RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA"

Transkript

1 ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : Goca İceoğlu efail Kasımbeli Aadolu Uivesit Eskisehi-Tuke ADAL EPİTÜEVLEİN BAZI ÖZELLİKLEİ ÜZEİNE Bİ AAŞTIMA ÖZET Bu makalede tek değeli ve küme değeli döüşümle içi adal epitüevlei bazı özellikleii iceledik. adal epitüevle ve adal tüevle ilişkisii iceledi. Aahta Kelimele. Küme Değeli Döüşüm adal Koi adal Epitüev adal Tüev. A ESEAH ON SOME POPETIES O THE ADIAL EPIDEIVATIVES ABSTAT I this pape we stud some impotat popeties of the adial epideivatives fo sigle valued ad set valued maps. The elatioship betwee the adial epideivative ad the adial epideivative has bee establish. Kewods. Set Valued Map adial oe adial Epideivative adial Deivative

2 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli.. GİİŞ (INTODUTION) So ıllada tüev kavamı küme değeli aaliz ve küme değeli optimizaso teoiside öem kazaa bi çalışma kousu halie gelmişti ve liteatüde çeşitli şekilde fomule edilmişti [ ve ]. otiget tüev kavamı ilk olaak Aubi taafıda veilmişti []. Küme değeli döüşümle içi cotiget tüev kavamı küme değeli optimizasoda öemli bi ol oa ve optimallik koşullaıı elde edilmeside kullaılmıştı. akat geekli optimallik [7 Theoem 4.] koşulaı ve eteli [7 Theoem 4.] optimallik koşullaıı stadat vasaımla altıda çakışmadığı otaa çıkmıştı. Bu da küme değeli optimizasoda optimallik koşullaıı elde edilmeside cotiget tüevi doğu bi aaç olmadığıı göstemişti. Bu edele ilk olaak Aubi taafıda cotiget epitüev kavamı cotiget üst tüev adıla taımlamıştı. Daha soa kotekste cotiget epitüev adıla kullaılmıştı. Liteatüde koveks küme değeli optimizaso poblemlei içi Jah ve auh taafıda veile cotiget epitüev kavamı çok ağbet gömüş ve izlee çalışmalada kullaılmıştı [9]. Koveks olmaa poblemlede kullaılmak üzee ilk olaak Baza [4] taafıda adal epitüev kavamı taımlamıştı ve bu kavam kullaılaak küme değeli optimizasoda kovekslik vasaımı olmaksızı zaıf miimal çözümle içi optimallik koşullaı elde edildi. akat Baza taafıda veile adal epitüev taımı küme değeli döüşümlei ifimum değeleii valığıı gaati ede. Üstelik temel kaakteizaso teoemi sıalama koisi i koveks poited ve vasaımı altıda ispatlaı (bkz [4Theoem 3.9]). Bu koşulla çok kısıtlaıcı koşulladı ve aza taafıda da kısıtlaıcı olaak itelediili (bkz [5]). Kasımbeli kovekslik ve sıılılık vasaımlaı olmaksızı bi küme değeli döüşüm içi ei bi adal epitüev kavamıı taımladı ve küme dğeli döüşümle içi bu ei kavamı kullaaak geekli ve eteli optimallik koşullaıı elde etti [8].. ÇALIŞMANIN ÖNEMİ (ESEAH SIGNIIATION) Çalışmaı amacı Kasımbeli taafıda veile adal epitüevlei özellikleii icelemek ve bu epitüevi adal tüevle ilişkisii kumaktı. 3. ADAL EPİTÜEVLE VE ÖZELLİKLEİ (ADIAL EPIDEIVATIVES AND POPETIES) Sıasıla Jah ve auh ve Kasımbeli taafıda taıtıla cotiget epitüev ve adal epitüev kavamlaıı stadat kavamlala bilikte hatılaalım. bi eel omlu uza kümesi uzaıı boş olmaa bi alt kümesi olsu. He x ve he 0 içi x ise kümesie bi koi dei. bi koi olsu. 0 ise koisie poited koi dei. Taım.. Taım. S kümesi eel omlu uzaıı boş olmaa bi alt kümesi olsu. coes x : 0 s S kümesie S kümesi ile üetile koi dei. 5

3 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Taım 3.. bi eel omlu uza olsu. çapım uzaıı he bi alt kümesi üzeide bi adi bağıtı olaak adladıılı. Kefi x z w içi aşağıdaki aksiomla sağlaıosa üzeide adi bağıtısı bi kısmi sıalama bağıtısı olaak adladıılı: a) x x b) x z x z c) x w z x w z d) x x Taım 4. Bi eel omlu uzada kısmi sıalamaı kaakteize ede bi koveks koi sıalama koisi olaak adladıılı. Taım 5. U kümesi. eel omlu uzaı boş olmaa bi alt cl U z dizisi; pozitif eel IN kümesi olsu ve z veilsi. U saılaı bi IN dizisi z z 6 lim ve h z z lim olacak şekilde vasa h Z vektöüe U a z oktasıdaki tajat vektöü dei. z oktasıdaki tüm tajat vektölei kümesie U kümesie z oktasıdaki cotiget koisi dei [9]. Taım 6. U kümesi. kümesi olsu ve clu adal koisi eel omlu uzaı boş olmaa bi alt z veilsi. U kümesii z oktasıdaki kapalı U z z : 0 z lim z z Niçiz z N U olaak taımlaı. Dikkat edilise kapalı adal koi dek olaak aşağıdaki gibi taımlaı: Taım 7. U kümesi. kümesi olsu ve clu eel omlu uzaı boş olmaa bi alt z veilsi. U kümesii z oktasıdaki kapalı N z adal koisi U z z : 0 z U lim z z olaak taımlaı. Bu taımlada olduğu göülü [8]. U z cl coe U z Taım 8.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve : S küme değeli bi döüşüm olsu. gaph x : x S x kümesi küme değeli döüşümüü gafiği olaak adladıılı.

4 dom x : x e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. kümesi küme değeli döüşümüü taım kümesi olaak adladıılı. uzaı bi koveks koisile kısmi sıalı olsu. epi x : x S x kümesi küme değeli döüşümüü epigafı olaak adladıılı. Bi x gaph ikilisi veilsi. Epigafı küme değeli döüşümü epigafıı x oktasıdaki cotiget koisie eşit ola tek değeli Dx : döüşüme ; ai Dx epi x epi ; döüşümüü x oktasıdaki cotiget epitüevi dei [9]. Şimdi Kasımbeli taafıda veile adal epitüevi taımıı hatılaalım [8]. Taım 9.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve ve x gaph : S küme değeli bi döüşüm olsu veilsi. Epigafı küme değeli döüşümüü epigafiğie x oktasıdaki adal koisie eşit ola ai epid x epi x tek değeli döüşüm x : küme değeli döüşümüü x D oktasıdaki adal epitüevi olaak adladıılı. Bu taımı aşağıdaki öekle açıklaalım. x x ile taımlaa Öek. döüşümüü düşüelim. epi kümesii : küme değeli bi 0 oktasıdaki adal koisiie bakacak olusak epi 0 x : x di ve dolaısıla bu oktadaki adal epitüevi x x x D olu. Şimdi küme değeli döüşümüü adal epitüevleii bulalım. 0 olup adal epitüevi olu. 0 epi D ve 0 oktalaıdaki x oktasıdaki adal koi x x oktasıdaki adal koi epi 0 x x 0 0 x 0 x x 0 0 x 0 0 x 0 x x 0 7

5 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. olup adal epitüevi 3 4 olu. Şimdi D 0 x 0 x 0 x x 0 x oktasıda adal koisi ve adal epitüevi sıasıla x 3 0 x epi 4 3 x 0 x 3 0 x D x 4 3 x x 0 olu. Kasımbeli teoemii vedi. Teoem.. eel omlu uza S kümesi uzaıı boş olmaa bi alt kümesi ve özel duumuda adal epitüevle içi valık x elemalaı veilsi. f g : : S bi küme değeli döüşüm olsu. S epig epi x epif epitüev D x he x içi D x x mi : x epi x x ve foksiolaı olacak şekilde va olsu. O zama adal olaak veili. Aşağıdaki öek bu teoemi sağladığıı göstei. Öek. : küme değeli döüşümü aşağıdaki gibi taımlası: x x x 0 0 x 0 x 00 olsu. gaph oktasıdaki epi i adal koisi epi 00 x di. Bölece adal epitüev he olaak 00 epi 00 0 epi olduğu açıktı ve x 00 : 0 x oktasıdaki x içi D x x 0 olu. Beze epi i cotiget koisi T : 0 olup; dolaısıla cotiget epitüevi D : aşağıdaki gibi taımlaı: 0 x 0ise Dx x x 0ise Buada açıkça göüldüğü gibi; adal epitüev he x içi vadı fakat cotiget epitüev ise sadece x 0 oktasıda vadı. 8

6 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Taım 0. bi eel liee uza ve eel liee uzaı bi koveks koisile kısmi sıalı olsu. f : döüşümü i. He 0 ve he x içi f x f x (pozitif homojelik) ii. He x x f x x f x f x içi (alt toplamsallık) Özellikleii sağlıosa subliee olaak adladıılı [9]. ve olmasıda duumuda ii. koşulu he x x içi f x x f x f x olaak azılabili. Aşağıdaki teoem küme değeli döüşümüü -koveks olması duumuda cotiget epitüevle içi ispatladı [9 Theoem 4]. Teoem.. ve. eel omlu uzala bi poited koveks koisile kısmi sıalı S kümesi uzaıı boş olmaa bi alt kümesi : S küme değeli bi döüşüm olsu ve x S ve x elemalaı veilsi. adal epitüev D x vasa o zama pozitif homojedi. Üstelik epi x koveks koi ise o zama adal epitüev sublieedi(altliee). Kaıt. Başlagıç olaak kefi 0 ve kefi x alalım. D x x D x x epi D x olduğu içi epi koi ve x D x x epid x D x x D x x elde edeiz. akat x D x x epid x x D x x epid x di. Epigafı taımı ile () ile de olu bu da D x x D x x vea D x x D x x. () poited olduğuda ve de () ve ()koşullaıda D x x D x x.. (3) Üstelik () de ve x 0 alaak x 0 D x 0 D x epid x D elde edeiz. Buada da olduğuda D x 0 x 0 0 olu. poited olduğuda D. Bölece adal epitüev pozitif homojedi. Alt toplamsallık içi kefi x x alalım. x D x x epid x x D x x epid x ve epi x epid x koveks bi koi olduğu içi x x D x x D x x 9

7 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. olu; bu ise vea D x x D x x D x x x D x x D x x D x x x olmasıı geektii. Bölece adal epitüevi subliee olduğuu göstemiş olduk. Aşağıdaki öek adal koi koveks değilse adal epitüevi subliee olmadığıı açıkla. Öek 3. küme değeli döüşümü Öek deki gibi olsu. x 00 içi epi 00 x : x di ve buada da adal epitüev x x x D olu. Açıkça göüldüğü gibi epi() kümesii adal koisi koveks değildi ve adal epitüev de subliee değildi. Geçekte; Kefi x x alalım. D x x x x x x x D x x D x x olu ki bu da adal epitüevi subliee olmadığıı göstei. Şimdi Baza taafıda veile adal tüev kavamıı hatılaalım. Taım.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve ve x gaph : S küme değeli bi döüşüm olsu veilsi. Gafiği küme değeli döüşümüü gafiğie x oktasıdaki adal koisie eşit ola ai gaphd x gaph x küme değeli döüşüm D x : küme değeli döüşümüü x oktasıdaki adal tüevi olaak adladıılı. Buada koveks olmaa küme değeli döüşümle içi adal tüev ve adal epitüev aasıdaki ilişkii kaıtladık. Teoem 3.. ve. eel omlu uzala ve uzaı bi kapalı koveks koisile kısmi sıalı ve : küme değeli bi x gaph veilsi. adal tüev ve adal döüşüm olsu ve epitüev vasa o zama epid x epid x dı. 30

8 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Kaıt. epi D x epi x clcoeepi x clcoegaph x 0 clcoegaph x cl 0 clcoegaph x 0 gaph x 0 epid x.. ve. Teoem 4. eel omlu uzala ve uzaı bi kapalı koveks koisile kısmi sıalı ve : küme değeli bi x gaph veilsi. adal epitüev döüşüm olsu ve D x vasa altta aı süeklidi. Kaıt adal koi bi omlu uzada daima kapalı ve x epi x epid olduğuda adal epitüevi epigafı da kapalıdı (bkz [ Theoem 7. 5.s]). Bölece adal epitüev altta aı süeklidi. Teoem 5.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi uzaı bi koveks koisile kısmi sıalı f g : S ve x S olmak üzee : S küme değeli bi döüşümü olaak veilsi. adal epitüev x: : f x gx x f x x f x D f x f x D vasa o zama D. Kaıt. küme değeli döüşümü taımıda olu. Buada x : x S f x epi f epi epi epi D x f x epi x f x f x f x D f x f x epi olu. Bu da iddiamızı doğula. 4. SONUÇ VE ÖNEİLE (ONLUSION AND SUGGESTION) Bu makalede Kasımbeli taafıda [8] de taımlamış ola adal epitüevi sublieelik ve altta aı süeklilik özelliklei iceledi. adal epitüevi adal tüev ile ola ilişkisi kuuldu. adal epitüevi taım kümesii cotiget epitüevi taım kümeside daha geiş olduğu bi öek adımıla açıkladı. Buda soaki çalışmalaımızda; adal epitüev kavamıı geelleştimei ve 3

9 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. geelleştiilmiş epitüevi adal epitüevle ilişkisii icelemei ve valık teoemleii ispatlamaı ümit ediouz. KANAKLA (EEENES). Aubi J-P. (98). otiget deivatives of set-valued maps ad existece of solutios to oliea iclusios ad diffeetial iclusios. Mathematical Aalsis Ad Applicatios New ok Pat A Aubi J_P. ve Ekelad I. (984). Applied Noliea Aalsis Wile New ok. 3. Aubi J-P. ad akowska H. (990). Set valued aalsis. Bikhause Bosto. 4. Baza.. (00). Optimalit coditios i ocovex setvalued optimizatio Mathematical Methods of Opeatios eseach Baza.. (003). adial epideivatives ad asmptotic fuctio i ocovex vecto optimizatio SIAM J. Optim he G.. ad Jah J. (998). Optimalit coditios fo setvalued optimizatio poblems Mathematical Methods of Opeatios eseach ole H.W. (997). Optimalit coditios fo maximizatio i patiall odeed liea spaces J. Optimizatio Theo ad Applicatios Kasımbeli.N. (009). adial epideivatives ad set-valued optimizatio Optimizatio 8(5) Jah J. ve auh.(997). otiget epideivatives ad setvalued optimizatio Mathematical Methods of Opeatios eseach Luc D.T. (989). Theo of vecto optimizatio Spige Beli.. Luc D.T. (99). otiget deivatives of set-valued maps ad applicaitos to vecto optimizaito. Math. Pogammig ocafella.t. (970). ovex Aalsis Piceto New Jese. 3

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI T.C. FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI Muammed ÇINAR TEZ YÖNETİCİSİ Pof. D. Miail ET YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI ELAZIĞ-2007

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Uludağ Üivesitesi Mühedislik Fakültesi Degisi, Cilt 21, Saı 1 ARAŞTIRMA DOI: 10.17482/uujfe.90925 KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Tufa Güka

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

Tümevarım ve Özyineleme

Tümevarım ve Özyineleme Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

Çözüm Kitapçığı Deneme-3

Çözüm Kitapçığı Deneme-3 KAMU PESONEL SEÇME SINAVI ÖĞETMENLİK ALAN İLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ - OCAK 7 Çözüm Kitapçığı Deeme- u testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı vea i kısmıı Mekezimizi

Detaylı

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : 4 : -2 : 675-683

Detaylı

2. TEMEL İSTATİSTİK KAVRAMLARI

2. TEMEL İSTATİSTİK KAVRAMLARI TEMEL İSTATİSTİK KAVRAMLARI İstatistik Kavamı İstatistik bi olaya (eve, aa kütle,toplu, kolektif ve yığı şeklideki) ait veilei (aket, deey ve gözlem vb) toplaaak sayısal olaak ifade edilmesii ve bu veilei

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI .. SAU Fen Bilimlei Enstitüsü Degisi 6.Cilt, 1.Saı (Mat 2002) Pozison Kontolüne Yönelik DC Moto Ugulaması A.İ.Doğman, A.F.Boz POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI 'oj Ali lhsan DOGMAN, Ali Fuat

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı Uçuş Kumanda Yüzei Kilitlenme Etkileini Düzeltici Otomatik Pilot Tasaımı Coşku Kasnakoğlu 1, Ünve Kanak 1 Elektik ve Elektonik Müendisliği Bölümü TOBB Ekonomi ve Teknoloji Ünivesitesi, Söğütözü, Ankaa

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

4. DEVİRLİ ALT GRUPLAR

4. DEVİRLİ ALT GRUPLAR 4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM TC YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ ABURCU ÖZYURT SERİM DOKTORA TEZİ MATEMATİK ANABİLİM DALI DANIŞMAN PROF DR MUSTAFA BAYRAM İSTANBUL,

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Bu bildiri 2-22 Mart 204 tarihleride düzelee Üretim Ekoomisi Kogreside suulmuştur. KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Murat BEŞER muratbeser @ yahoo.com

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME TMMOB Haita ve Kadasto Mühendislei Odası 1. Tükie Haita Bilimsel ve Teknik Kuultaı 8 Mat - 1 Nisan 5, Ankaa DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

TG 9 ÖABT İLKÖĞRETİM MATEMATİK

TG 9 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

SİNÜZOİDAL OLMAYAN ŞARTLARDA AKTİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ

SİNÜZOİDAL OLMAYAN ŞARTLARDA AKTİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ Gazi Üiv. Müh. Mim. Fak. De. J. Fac. Eg. Ach. Gazi Uiv. Cilt 6, No, 307-313, 011 Vol 6, No, 307-313, 011 SİNÜZOİDAL OLMAYAN ŞARLARDA AKİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ M. Eha BALCI 1* ve M. Haka HOCAOĞLU

Detaylı

BAZI CENTRO-POLYHEDRAL GRUPLARIN PELL UZUNLUKLARI. G of the group G A by generated the

BAZI CENTRO-POLYHEDRAL GRUPLARIN PELL UZUNLUKLARI. G of the group G A by generated the BAZI CENTRO-OLYHEDRAL GRULARIN ELL UZUNLUKLARI Ömür DEVECİ 1, Hasa ÖZTÜRK 1 1 Kafkas Üiversitesi, Fe Edebiyat Fakültesi-36100/Kars e-mail: odeveci36@hotmail.com Abstract I [13], Deveci ad Karaduma defied

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER ERDENER KAYA MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANA BİLİM DALI YÜKSEK LİSANS TEZİ MERSİN HAZİRAN 7 TOPLAMSAL ARİTMETİK YARI

Detaylı

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ RAPOR Ocak R epav Tükiye Ekoomi Poliikalaı Aaşıma Vakfı Faih ÖZATA Diekö, TEPAV Fias Esiüsü PARA POLİTİASINDA ENİ ARAIŞLAR ve TCMB GİRİŞ Tükiye Cumhuiye Mekez Bakası TCMB ı Nisa de öemli değişiklikle yapıla

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -CEBİRLERİNİN İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER ESRA ULUOCAK DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİESİ BİLİM VE EKNOLOJİ DERGİSİ A Uygulamalı Bilimler ve Mühedislik ANADOLU UNIVERSIY JOURNAL OF SCIENCE AND ECHNOLOGY A Applied Scieces ad Egieerig Cilt/Vol.: 4-Sayı/No: : 67-74 (23) ARAŞIRMA

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

Ekon 321 Ders Notları 2 Refah Ekonomisi

Ekon 321 Ders Notları 2 Refah Ekonomisi Ekon 321 Des Notlaı 2 Refah Ekonoisi Refah Ekonoisinin Biinci Teel Teoei: İdeal işleyen bi sebest piyasa ekanizası kaynaklaın en etkin (optiu) bi şekilde dağılasını sağla. Topla net fayda (Topla Fayda-

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Otomatik Depolama Sistemlerinde Kullanılan Mekik Kaldırma Mekanizmasının Analizi

Otomatik Depolama Sistemlerinde Kullanılan Mekik Kaldırma Mekanizmasının Analizi Uluslaaası Katılımlı 17. Makina Teoisi Sempozyumu, İzmi, 14-17 Hazian 21 Otomatik Depolama Sistemleinde Kullanılan Mekik Kaldıma Mekanizmasının Analizi S.Telli Çetin * A.E.Öcal O.Kopmaz Uludağ Ünivesitesi

Detaylı

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI HIZININ TESPİTİ Doç. D.. Ail YÜKSELEN Temmuz 997 SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

KIRILMA MEKANİĞİ UYGULAMALARI

KIRILMA MEKANİĞİ UYGULAMALARI IRILMA MEANİĞİ ÖRNE IRILMA MEANİĞİ UYGULAMALARI alınlığı 3 cm, genişliği 30cm olan uzun bi plaka va, Muayene tekniği esası kullanılaak 8,5 mm uzunluğunda ilk kena çatlağının va olduğu faz edilmişti.,8

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

1. MİLLİKAN YAĞ DAMLASI DENEYİ

1. MİLLİKAN YAĞ DAMLASI DENEYİ . MİLLİKAN YAĞ DAMLASI DENEYİ Amaç Bu denede, Ye çekiminin etkisinde ve düzgün bi elektik alan içeisinde bulunan üklü bi ağ damlasının haeketi inceleneek elektonun ükünün ölçülmesi; Yağ damlalaının ükleinin

Detaylı

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K IfiI VE GÖGE MODE SORU DE SORUARIN ÇÖZÜMER. P R. cm a) Benzelikten, cm cm a) Cismin çap cm ise ya çap cm i. Benzelikten tam nin ya çap, (+) (8++) 4 cm olu. b) Benzelikten ya nin ya çap, 8+ 0 5 cm olu.

Detaylı

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals Ç.Ü Fen e Mühendislik Bilimlei Deisi Yıl:0 Cilt:8-3 ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eienfequency Contous of ZnX (X=S, Se, Te) Photonic Cystals Utku ERDİVEN, Fizik Anabilim

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Yüksek Lisas Tezi İDEMPOTENT DÖNÜŞÜMLER VE İDEMPOTENT DÖNÜŞÜMLER TARAFINDAN DOĞURULAN YARIGRUPLAR MATEMATİK ANABİLİM DALI ADANA, 0 ÇUKUROVA ÜNİVERSİTESİ FEN

Detaylı

KÜRE DÜZLEMİNDEKİ OPERATÖR RIESZ POTENSİYEL integralini HESAPLAMADA (p, q)'un SINIRLlLlGI

KÜRE DÜZLEMİNDEKİ OPERATÖR RIESZ POTENSİYEL integralini HESAPLAMADA (p, q)'un SINIRLlLlGI SAU Fen Blimlei Enstitüsü Degisi 6Cilt, 2Say (Temmuz 2002) Küe Düzlemindeki Opeatö Riesz Potenslyel integalini Hesaplamada (p, q)un Snldğ KÜRE DÜZLEMİNDEKİ OPERATÖR RIESZ POTENSİYEL integralini HESAPLAMADA

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 1

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 1 Desin içeiği AKİNE ÜHENDİSLİĞİNE GİRİŞ Des 1 akine ilgisi ile ilgili genel ilgile, tanıla e sınıflandıala Eneji kaynaklaı e genel özelliklei otola e iş akineleinin sınıflandıılası Santalle e elektik enejisi

Detaylı

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi Latex 3000 Yazıcı seisi Kuulum Yeini Hazılama Denetim Listesi Telif Hakkı 2015 HP Development Company, L.P. 2 Yasal bildiimle Bu belgede ye alan bilgile önceden habe veilmeksizin değiştiilebili. HP üün

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ BÖLÜM SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ. Poblemin tanımlanması. Geen idantitesine daanan genel çöüm. Çöümün metodolojisi. Temel çöüm - Noktasal kanak.5 Temel çöüm - Noktasal duble.6

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

İNTEGRAL ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

İNTEGRAL ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT İNTEGRAL ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Belili İntegal. Kazanım : Riemann toplamı adımıla integal kavamını açıkla.. Kazanım : Belili integalin özellikleini açıkla.. Kazanım : İntegal hesabının biinci

Detaylı

Temel zemin etkileşmesi; oturma ve yapı hasarı

Temel zemin etkileşmesi; oturma ve yapı hasarı Temel emin etkileşmei; otuma ve yapı haaı Foundation oil inteaction; ettlement and tuctual damage Altay Biand Otadoğu Teknik Üniveitei, Ankaa, Tükiye ÖZET: Oganik eminlein valığı dışında yapı haaında genelde

Detaylı