. Aynı zamanda ağırlık grafiklerinde bakır ve demir ağırlıklarının değişimi, grafiğinde ise bakır ve demir kayıplarının değişimi gösterilmiştir. Şekil 5 ve 6 daki rastgele mutasyon işleminde kromozomun iki değişkeni, şekil 7 ve 8 deki ise sınırlı mutasyonda kromozomun bir değişkeni mutasyona uğratılmıştır. Şekillerde görüldüğü gibi trafonun ağırlığı nesil sayısı artışına bağlı düşmekle beraber rasgele mutasyonda daha iyi neticelerin elde edildiği görülmektedir. Bunun sebebinin iki değişkeni de mutasyona uğratmak olduğu aşikârdır. Ağırlıktaki azalmanın hemen hemen demir ağırlığındaki azalmaya paralel olduğu görülür ki, bu da gayet normaldir. Buna karşın bakır ağırlığında pek büyük bir değişimin olmaması zaten beklenen bir durumdur. Şekil 6 ve 8 de görüldüğü gibi demir kesitindeki azalmaya binaen bakır kayıplarında küçük artışlar meydana gelmektedir. Bunun yanında, lerde de çok küçük miktarda azalma gözlenmektedir. Fakat bu azalma yaklaşık % 3 civarında olduğu için kabul edilebilir sınırlar içerisindedir. toplam ağırlık (kg),935,95,95,95 toplam ağırlık (kg) trafo maliyeti (rasgele mutasyon) toplam ağırlık bakır ağırlığı demir ağırlığı 5 Şekil 5. Trafo ağırlığının Nesil Sayısına Bağlı Değişimi (Rastgele Mutasyon),94,93,9,9,9 trafo i (rasgele mutasyon ) bakır ve demir ağırlığı (kg) bakır kaybı demir 4 kaybı Şekil 6. Trafo Veriminin Nesil Sayısına Bağlı Değişimi (Rastgele Mutasyon) trafo maliyeti (sınırlı mutasyon) demir ve bakır kayıpları (W) toplam ağırlık bakır ağırlığı demir ağırlığı 4 Şekil 7. Trafo Ağırlığının Nesil Sayısına Bağlı Değişimi (Sınırlı Mutasyon bakır ve demir ağırlığı (kg)

6 KSÜ Mühendislik Bilimleri Dergisi, (), 9 35 KSU Journal of Engineering Sciences, (), 9,939,937,935,933,93,99,97,95 trafo i (sınırlı mutasyon) bakır kaybı demir 94kaybı Şekil 8. Trafo Veriminin Nesil Sayısına Bağlı Değişimi (Sınırlı Mutasyon) bakır ve demir kaybı (W) Yapılan simülasyonlarda rastgele mutasyon için elde edilen en küçük ağırlık,4 kg olup bunu sağlayan kromozom yaklaşık olarak [3,5 5,9] iken, sınırlı mutasyonda elde edilen en küçük ağırlık 4,54 kg olup bunu sağlayan kromozom yaklaşık olarak [, ] dir. Şekil 9 a bakıldığında gerçektende akım yoğunluğunun artışına bağlı olarak en küçük ağırlığın demir kesitinin en düşük değerlerinde elde edildiği aşikârdır. Şekil da ise trafo ağırlığının elde edilen demir kesiti faktörü değeri C = 5.9 için akım yoğunluğuna göre değişimi verilmiştir. Bu durumda GA, trafo için en küçük ağırlığı elde etmiştir denebilir. GA ile tasarım optimizasyonu yapılan bu trafonun ilgili geometrik ve elektrik parametreleri Tablo de özetlenmiştir. Söz konusu trafonun amper-sarım miktarı 95 A/cm (şekil 3) ve ilgili karakteristikten boyunduruk akısı gauss (. T) olarak kabul edilmektedir []. Şekil de trafonun akı yoğunluğunun en fazla yaklaşık dış bacaklarda. T, orta bacakta ise T ya kadar çıktığı görülmekte olup, demir saçların bu civar ve üzeri doymaya girdiği göz önünde tutulursa, bu değerin kabul edilebilirliği ortadadır. Üç fazlı çekirdek tipi trafolarda her hangi bir bacağın diğerlerine göre daha fazla akı yoğunluğuna maruz kalacağı malumdur. GA tasarımında boyunduruk kesiti küçüldüğünden demir ağırlığı ve akı azalmış, buna karşılık kayıplarda artma olmuştur. Verimde ise % 3 lük kısmi bir düşme söz konusu olmakla kabul edilebilir sınırlar içerisindedir. ağırlık (kg) trafo ağırlığının C' ye göre değişimi 3.5 A/mm ağırlık (kg) Trafo ağırılığının C=5.9 için değişimi akım yoğunluğu (A/mm) Şekil. Trafo Ağırlığının C = 5.9 için Akım Yoğunluğuna Göre Değişimi Şekil. GA ile Tasarımı Yapılmış Trafonun Ansoft Sonlu Elemanlar Programı ile Analizi 5. SONUÇ Bu çalışmada.5 kva lık hava ile soğuyan bir trafonun GA ile simüle edilip ağırlık optimizasyonu yapılmıştır. Daha sonra SEM ile tasarım gerçeklenip uygunluğu ispatlanmıştır. GA metoduna rasgele ve sınırlı mutasyon metotları kullanılmıştır. Bu yol ile ağırlıkta rasgele mutasyonda 9 kg arası, sınırlı mutasyonda ise 4 6 kg arası azalma sağlanmış olup yaklaşık % 3 ile % oranına denk gelmektedir. Kilo bazında bu kazanım küçük miktarda gözükse de trafonun gücüne göre düşünülürse gayet tatminkârdır. Böylelikle, GA nın elektrik makineleri tasarımı optimizasyonunda kullanılabileceği gösterilmiştir. Đlerideki çalışmalar için parametre sayısı arttırılırsa daha gerçekçi bir optimizasyon yapılabilir trafo demir uygunluk faktörü Şekil 9. Trafo Ağılığının Demir Kesiti Uygunluk Faktörü C ye Göre s = 3.4 için Değişimi

7 KSÜ Mühendislik Bilimleri Dergisi, (), 9 36 KSU Journal of Engineering Sciences, (), 9 Tablo. Sonuçların Karşılaştırılması. Parametre Analitik GA Pencere Genişliği (mm) Pencere / Sargı Yüksekliği (mm) 5 Boyunduruk / Bacak Kesiti (cm ) Boyunduruk / Bacak Genişliği (mm) Boyunduruk Akısı (Wb).33. Alt / Üst Gerilim Sargısı Sarım Sayısı 78 / / 79 Alt / Üst Gerilim Sargısı Akımı (A) 7.87 / / 3.9 Alt / Üst Gerilim Sargısı Kesiti (mm ) 3.58 /.79.4 /. Alt / Üst Gerilim Sargısı Ağırlığı (kg).6 /.9.78 /.49 Bacak Ağırlıkları (kg) Boyunduruk Demir Ağırlığı (kg) Toplam Kayıp (W) Toplam Ağırlık (kg) KAYNAKLAR Verim (%) Boduroğlu, T., 988. Elektrik makineleri Dersleri Cilt, Transformatörler. Beta Basım, Đstanbul.. Goldberg, D.E., 989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, New York. 3. Çelebi, M.,. Cost Optimization of Salient Pole Synchronous Machine by Genetic Algorithms. International Conrence on Mathematical and Computational Applications, ICMCA, Konya. 4. Bianchi, N., Bolognani, S., (997), Brushless DC motor design: An optimization procedure based on genetic algorithms, IEE, EMD97, Conrence pub., No Bianchi, N., Bolognani, S., (998), Design optimization of electric motors by genetic algorithms, IEE Proc.-Electr. Power App., Vol. 45, No Palko, S., Jokinen, T., Optimization of Squirrel Cage Induction Motors using Finite Element Method and Genetic Algorithms, Eighth International Conrence on Electrical Machines and Drives, pp Sim, D-J., Cho, D.H., Chun, J-S., Jung, H-K., Chung, T-K., Efficiency optimization of interior permanent magnet synchronous motor using genetic algorithms, 997, IEEE Trans. On Magnetics. 8. Sudhoff, D., S., Cale, J., Cassimere, B., Swinney, M., Genetic Algorithm Based Design of a Permanent Magnet Synchronous Machine, IEEE International Conrence on Electric Machines and Drives, 5, pp Chai, K., Pollock, S. C., Using Genetic Algorithms in Design Optimization of the Flux Switching Motor, IEE Power electronics Machines and Drives Conrence,, pp Angeline, P.J., 995. Evolution revolution: An introduction to the special track on genetic and evolutionary programming. IEEE Expert Intelligent Systems and their Applications, June pp.6-.. Richter, R., 954. Elektrische Maschinen Bd. III. Verlag Birkhaeurer, Basel, Stuttgart.

GENET K ALGOR TMA LE YA LI B R TRAFONUN MAL YET OPT M ZASYONU THE COST OPTIMISATION OF A OIL TRANSFORMATOR BY GENETIC ALGORITHM

GENET K ALGOR TMA LE YA LI B R TRAFONUN MAL YET OPT M ZASYONU THE COST OPTIMISATION OF A OIL TRANSFORMATOR BY GENETIC ALGORITHM enetik Algoritma ile Ya l Bir Trafonun Maliyet Optimizasyonu C.B.Ü. Fen Bilimleri Dergisi ISSN 305-35 C.B.U. Journal of Science 3. (007) 3. (007) ENET K ALOR TMA LE YA LI B R TRAFONUN MAL YET OPT M ZASYONU

Detaylı

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizayonu Mehmed Çelebi 1 1 El-Elektronik Mühendiliği Bölümü Celal Bayar Üniveritei mehmed.celebi@bayar.edu.tr Özet Bu çalışmada daha önce analitik yöntemle

Detaylı

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu enetik Algoritma ile Kuru bir Trafonun Maliyet Optimizayonu Mehmed Çelebi 1 1 El-Elektronik Mühendiliği Bölümü Celal Bayar Üniveritei mehmed.celebi@bayar.edu.tr Özet Bu çalışmada daha önce analitik yöntemle

Detaylı

Yer Çekimsel Arama Algoritmasi İle Değişik Çalışma Koşulları İçin Tranformatör Verim Optimizasyonu

Yer Çekimsel Arama Algoritmasi İle Değişik Çalışma Koşulları İçin Tranformatör Verim Optimizasyonu Yer Çekimsel Arama Algoritmasi İle Değişik Çalışma Koşulları İçin Tranformatör Verim Optimizasyonu 1 Yalçın Alcan, 2 Ali Öztürk, 3 Önder Özmen 1 Elektrik ve Enerji Bölümü, Meslek Yüksekokulu, Sinop Üniversitesi,

Detaylı

KURU TİP TRANSFORMATÖRÜN TABU ARAMA ALGORİTMASI YÖNTEMİ İLE AĞIRLIK OPTİMİZASYONU

KURU TİP TRANSFORMATÖRÜN TABU ARAMA ALGORİTMASI YÖNTEMİ İLE AĞIRLIK OPTİMİZASYONU İleri Teknoloji Bilimleri Dergisi Cilt, No, 7-6, 0 Journal of Advanced Technology Sciences Vol, No, 7-6, 0 KURU TİP TRANSFORMATÖRÜN TABU ARAMA ALGORİTMASI YÖNTEMİ İLE AĞIRLIK OPTİMİZASYONU Salih TOSUN

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör.

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör. ÖZGEÇMİŞ 1. Adı Soyadı : Asım Gökhan YETGİN 2. Doğum Tarihi : 1979-Kütahya 3. Ünvanı : Yrd. Doç. Dr. 4. E-mail : gokhan.yetgin@dpu.edu.tr 5. Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Elektrik

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

ASENKRON MOTOR TASARIMININ GÜNCELLENMİŞ KRİTERLER İLE SİMÜLASYONU

ASENKRON MOTOR TASARIMININ GÜNCELLENMİŞ KRİTERLER İLE SİMÜLASYONU ASENKRON MOTOR TASARIMININ GÜNCELLENMİŞ KRİTERLER İLE SİMÜLASYONU Abdulkerim KARABİBER 1, Mehmet ÇELEBİ 2 1 Elektrik-Elektronik Mühendisliği Bölümü Bingöl Üniversitesi e-posta: akarabiber@bingol.edu.tr

Detaylı

Fırçasız Doğru Akım Motorlarında Farklı Mıknatıs Dizilimleri Different Magnet Configurations in BLDC Motors

Fırçasız Doğru Akım Motorlarında Farklı Mıknatıs Dizilimleri Different Magnet Configurations in BLDC Motors Fırçasız Doğru Akım Motorlarında Farklı Mıknatıs Dizilimleri Different Magnet Configurations in BLDC Motors Aptullah İŞLER 1 Nezih G. ÖZÇELİK 2 Lale T. ERGENE 1 1 İstanbul Teknik Üniversitesi Elektrik

Detaylı

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 29 Kasım 2014, Bursa

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 29 Kasım 2014, Bursa Eleco 214 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 29 Kasım 214, Bursa Fırçasız, Dış Rotorlu Elektrikli Bisiklet Motoru Tasarımı, Üretimi Ve Deneysel Doğrulaması Design,

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi Araştırma Makalesi Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi (05) 6-7 Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi Ahmet NUR *, Zeki

Detaylı

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu *1 Kürşat M. KARAOĞLAN and *2 Metin ZEYVELİ 1 Mekatronik Mühendisliği, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük,

Detaylı

PERFORMANCE EVALUATION OF AN INDUCTION MOTOR BY USING FINITE ELEMENT METHOD

PERFORMANCE EVALUATION OF AN INDUCTION MOTOR BY USING FINITE ELEMENT METHOD PERFORMANCE EVALUATION OF AN INDUCTION MOTOR BY USING FINITE ELEMENT METHOD A. İhsan ÇANAKOĞLU *, A. Gökhan YETGİN**, Mustafa TURAN** *Dumlupınar Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

ASENKRON MOTORUN BOYUNDURUK VE DİŞ BOYUTLARININ MOTOR PERFORMANSINA ETKİLERİ THE EFFECTS OF YOKE AND TOOT DIMENSIONS ON INDUCTION MOTOR PERFORMANCE

ASENKRON MOTORUN BOYUNDURUK VE DİŞ BOYUTLARININ MOTOR PERFORMANSINA ETKİLERİ THE EFFECTS OF YOKE AND TOOT DIMENSIONS ON INDUCTION MOTOR PERFORMANCE ASENKRON MOTORUN BOYUNDURUK VE DİŞ BOYUTLARININ MOTOR PERFORMANSINA ETKİLERİ *Asım Gökhan YETGİN 1, Mustafa TURAN 2, Ali İhsan ÇANAKOĞLU 1 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik

Detaylı

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas**

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas** TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ M. Levent Koç* Can E. Balas** (*) Yrd. Doç. Dr., Cumhuriyet Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Sivas Tel:

Detaylı

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Evrimsel Çok amaçlı eniyileme Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Gündem Çok amaçlı eniyileme Giriş Evrimsel çok amaçlı eniyileme Sonuç Giriş Gerçek dünya problemleri

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Yazılım Çözümleri Elektrik Motor Tasarım Yazılımları

Yazılım Çözümleri Elektrik Motor Tasarım Yazılımları Yazılım Çözümleri Elektrik Motor Tasarım Yazılımları 1 SPEED Yazılımın Özellikleri SPEED, elektrik motor ve generatörlerinin tasarımı ve analizinde kullanılan manyetik eşdeğer devre tabanlı, hızlı, güvenilir

Detaylı

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ Ege Akademik BakıĢ / Ege Academic Review 10 (1) 2010: 199-210 PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI ÖNSÖZ Bu kitap, Dokuz Eylül Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümünde lisans eğitimi ders programında verilen

Detaylı

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU Fatih Karaçam ve Taner Tımarcı Trakya Üniversitesi, MMF Makine Mühendisliği Bölümü 030 Edirne e-mail: tanert@trakya.edu.tr Bu çalışmada

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

Elektrik Makinaları I SENKRON MAKİNALAR

Elektrik Makinaları I SENKRON MAKİNALAR Elektrik Makinaları I SENKRON MAKİNALAR Dönen Elektrik Makinaları nın önemli bir grubunu oluştururlar. (Üretilen en büyük güç ve gövde büyüklüğüne sahip dönen makinalardır) Generatör (Alternatör) olarak

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

Elektromekanik Enerji Dönüşümü (ENE 309) Ders Detayları

Elektromekanik Enerji Dönüşümü (ENE 309) Ders Detayları Elektromekanik Enerji Dönüşümü (ENE 309) Ders Detayları Ders Adı Ders Dönemi Ders Kodu Saati Uygulama Saati Laboratuar Kredi AKTS Saati Elektromekanik Enerji Dönüşümü ENE 309 Güz 3 2 0 4 4 Ön Koşul Ders(ler)i

Detaylı

MÜHENDĐSLĐK BĐLĐMLERĐ DERGĐSĐ KAHRAMANMARAŞ SÜTÇÜ ĐMAM ÜNĐVERSĐTESĐ JOURNAL OF ENGINEERING SCIENCES

MÜHENDĐSLĐK BĐLĐMLERĐ DERGĐSĐ KAHRAMANMARAŞ SÜTÇÜ ĐMAM ÜNĐVERSĐTESĐ JOURNAL OF ENGINEERING SCIENCES KSÜ Müh. Bil. Derg. KSU J. Eng. Sci. E-ISSN: 1309 1751 KAHRAMANMARAŞ SÜTÇÜ ĐMAM ÜNĐVERSĐTESĐ CĐLT VOLUME SAYI NUMBER YIL YEAR 12 2 2009 KAHRAMANMARAŞ SÜTÇÜ ĐMAM ÜNĐVERSĐTESĐ E ISSN: 1309 1751 CĐLT/VOLUME:

Detaylı

Yrd. Doç. Dr. Mustafa NİL

Yrd. Doç. Dr. Mustafa NİL Yrd. Doç. Dr. Mustafa NİL ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Fırat Üniversitesi Elektrik-Elektronik Mühendisliği Y. Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

Detaylı

Üç Fazlı Asenkron Motor Tasarımı ve FFT Analizi Three Phase Induction Motor Design and FFT Analysis

Üç Fazlı Asenkron Motor Tasarımı ve FFT Analizi Three Phase Induction Motor Design and FFT Analysis Üç Fazlı Asenkron Motor Tasarımı ve FFT Analizi Three Phase nduction Motor Design and FFT Analysis Murat TEZCAN 1, A. Gökhan YETGİN 2, A. İhsan ÇANAKOĞLU 3, Mustafa TURAN 4 1,3 Mühendislik Fakültesi, Elektrik-Elektronik

Detaylı

Ali Sinan Çabuk 1, Şafak Sağlam 2, Gürkan Tosun 3, Özgür Üstün 1,3. İstanbul Teknik Üniversitesi itu.edu.

Ali Sinan Çabuk 1, Şafak Sağlam 2, Gürkan Tosun 3, Özgür Üstün 1,3. İstanbul Teknik Üniversitesi  itu.edu. Hafif Elektrikli Araçlar İçin Kullanılan Tekerlek İçi Fırçasız Doğru Akım Motorlarının Farklı Oluk ve Kutup Sayısı Kombinasyonlarının Verim Üzerine Etkilerinin İncelenmesi Investigation of Different Slot-Pole

Detaylı

Elektrikli Araç Uygulamaları için 75 kw Asenkron Motor Tasarımı Design of 75 kw Asynchronous Motor for Electric Vehicle Applications

Elektrikli Araç Uygulamaları için 75 kw Asenkron Motor Tasarımı Design of 75 kw Asynchronous Motor for Electric Vehicle Applications Elektrikli Araç Uygulamaları için 75 kw Asenkron Motor Tasarımı Design of 75 kw Asynchronous Motor for Electric Vehicle Applications Cenk Ulu 1, Güven Kömürgöz 2 1 TÜBİTAK Marmara Araştırma Merkezi Enerji

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VII. DENEY FÖYÜ ELEKTRİK DERELERİ-2 LABORATUARI II. DENEY FÖYÜ TRANSFORMATÖR ÖZELLİKLERİNİN BELİRLENMESİ Amaç: Transformatörün özelliklerini anlamak ve başlıca parametrelerini ölçmek. Gerekli Ekipmanlar: Ses Transformatörü,

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

SOLIDWORKS SIMULATION EĞİTİMİ

SOLIDWORKS SIMULATION EĞİTİMİ SOLIDWORKS SIMULATION EĞİTİMİ Kurs süresince SolidWorks Simulation programının işleyişinin yanında FEA teorisi hakkında bilgi verilecektir. Eğitim süresince CAD modelden başlayarak, matematik modelin oluşturulması,

Detaylı

Elektrik Makinaları ve Sürücüler (EE 450) Ders Detayları

Elektrik Makinaları ve Sürücüler (EE 450) Ders Detayları Elektrik Makinaları ve Sürücüler (EE 450) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Elektrik Makinaları ve Sürücüler EE 450 Güz 3 0 0 3 5 Ön Koşul Ders(ler)i

Detaylı

Doğrusal hareketli sürekli mıknatıslı senkron motorlarda hpm parametresinin motorun denetim başarımına etkisi

Doğrusal hareketli sürekli mıknatıslı senkron motorlarda hpm parametresinin motorun denetim başarımına etkisi 1 Doğrusal hareketli sürekli mıknatıslı senkron motorlarda hpm parametresinin motorun denetim başarımına etkisi *Özcan OTKUN 1 ve A. Sefa AKPINAR 2 1 Gümüşhane Üniversitesi, Bilgisayar Teknolojileri Bölümü

Detaylı

Asenkron Motor Analizi

Asenkron Motor Analizi Temsili Resim Giriş Asenkron motorlar, neredeyse 100 yılı aşkın bir süredir endüstride geniş bir yelpazede kulla- Alperen ÜŞÜDÜM nılmaktadır. Elektrik Müh. Son yıllarda, FİGES A.Ş. kontrol teknolojilerinin

Detaylı

Self Organising Migrating Algorithm

Self Organising Migrating Algorithm OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com

Detaylı

Eşdeğer Deprem Yüklerinin Dağılım Biçimleri

Eşdeğer Deprem Yüklerinin Dağılım Biçimleri Eşdeğer Deprem Yüklerinin Dağılım Biçimleri Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunayozmen@hotmail.com 1. Giriş Deprem etkisi altında bulunan ülkelerin deprem yönetmelikleri çeşitli

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER

ELEKTRİK MOTORLARI VE SÜRÜCÜLER BÖLÜM 4 A.A. MOTOR SÜRÜCÜLERİ 4.1.ALTERNATİF AKIM MOTORLARININ DENETİMİ Alternatif akım motorlarının, özellikle sincap kafesli ve bilezikli asenkron motorların endüstriyel uygulamalarda kullanımı son yıllarda

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 1 Aralık 2, Bursa Sürekli Mıknatıslı AC Servomotor Tasarımında Radyel ve Paralel Mıknatıslamanın Motor Performansına Etkisi

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

CER MOTORLARININ ENERJİ VERİMLİLİĞİNDE MOTOR TORK UNUN ETKİSİ

CER MOTORLARININ ENERJİ VERİMLİLİĞİNDE MOTOR TORK UNUN ETKİSİ 3. Uluslar arası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE 16), 13-15 Ekim 2016, Karabük, Türkiye CER MOTORLARININ ENERJİ VERİMLİLİĞİNDE MOTOR TORK UNUN ETKİSİ Mehmet Fidan a, * and Mine Sersöz b

Detaylı

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.3, No.2, June 2011 37 Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini Vecihi Yigit Industrial

Detaylı

Eğitim ve Öğretim Araştırmaları Dergisi Journal of Research in Education and Teaching Mayıs 2017 Cilt: 6 Sayı: 2 Makale No: 33 ISSN:

Eğitim ve Öğretim Araştırmaları Dergisi Journal of Research in Education and Teaching Mayıs 2017 Cilt: 6 Sayı: 2 Makale No: 33 ISSN: KISA VE ORTA ENERJİ İLETİM HATLARININ SAYISAL ANALİZİ İÇİN BİR ARAYÜZ TASARIMI Öğr. Gör. Hakan Aydogan Uşak Üniversitesi, Uşak hakan.aydogan@usak.edu.tr Öğr. Gör. Mehmet Feyzi Özsoy Uşak Üniversitesi,

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser

Detaylı

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ 4 th International Advanced Technologies Symposium September 8 3, 5 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ Metin ZEYVELİ Cevdet GÖLOĞLU Kürşad DÜNDAR ) Gazi Üniversitesi

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications

Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications Gizem Pekküçük, İbrahim Uzar, N. Özlem Ünverdi Elektronik ve Haberleşme Mühendisliği Bölümü Yıldız Teknik

Detaylı

Derin Çekme İşlemi Üzerine Kalıp Geometrisinin Etkisinin Sonlu Elemanlar Analizi

Derin Çekme İşlemi Üzerine Kalıp Geometrisinin Etkisinin Sonlu Elemanlar Analizi KSU Mühendislik Bilimleri Dergisi, 16(1),2013 43 KSU. Journal of Engineering Sciences, 16(1),2013 Derin Çekme İşlemi Üzerine Kalıp Geometrisinin Etkisinin Sonlu Elemanlar Analizi Vedat TAŞDEMİR 1 * 1 Kahramanmaraş

Detaylı

TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ

TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ DENEY-3 TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ 3. Teorik Bilgi 3.1 Transformatörler Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 6/ Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Fügen TORUNBALCI

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI

ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI Deney 1 : Histeresiz Eğrisinin Elde Edilmesi Amaç : Bu deneyin temel amacı; transformatörün alçak gerilim sargılarını kullanarak B-H (Mıknatıslanma)

Detaylı

İNDÜKSİYON MOTORLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

İNDÜKSİYON MOTORLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI İNDÜKSİYON MOTORLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ DERSİN

Detaylı

Akım Modlu Çarpıcı/Bölücü

Akım Modlu Çarpıcı/Bölücü Akım Modlu Çarpıcı/Bölücü (Novel High-Precision Current-Mode Multiplier/Divider) Ümit FARAŞOĞLU 504061225 1/28 TAKDİM PLANI ÖZET GİRİŞ AKIM MODLU ÇARPICI/BÖLÜCÜ DEVRE ÖNERİLEN AKIM MODLU ÇARPICI/BÖLÜCÜ

Detaylı

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm Tufan İNAÇ 1, Cihan KARAKUZU 2 1 Bilgisayar Mühendisliği Anabilim Dalı Bilecik Şeyh Edebali

Detaylı

LİNEER MOTORLU BİR ASANSÖR KAPI TAHRİK SİSTEMİ

LİNEER MOTORLU BİR ASANSÖR KAPI TAHRİK SİSTEMİ LİNEER MOTORLU BİR ASANSÖR KAPI TAHRİK SİSTEMİ 1.GİRİŞ Mahir DURSUN 1 Harun ÖZBAY 2 Fatmagül KOÇ 3 1 GÜ Teknik Eğitim Fakültesi, Elektrik Eğitimi Bölümü, 06500 Teknikokullar/Ankara Tel:0(312)2028526, e-posta:

Detaylı

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU*

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU* makale Ayşe KAHVEĐOĞLU * Yrd. Doç. Dr., Anadolu Üniversitesi ONAILABĐLĐ ELEMANLAA ÖNLEYĐĐ BAKIMIN EKĐSĐ VE OĐMĐZASYONU* GĐĐŞ Bakım faaliyetinin temel amacı, olabilecek muhtemel arızaların önlenmesi veya

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa Rüzgar Türbini Uygulamaları için 500 kw Çift Beslemeli Asenkron Generatör Tasarımı Design of 500 kw Doubly Fed Induction Generator For Wind Turbine Applications Cenk ULU 1, Güven KÖMÜRGÖZ 2 1 TÜBİTAK Marmara

Detaylı

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER Ferhat Uçan (a), (b) (a), 41470,Gebze, Kocaeli, ferhat.ucan@bte.tubitak.gov.tr (b) du.tr ÖZ seklik t k Problemin en uygun çözümü, tüm a birlikte eniyileyen zordur.

Detaylı

Genetik Algoritma Yardımıyla Elde Edilen Yüksek Performanslı Pencere Fonksiyonlarının Yinelemesiz Sayısal Filtre Tasarımında Kullanımı

Genetik Algoritma Yardımıyla Elde Edilen Yüksek Performanslı Pencere Fonksiyonlarının Yinelemesiz Sayısal Filtre Tasarımında Kullanımı 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 011, Elazığ, Turkey Genetik Algoritma Yardımıyla Elde Edilen Yüksek Performanslı Pencere Fonksiyonlarının Yinelemesiz Sayısal Filtre

Detaylı

Sürekli Mıknatıslı Senkron Motorun Sayısal İşaret İşlemcisi ile Histerezis Akım Denetleyicili Alan Yönlendirme Kontrolünün Gerçekleştirilmesi

Sürekli Mıknatıslı Senkron Motorun Sayısal İşaret İşlemcisi ile Histerezis Akım Denetleyicili Alan Yönlendirme Kontrolünün Gerçekleştirilmesi Fırat Üniv. Mühendislik Bilimleri Dergisi Fırat Univ. Journal of Engineering 27(1), 15-22, 2015 27(1), 15-22, 2015 Sürekli Mıknatıslı Senkron Motorun Sayısal İşaret İşlemcisi ile Histerezis Akım Denetleyicili

Detaylı

LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ

LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ Mak. Yük. Müh. Emre DERELİ Makina Mühendisleri Odası Edirne Şube Teknik Görevlisi 1. GİRİŞ Ülkelerin

Detaylı

Yrd.Doç. Elektrik-ElektronikMüh. Böl. Mühendislik Fakültesi Bülent Ecevit Üniversitesi Oda No: 111 İncivezMah. 67100, Merkez/Zonguldak/Türkiye

Yrd.Doç. Elektrik-ElektronikMüh. Böl. Mühendislik Fakültesi Bülent Ecevit Üniversitesi Oda No: 111 İncivezMah. 67100, Merkez/Zonguldak/Türkiye İbrahim ALIŞKAN 1 Elektrik Dr. & Endüstri Müh. Yrd.Doç. Elektrik-ElektronikMüh. Böl. Mühendislik Fakültesi Bülent Ecevit Üniversitesi Oda No: 111 İncivezMah. 67100, Merkez/Zonguldak/Türkiye İletişim ve

Detaylı

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL FACULTY OF ARTS AND SCIENCES FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES FOREIGN LANGUAGES TURKISH LANGUAGE CHEM 101 FİZ 101 FİZ 102 FİZ 224 HUM 302 İNB 302 KİM 101 MATE 102 MATE 111 MATE 112 MATE

Detaylı

Anahtar Kelimeler- Senkron jeneratör, radyal akılı, bilgisayar destekli tasarım, neodyum mıknatıs, ANSYS.

Anahtar Kelimeler- Senkron jeneratör, radyal akılı, bilgisayar destekli tasarım, neodyum mıknatıs, ANSYS. İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 NEODYUM MIKNATISLI SENKRON GENERATÖRLERDE TASARIM PARAMETRE DEĞİŞİKLİKLERİNİN GENERATÖR VERİMİNE ETKİSİ Veli TÜRKMENOĞLU

Detaylı

T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ PROJE BAŞLIĞI Mühendislik Problemlerinin Bilgisayar Destekli Çözümleri Proje No:2013-2-FMBP-73 Proje Türü ÖNAP SONUÇ

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Doğrusal Anten Dizisi Işıma Diyagramının Sentezi İçin Konveks-Genetik- Taguchi Algoritmalarına Dayalı Yeni Bir Karma Optimizasyon Yaklaşımı

Doğrusal Anten Dizisi Işıma Diyagramının Sentezi İçin Konveks-Genetik- Taguchi Algoritmalarına Dayalı Yeni Bir Karma Optimizasyon Yaklaşımı Doğrusal Anten Dizisi Işıma Diyagramının Sentezi İçin Konveks-Genetik- Taguchi Algoritmalarına Dayalı Yeni Bir Karma Optimizasyon Yaklaşımı A New Hybrid Optimization Approach based on Convex-Genetic-Taguchi

Detaylı

Elektrik Makinalarının Dinamiği (EE 553) Ders Detayları

Elektrik Makinalarının Dinamiği (EE 553) Ders Detayları Elektrik Makinalarının Dinamiği (EE 553) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Elektrik Makinalarının Dinamiği EE 553 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

KISA DEVRE HESAPLAMALARI

KISA DEVRE HESAPLAMALARI KISA DEVRE HESAPLAMALARI Güç Santrali Transformatör İletim Hattı Transformatör Yük 6-20kV 154kV 380kV 36 kv 15 kv 11 kv 6.3 kv 3.3 kv 0.4 kv Kısa Devre (IEC) / (IEEE Std.100-1992): Bir devrede, genellikle

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Kuru Tip Transformatörlerde Nüve Materyallerinin Verime Etkisi Impact on Efficiency of Core Materials in Dry Type Transformers

Kuru Tip Transformatörlerde Nüve Materyallerinin Verime Etkisi Impact on Efficiency of Core Materials in Dry Type Transformers Kuru Tip Transformatörlerde Nüve Materyallerinin Verime Etkisi Impact on Efficiency of Core Materials in Dry Type Transformers Murat TÖREN 1, Mehmet ÇELEBİ 2 1 Elektronik ve Otomasyon Bölümü, Recep Tayyip

Detaylı

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC

Detaylı

A. SCI ve SCIE Kapsamındaki Yayınlar

A. SCI ve SCIE Kapsamındaki Yayınlar A. SCI ve SCIE Kapsamındaki Yayınlar A.1. Erilli N.A., Yolcu U., Egrioglu E., Aladag C.H., Öner Y., 2011 Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks.

Detaylı

Plazma İletiminin Optimal Kontrolü Üzerine

Plazma İletiminin Optimal Kontrolü Üzerine Plazma İletiminin Optimal Kontrolü Üzerine 1 Yalçın Yılmaz, 2 İsmail Küçük ve 3 Faruk Uygul *1 Faculty of Arts and Sciences, Dept. of Mathematics, Sakaya University, Sakarya, Turkey 2 Faculty of Chemical

Detaylı

MDS Motor Tasarım Ltd. yucel@mdsmotor.com. ASELSAN A.Ş. bertugrul@aselsan.com.tr, esincar@aselsan.com.tr

MDS Motor Tasarım Ltd. yucel@mdsmotor.com. ASELSAN A.Ş. bertugrul@aselsan.com.tr, esincar@aselsan.com.tr Mıknatıs Korozyonunun 36-Oluk/12-Kutuplu Sürekli Mıknatıslı Senkron Motorun Performansına Etkisi Influence of Magnet Corrosion on Performance of 36-slot/12-Pole Permanent Magnet Synchronous Motor Y. Demir

Detaylı

MOTORLAR. İbrahim Kolancı Enerji Yöneticisi

MOTORLAR. İbrahim Kolancı Enerji Yöneticisi İbrahim Kolancı Enerji Yöneticisi Türkiye de; toplam net elektrik tüketiminin yaklaşık %36 sı,sanayi elektrik tüketiminin yaklaşık %70 i üçfazlı AC indüksiyon elektrik motor sistemlerinde kullanılıyor.

Detaylı

RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2

RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2 RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2 1 İstanbul Büyükşehir Belediyesi Avrupa Yakası Raylı Sistem Müdürlüğü 34010 Merter İstanbul

Detaylı

Doğrudan Yolvermeli Sabit Mıknatıslı Senkron Motorda Rotor Çubuk Arızasının İncelenmesi

Doğrudan Yolvermeli Sabit Mıknatıslı Senkron Motorda Rotor Çubuk Arızasının İncelenmesi Doğrudan Yolvermeli Sabit Mıknatıslı Senkron Motorda Rotor Çubuk Arızasının İncelenmesi *1 Goşenay HATIK, Elif İNGENÇ, 3 Mehmet AKAR 1,,3 Gaziosmanpaşa Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi,

Detaylı

Transformatörlerin Sinüzoidal Olmayan Şartlarda Azami Yüklenme Oranı Hesabı Kısım 2: Analiz Sonuçları

Transformatörlerin Sinüzoidal Olmayan Şartlarda Azami Yüklenme Oranı Hesabı Kısım 2: Analiz Sonuçları Transformatörlerin Sinüzoidal Olmayan Şartlarda Azami Yüklenme Oranı Hesabı Kısım 2: Analiz Sonuçları Emrah ARSLAN 2 Şevket CANTÜRK 3 Murat Erhan BALCI,2,3 Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu itüdergisi/d mühendislik Cilt:1 Sayı:1 Ağustos 2002 Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu Orhan ENGİN *, Alpaslan FIĞLALI İTÜ İşletme Fakültesi, Endüstri Mühendisliği

Detaylı