RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA"

Transkript

1 ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : Goca İceoğlu efail Kasımbeli Aadolu Uivesit Eskisehi-Tuke ADAL EPİTÜEVLEİN BAZI ÖZELLİKLEİ ÜZEİNE Bİ AAŞTIMA ÖZET Bu makalede tek değeli ve küme değeli döüşümle içi adal epitüevlei bazı özellikleii iceledik. adal epitüevle ve adal tüevle ilişkisii iceledi. Aahta Kelimele. Küme Değeli Döüşüm adal Koi adal Epitüev adal Tüev. A ESEAH ON SOME POPETIES O THE ADIAL EPIDEIVATIVES ABSTAT I this pape we stud some impotat popeties of the adial epideivatives fo sigle valued ad set valued maps. The elatioship betwee the adial epideivative ad the adial epideivative has bee establish. Kewods. Set Valued Map adial oe adial Epideivative adial Deivative

2 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli.. GİİŞ (INTODUTION) So ıllada tüev kavamı küme değeli aaliz ve küme değeli optimizaso teoiside öem kazaa bi çalışma kousu halie gelmişti ve liteatüde çeşitli şekilde fomule edilmişti [ ve ]. otiget tüev kavamı ilk olaak Aubi taafıda veilmişti []. Küme değeli döüşümle içi cotiget tüev kavamı küme değeli optimizasoda öemli bi ol oa ve optimallik koşullaıı elde edilmeside kullaılmıştı. akat geekli optimallik [7 Theoem 4.] koşulaı ve eteli [7 Theoem 4.] optimallik koşullaıı stadat vasaımla altıda çakışmadığı otaa çıkmıştı. Bu da küme değeli optimizasoda optimallik koşullaıı elde edilmeside cotiget tüevi doğu bi aaç olmadığıı göstemişti. Bu edele ilk olaak Aubi taafıda cotiget epitüev kavamı cotiget üst tüev adıla taımlamıştı. Daha soa kotekste cotiget epitüev adıla kullaılmıştı. Liteatüde koveks küme değeli optimizaso poblemlei içi Jah ve auh taafıda veile cotiget epitüev kavamı çok ağbet gömüş ve izlee çalışmalada kullaılmıştı [9]. Koveks olmaa poblemlede kullaılmak üzee ilk olaak Baza [4] taafıda adal epitüev kavamı taımlamıştı ve bu kavam kullaılaak küme değeli optimizasoda kovekslik vasaımı olmaksızı zaıf miimal çözümle içi optimallik koşullaı elde edildi. akat Baza taafıda veile adal epitüev taımı küme değeli döüşümlei ifimum değeleii valığıı gaati ede. Üstelik temel kaakteizaso teoemi sıalama koisi i koveks poited ve vasaımı altıda ispatlaı (bkz [4Theoem 3.9]). Bu koşulla çok kısıtlaıcı koşulladı ve aza taafıda da kısıtlaıcı olaak itelediili (bkz [5]). Kasımbeli kovekslik ve sıılılık vasaımlaı olmaksızı bi küme değeli döüşüm içi ei bi adal epitüev kavamıı taımladı ve küme dğeli döüşümle içi bu ei kavamı kullaaak geekli ve eteli optimallik koşullaıı elde etti [8].. ÇALIŞMANIN ÖNEMİ (ESEAH SIGNIIATION) Çalışmaı amacı Kasımbeli taafıda veile adal epitüevlei özellikleii icelemek ve bu epitüevi adal tüevle ilişkisii kumaktı. 3. ADAL EPİTÜEVLE VE ÖZELLİKLEİ (ADIAL EPIDEIVATIVES AND POPETIES) Sıasıla Jah ve auh ve Kasımbeli taafıda taıtıla cotiget epitüev ve adal epitüev kavamlaıı stadat kavamlala bilikte hatılaalım. bi eel omlu uza kümesi uzaıı boş olmaa bi alt kümesi olsu. He x ve he 0 içi x ise kümesie bi koi dei. bi koi olsu. 0 ise koisie poited koi dei. Taım.. Taım. S kümesi eel omlu uzaıı boş olmaa bi alt kümesi olsu. coes x : 0 s S kümesie S kümesi ile üetile koi dei. 5

3 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Taım 3.. bi eel omlu uza olsu. çapım uzaıı he bi alt kümesi üzeide bi adi bağıtı olaak adladıılı. Kefi x z w içi aşağıdaki aksiomla sağlaıosa üzeide adi bağıtısı bi kısmi sıalama bağıtısı olaak adladıılı: a) x x b) x z x z c) x w z x w z d) x x Taım 4. Bi eel omlu uzada kısmi sıalamaı kaakteize ede bi koveks koi sıalama koisi olaak adladıılı. Taım 5. U kümesi. eel omlu uzaı boş olmaa bi alt cl U z dizisi; pozitif eel IN kümesi olsu ve z veilsi. U saılaı bi IN dizisi z z 6 lim ve h z z lim olacak şekilde vasa h Z vektöüe U a z oktasıdaki tajat vektöü dei. z oktasıdaki tüm tajat vektölei kümesie U kümesie z oktasıdaki cotiget koisi dei [9]. Taım 6. U kümesi. kümesi olsu ve clu adal koisi eel omlu uzaı boş olmaa bi alt z veilsi. U kümesii z oktasıdaki kapalı U z z : 0 z lim z z Niçiz z N U olaak taımlaı. Dikkat edilise kapalı adal koi dek olaak aşağıdaki gibi taımlaı: Taım 7. U kümesi. kümesi olsu ve clu eel omlu uzaı boş olmaa bi alt z veilsi. U kümesii z oktasıdaki kapalı N z adal koisi U z z : 0 z U lim z z olaak taımlaı. Bu taımlada olduğu göülü [8]. U z cl coe U z Taım 8.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve : S küme değeli bi döüşüm olsu. gaph x : x S x kümesi küme değeli döüşümüü gafiği olaak adladıılı.

4 dom x : x e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. kümesi küme değeli döüşümüü taım kümesi olaak adladıılı. uzaı bi koveks koisile kısmi sıalı olsu. epi x : x S x kümesi küme değeli döüşümüü epigafı olaak adladıılı. Bi x gaph ikilisi veilsi. Epigafı küme değeli döüşümü epigafıı x oktasıdaki cotiget koisie eşit ola tek değeli Dx : döüşüme ; ai Dx epi x epi ; döüşümüü x oktasıdaki cotiget epitüevi dei [9]. Şimdi Kasımbeli taafıda veile adal epitüevi taımıı hatılaalım [8]. Taım 9.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve ve x gaph : S küme değeli bi döüşüm olsu veilsi. Epigafı küme değeli döüşümüü epigafiğie x oktasıdaki adal koisie eşit ola ai epid x epi x tek değeli döüşüm x : küme değeli döüşümüü x D oktasıdaki adal epitüevi olaak adladıılı. Bu taımı aşağıdaki öekle açıklaalım. x x ile taımlaa Öek. döüşümüü düşüelim. epi kümesii : küme değeli bi 0 oktasıdaki adal koisiie bakacak olusak epi 0 x : x di ve dolaısıla bu oktadaki adal epitüevi x x x D olu. Şimdi küme değeli döüşümüü adal epitüevleii bulalım. 0 olup adal epitüevi olu. 0 epi D ve 0 oktalaıdaki x oktasıdaki adal koi x x oktasıdaki adal koi epi 0 x x 0 0 x 0 x x 0 0 x 0 0 x 0 x x 0 7

5 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. olup adal epitüevi 3 4 olu. Şimdi D 0 x 0 x 0 x x 0 x oktasıda adal koisi ve adal epitüevi sıasıla x 3 0 x epi 4 3 x 0 x 3 0 x D x 4 3 x x 0 olu. Kasımbeli teoemii vedi. Teoem.. eel omlu uza S kümesi uzaıı boş olmaa bi alt kümesi ve özel duumuda adal epitüevle içi valık x elemalaı veilsi. f g : : S bi küme değeli döüşüm olsu. S epig epi x epif epitüev D x he x içi D x x mi : x epi x x ve foksiolaı olacak şekilde va olsu. O zama adal olaak veili. Aşağıdaki öek bu teoemi sağladığıı göstei. Öek. : küme değeli döüşümü aşağıdaki gibi taımlası: x x x 0 0 x 0 x 00 olsu. gaph oktasıdaki epi i adal koisi epi 00 x di. Bölece adal epitüev he olaak 00 epi 00 0 epi olduğu açıktı ve x 00 : 0 x oktasıdaki x içi D x x 0 olu. Beze epi i cotiget koisi T : 0 olup; dolaısıla cotiget epitüevi D : aşağıdaki gibi taımlaı: 0 x 0ise Dx x x 0ise Buada açıkça göüldüğü gibi; adal epitüev he x içi vadı fakat cotiget epitüev ise sadece x 0 oktasıda vadı. 8

6 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Taım 0. bi eel liee uza ve eel liee uzaı bi koveks koisile kısmi sıalı olsu. f : döüşümü i. He 0 ve he x içi f x f x (pozitif homojelik) ii. He x x f x x f x f x içi (alt toplamsallık) Özellikleii sağlıosa subliee olaak adladıılı [9]. ve olmasıda duumuda ii. koşulu he x x içi f x x f x f x olaak azılabili. Aşağıdaki teoem küme değeli döüşümüü -koveks olması duumuda cotiget epitüevle içi ispatladı [9 Theoem 4]. Teoem.. ve. eel omlu uzala bi poited koveks koisile kısmi sıalı S kümesi uzaıı boş olmaa bi alt kümesi : S küme değeli bi döüşüm olsu ve x S ve x elemalaı veilsi. adal epitüev D x vasa o zama pozitif homojedi. Üstelik epi x koveks koi ise o zama adal epitüev sublieedi(altliee). Kaıt. Başlagıç olaak kefi 0 ve kefi x alalım. D x x D x x epi D x olduğu içi epi koi ve x D x x epid x D x x D x x elde edeiz. akat x D x x epid x x D x x epid x di. Epigafı taımı ile () ile de olu bu da D x x D x x vea D x x D x x. () poited olduğuda ve de () ve ()koşullaıda D x x D x x.. (3) Üstelik () de ve x 0 alaak x 0 D x 0 D x epid x D elde edeiz. Buada da olduğuda D x 0 x 0 0 olu. poited olduğuda D. Bölece adal epitüev pozitif homojedi. Alt toplamsallık içi kefi x x alalım. x D x x epid x x D x x epid x ve epi x epid x koveks bi koi olduğu içi x x D x x D x x 9

7 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. olu; bu ise vea D x x D x x D x x x D x x D x x D x x x olmasıı geektii. Bölece adal epitüevi subliee olduğuu göstemiş olduk. Aşağıdaki öek adal koi koveks değilse adal epitüevi subliee olmadığıı açıkla. Öek 3. küme değeli döüşümü Öek deki gibi olsu. x 00 içi epi 00 x : x di ve buada da adal epitüev x x x D olu. Açıkça göüldüğü gibi epi() kümesii adal koisi koveks değildi ve adal epitüev de subliee değildi. Geçekte; Kefi x x alalım. D x x x x x x x D x x D x x olu ki bu da adal epitüevi subliee olmadığıı göstei. Şimdi Baza taafıda veile adal tüev kavamıı hatılaalım. Taım.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi ve ve x gaph : S küme değeli bi döüşüm olsu veilsi. Gafiği küme değeli döüşümüü gafiğie x oktasıdaki adal koisie eşit ola ai gaphd x gaph x küme değeli döüşüm D x : küme değeli döüşümüü x oktasıdaki adal tüevi olaak adladıılı. Buada koveks olmaa küme değeli döüşümle içi adal tüev ve adal epitüev aasıdaki ilişkii kaıtladık. Teoem 3.. ve. eel omlu uzala ve uzaı bi kapalı koveks koisile kısmi sıalı ve : küme değeli bi x gaph veilsi. adal tüev ve adal döüşüm olsu ve epitüev vasa o zama epid x epid x dı. 30

8 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. Kaıt. epi D x epi x clcoeepi x clcoegaph x 0 clcoegaph x cl 0 clcoegaph x 0 gaph x 0 epid x.. ve. Teoem 4. eel omlu uzala ve uzaı bi kapalı koveks koisile kısmi sıalı ve : küme değeli bi x gaph veilsi. adal epitüev döüşüm olsu ve D x vasa altta aı süeklidi. Kaıt adal koi bi omlu uzada daima kapalı ve x epi x epid olduğuda adal epitüevi epigafı da kapalıdı (bkz [ Theoem 7. 5.s]). Bölece adal epitüev altta aı süeklidi. Teoem 5.. ve. eel omlu uzala S kümesi uzaıı boş olmaa bi alt kümesi uzaı bi koveks koisile kısmi sıalı f g : S ve x S olmak üzee : S küme değeli bi döüşümü olaak veilsi. adal epitüev x: : f x gx x f x x f x D f x f x D vasa o zama D. Kaıt. küme değeli döüşümü taımıda olu. Buada x : x S f x epi f epi epi epi D x f x epi x f x f x f x D f x f x epi olu. Bu da iddiamızı doğula. 4. SONUÇ VE ÖNEİLE (ONLUSION AND SUGGESTION) Bu makalede Kasımbeli taafıda [8] de taımlamış ola adal epitüevi sublieelik ve altta aı süeklilik özelliklei iceledi. adal epitüevi adal tüev ile ola ilişkisi kuuldu. adal epitüevi taım kümesii cotiget epitüevi taım kümeside daha geiş olduğu bi öek adımıla açıkladı. Buda soaki çalışmalaımızda; adal epitüev kavamıı geelleştimei ve 3

9 e-joual of New Wold Scieces Academ Phsical Scieces 3A006 4 (4) 4-3. İceoğlu G. ve Kasımbeli. geelleştiilmiş epitüevi adal epitüevle ilişkisii icelemei ve valık teoemleii ispatlamaı ümit ediouz. KANAKLA (EEENES). Aubi J-P. (98). otiget deivatives of set-valued maps ad existece of solutios to oliea iclusios ad diffeetial iclusios. Mathematical Aalsis Ad Applicatios New ok Pat A Aubi J_P. ve Ekelad I. (984). Applied Noliea Aalsis Wile New ok. 3. Aubi J-P. ad akowska H. (990). Set valued aalsis. Bikhause Bosto. 4. Baza.. (00). Optimalit coditios i ocovex setvalued optimizatio Mathematical Methods of Opeatios eseach Baza.. (003). adial epideivatives ad asmptotic fuctio i ocovex vecto optimizatio SIAM J. Optim he G.. ad Jah J. (998). Optimalit coditios fo setvalued optimizatio poblems Mathematical Methods of Opeatios eseach ole H.W. (997). Optimalit coditios fo maximizatio i patiall odeed liea spaces J. Optimizatio Theo ad Applicatios Kasımbeli.N. (009). adial epideivatives ad set-valued optimizatio Optimizatio 8(5) Jah J. ve auh.(997). otiget epideivatives ad setvalued optimizatio Mathematical Methods of Opeatios eseach Luc D.T. (989). Theo of vecto optimizatio Spige Beli.. Luc D.T. (99). otiget deivatives of set-valued maps ad applicaitos to vecto optimizaito. Math. Pogammig ocafella.t. (970). ovex Aalsis Piceto New Jese. 3

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI ADİ TÜREVLİ DİFERANSİYEL DENKLEMLERİN BAŞLANGIÇ DEĞER PROBLEMLERİNİN CHEBYSHEV POLİNOMLARI İLE ÇÖZÜMÜ BİTİRME ÖDEVİ Sema

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI T.C. FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI Muammed ÇINAR TEZ YÖNETİCİSİ Pof. D. Miail ET YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI ELAZIĞ-2007

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Uludağ Üivesitesi Mühedislik Fakültesi Degisi, Cilt 21, Saı 1 ARAŞTIRMA DOI: 10.17482/uujfe.90925 KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Tufa Güka

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

Tümevarım ve Özyineleme

Tümevarım ve Özyineleme Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 009 ANKARA Muhib ABULOHA tarafıda hazırlaa KONİK METRİK UZAYLAR

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

DENEY 1-A MÜHENDĐSLĐKTE ĐSTATĐSTĐKSEL YÖNTEMLER

DENEY 1-A MÜHENDĐSLĐKTE ĐSTATĐSTĐKSEL YÖNTEMLER ühedislikte Đstatistiksel Yötele /. AAÇ DENEY -A ÜHENDĐSLĐKTE ĐSTATĐSTĐKSEL YÖNTELER Deeyi aacı, istatistiksel yötelei düzesiz davaış göstee oluşulaa uygulaasıı gösteekti. Çap ve oto devi sayısı ölçüleek

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

Çözüm Kitapçığı Deneme-3

Çözüm Kitapçığı Deneme-3 KAMU PESONEL SEÇME SINAVI ÖĞETMENLİK ALAN İLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ - OCAK 7 Çözüm Kitapçığı Deeme- u testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı vea i kısmıı Mekezimizi

Detaylı

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : 4 : -2 : 675-683

Detaylı

2. TEMEL İSTATİSTİK KAVRAMLARI

2. TEMEL İSTATİSTİK KAVRAMLARI TEMEL İSTATİSTİK KAVRAMLARI İstatistik Kavamı İstatistik bi olaya (eve, aa kütle,toplu, kolektif ve yığı şeklideki) ait veilei (aket, deey ve gözlem vb) toplaaak sayısal olaak ifade edilmesii ve bu veilei

Detaylı

PROBLEM SET I KASIM = 50 p ML + M + L = [50 p ML + M + L] Q = Q

PROBLEM SET I KASIM = 50 p ML + M + L = [50 p ML + M + L] Q = Q PROBLEM SET I - 4 11 KASIM 009 Sou 1 (Besanko ve Baeutigam, s. 56 (00)): Aşa¼g daki gibi bi üetim fonksiyonu veilsin: = 50 p ML + M + L a - Bu üetim fonksiyonunun ölçe¼ge göe getiisini bulunuz. He iki

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI .. SAU Fen Bilimlei Enstitüsü Degisi 6.Cilt, 1.Saı (Mat 2002) Pozison Kontolüne Yönelik DC Moto Ugulaması A.İ.Doğman, A.F.Boz POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI 'oj Ali lhsan DOGMAN, Ali Fuat

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. TRAKYA ÜNİVRSİTSİ FN BİLİMLRİ NSTİTÜSÜ HİDROSTATİK BASINÇ LKTRİK ALAN V MANYTİK ALANIN DÜŞÜK BOYUTLU YAPILARA TKİSİ Sema MİNZ DOKTORA TZİ TRAKYA ÜNİVRSİTSİ FİZİK ANABİLİM DALI Daışma 1) Pof. D. Hasa

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı Uçuş Kumanda Yüzei Kilitlenme Etkileini Düzeltici Otomatik Pilot Tasaımı Coşku Kasnakoğlu 1, Ünve Kanak 1 Elektik ve Elektonik Müendisliği Bölümü TOBB Ekonomi ve Teknoloji Ünivesitesi, Söğütözü, Ankaa

Detaylı

OLASILIK SAYMA PROBLEMLERİ:

OLASILIK SAYMA PROBLEMLERİ: OLASILIK SAYMA PROBLEMLERİ: TOPLAMA YÖNTEMİ: Bi E olayı E veya E olaylaıda biii geçekleşmesiyle oluşuyo, E olayı içi seçeek, E olayı içi m seçeek vasa, E olayı içi +m seçeek vadı. E=E E ve E E =Ø içi:

Detaylı

Çözüm Kitapçığı Deneme-4

Çözüm Kitapçığı Deneme-4 KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN İLGİSİ TESTİ LİSE MTEMTİK ÖĞRETMENLİĞİ -5 ŞUT 7 Çözüm Kitapçığı Deneme- u tetlein he hakkı aklıdı. Hangi amaçla olua olun, tetlein tamamının vea bi kımının Mekezimizin

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

4. DEVİRLİ ALT GRUPLAR

4. DEVİRLİ ALT GRUPLAR 4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK 03 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK A SORU : lim x 8x 9 (x 3) x ifadsii dğri aşağıdaki sçklrd hagisid vrilmiştir? 0 5 7 SORU : cosax x f x foksiyouu x=0 oktasıda sürkli olması içi f(0) ı dğri

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

alan ne kadardır? ; 3 3

alan ne kadardır? ; 3 3 - -. Doğa saıa kümeside f(k)=(k+) -k foksiou kuaaak k, k, k topamaı buuuz. ( + ) ( + )( + ) ( + ) 6. Topam fomüei kuaaak uzuuğu oa homoje bi çubuğu ucua göe ağıık mekezi buuuz.. Topam fomüei kuaaak uzuuğudaki

Detaylı

ÇEMBERİN ANALİTİK İNCELENMESİ

ÇEMBERİN ANALİTİK İNCELENMESİ ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Bu bildiri 2-22 Mart 204 tarihleride düzelee Üretim Ekoomisi Kogreside suulmuştur. KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Murat BEŞER muratbeser @ yahoo.com

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM TC YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ ABURCU ÖZYURT SERİM DOKTORA TEZİ MATEMATİK ANABİLİM DALI DANIŞMAN PROF DR MUSTAFA BAYRAM İSTANBUL,

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME

DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN ÖRNEKLEME TMMOB Haita ve Kadasto Mühendislei Odası 1. Tükie Haita Bilimsel ve Teknik Kuultaı 8 Mat - 1 Nisan 5, Ankaa DİJİTAL GÖRÜNTÜLERİN REKTİFİKASYONU: SENSÖR MODELLERİ, GEOMETRİK GÖRÜNTÜ DÖNÜŞÜMLERİ VE YENİDEN

Detaylı

ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK aa Üivesitesi Fe Bilimlei Estitüsü Matemati abilim Dalı Daışma: Pof. D. Ciha Oha Bu tez

ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK aa Üivesitesi Fe Bilimlei Estitüsü Matemati abilim Dalı Daışma: Pof. D. Ciha Oha Bu tez NKR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSNS TEZİ İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK MTEMTİK NBİLİM DLI NKR 2005 He haı salıdı ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TG 9 ÖABT İLKÖĞRETİM MATEMATİK

TG 9 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

SİNÜZOİDAL OLMAYAN ŞARTLARDA AKTİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ

SİNÜZOİDAL OLMAYAN ŞARTLARDA AKTİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ Gazi Üiv. Müh. Mim. Fak. De. J. Fac. Eg. Ach. Gazi Uiv. Cilt 6, No, 307-313, 011 Vol 6, No, 307-313, 011 SİNÜZOİDAL OLMAYAN ŞARLARDA AKİF OLMAYAN GÜÇLER ÜZERİNE BİR ANALİZ M. Eha BALCI 1* ve M. Haka HOCAOĞLU

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

BAZI CENTRO-POLYHEDRAL GRUPLARIN PELL UZUNLUKLARI. G of the group G A by generated the

BAZI CENTRO-POLYHEDRAL GRUPLARIN PELL UZUNLUKLARI. G of the group G A by generated the BAZI CENTRO-OLYHEDRAL GRULARIN ELL UZUNLUKLARI Ömür DEVECİ 1, Hasa ÖZTÜRK 1 1 Kafkas Üiversitesi, Fe Edebiyat Fakültesi-36100/Kars e-mail: odeveci36@hotmail.com Abstract I [13], Deveci ad Karaduma defied

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

S IGELER D IZ IN I w N C c 0 l 1 c R C üzeinde tan l bütün dizile uzay Do¼gal say la cülesi Fa opeatöü Koples say la cülesi Koples teili s f dizilei uzay Koples teili s n l dizile uzay Koples teili ya

Detaylı

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER ERDENER KAYA MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANA BİLİM DALI YÜKSEK LİSANS TEZİ MERSİN HAZİRAN 7 TOPLAMSAL ARİTMETİK YARI

Detaylı

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ RAPOR Ocak R epav Tükiye Ekoomi Poliikalaı Aaşıma Vakfı Faih ÖZATA Diekö, TEPAV Fias Esiüsü PARA POLİTİASINDA ENİ ARAIŞLAR ve TCMB GİRİŞ Tükiye Cumhuiye Mekez Bakası TCMB ı Nisa de öemli değişiklikle yapıla

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

Ekon 321 Ders Notları 2 Refah Ekonomisi

Ekon 321 Ders Notları 2 Refah Ekonomisi Ekon 321 Des Notlaı 2 Refah Ekonoisi Refah Ekonoisinin Biinci Teel Teoei: İdeal işleyen bi sebest piyasa ekanizası kaynaklaın en etkin (optiu) bi şekilde dağılasını sağla. Topla net fayda (Topla Fayda-

Detaylı

Diferansiyel Geometri

Diferansiyel Geometri Öklid Uzayıda Diferasiyel Geometri Salim Yüce Prof. Dr. DİFERNSİYEL GEOMETRİ ISBN 978-605-318-812-4 DOI 10.14527/9786053188124 Kitap içeriğii tüm sorumluluğu yazarlarıa aittir. 2017, PEGEM KDEMİ Bu kitabı

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -CEBİRLERİNİN İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER ESRA ULUOCAK DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK

Detaylı

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi Latex 3000 Yazıcı seisi Kuulum Yeini Hazılama Denetim Listesi Telif Hakkı 2015 HP Development Company, L.P. 2 Yasal bildiimle Bu belgede ye alan bilgile önceden habe veilmeksizin değiştiilebili. HP üün

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir. KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat

Detaylı

Aritmetik Fonksiyonlar

Aritmetik Fonksiyonlar BÖÜM V Aiteti osiyola Taı 5. Taı üesi oğal sayıla ola, : N C, şeliei osiyolaa aiteti osiyola ei., içi.. oşuluu sağlaya aiteti osiyolaa ise çaısal osiyola ei. Öe He N içi, ve 3 0 şelie taılaa osiyola bie

Detaylı