MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE"

Transkript

1 MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE Yrdımcı Doçent Doktor Yılmz YÜKSEL 1. GİRİŞ Tekstil Mklnlrmd hmmddeyi mmul mdde hline getirirken çoğu kere bir çok teknik iş belirli bir sıry göre rdrd ypılmktdır. Bu esnd durklmlı hreket meknizmlrın ihtiyç duyulmktdır. Bunlrın en tnınmışlrı ise mlt hçı meknizmlrıdır, Mlt hçı meknizmlrının ypımı için bunlrın kinemtiğinin incelenmesi gerekmektedir, Aşğıdki çlışm bu mc yöneliktir, m MALTA HAÇI MEKANİZMASI KİNEMATİĞİ Meknizm, sbit uzuv, krnk ve yuvlr ship mlt hçı olmk üzere genelde üç.üzuvludur. Mlt hçı miline döner mfsllıdır. Bekleme fzınd dönmesine mnî olunmk üzere tmbur vey diğer kilitleme meknizmlrıyl birlikte öngörülür; sbit uzuv» Thrik mil indeki dönme hreketinin krnk rcılığıyl mlt hçın iletilmesi krnk it muylu ve bun döner mfsllı toprlkl sğlnır. Muylu ve toprlğı mütehrrik uzvun yuvsındn dışrd bulunduğu zmn rlığınd mlt hçı hreketsiz, bşk bir deyimle bu uzuv durklm konumunddır. Mlt hçı meknizmsı krnk mili ekseni ile mütehrrik uzuv mili ekseninin konumlrın göre düzlemsel vey hcimsel olur. Düzlemsel olnlrınd mil eksenleri prlel konumddır. Düzlemsel mlt hçı meknizmsınd krnk muylusu mütehrrik uzuvun yuvsın dıştn girer ve dıştn çıkrs dış. mlt hçı, (Şekil l,) içten girer dıştn çıkrs iç mlt hçı, meknizmsı söz konusu olur (Şekil l.b). Semboller r k : d : l o ß : o n : x : O) * v ; tt B : ) dış mlt hçı b) iç mlt hçı Krnk Yrıçpı Mfsllr rsı mesfe Krnk ve Mlt hçının konum çılrı Krnk çısı Mlt hçı tksimt çısı Yuv syısı d : rv krnkın çısl hızı * 2 <* Thrik zmn ornı 0 Bekleme çısı ( B=36Ö«2 j

2 n yuvlı mlt hçınd, rdrd gelen iki yuvnın eksenleri rsındki tksimt çısının ölçümü + 2 ß o.= 360 (1 bğıntısıyl belirlenir. Mlt hçı meknizmsınd hreketin srsıntısız olmsı için toprlğın yuvy girmesi ve çıkmsı sınır konumund toprlk merkezinin hreket doğrultusu yuv ekseniyle çkışmsı gerekmektedir, Bu koşuldn + 2 («0 n Q ) =180 (2 yzılbilir. (1) ve (2) bğıntılrındn + 2 q o r»(n+2-j (3 elde edilir. Bu formüllerdeki çift işretlerden üstteki dış mlt hçı, lttki ise iç mlt hçı meknizmsı için lınmıştır. Toprlğın yuvy girme sınır konumund (Şekil 2) rk=d.sin& Q olduğundn meknizmnın sbit uzuvdki dönme eksenleri rsındki mesfe 11 * 4 d- x.r k ( 4 olrk bulunur, Bu bğıntıd (5 b) Şekil 2. Sınır konumlrın dışındki bir konumd A toprlk merkezinin B mfslın olr uzklığı (Şekil 3) labj-r 'î+x*+2xcos olup g dönme çısının y bğımlı fonksiyonu cosß- x±cos olur. Bu ifdeden mlt hçı meknizmsının dönüşüm fonksiyonu X± COS cos ( ({ (; Dlrk bulunur. dt ve çısl ivmesi (8) yrdımıyl d krnk milinin çısl hızı * mm l+\ +2X COS (S

3 d ß d t X[ İA Xj sin Cl+x+2 (10) şekil 3 Mlt hçı meknizmsının en büyük çısl hızı, d t mx x ± 1 (11) îlup, dış mlt hçı meknizmsınd en büyük ivme krnk kolu çısının *= rc cosv f l + x^ + 2 _u 4X 4X eğerinde orty çıkr. İç mlt hçı meknizmsınd ise en büyük ivme * = için hesplnmktdır. ; n Dış ve iç mlt hçı meknizmsın it kinemtik değerler çizelge 1 ve çizelge 'de toplnmıştır, 3. SONUÇ 1. Mlt hçı meknizmsı, diğer durklmlı meknizmlr kıysl, dh koly mâl edilir. 2. Endüstride dh çok dış mlt hçı meknizmsın rslnırs d çizelge 2'den nlşılbîleceği gibi kinemtik çıdn iç mlt hçı meknizmsı dh uygundur, 3-1 G $ bekleme çısı birden fzl kränk kullnılrk küçültülebilir. Bir mlt çı meknizmsınd krnk syısı V 1 ise u'nun en büyük değeri u*= 2n n-2 olur. AYNAKLAR 1) Albert, CD,; Rogers, F.S. Kinemtics of Mchinery, John Wiley Inc. London Chpmn nd Hll'Ltd., ) Köseoglu,M. Meknizm Tekniği Ders notlrı; î.t.ü. Mkin Fkültesi, ) Psin, F, Meknizmlrın Konstrüksiyonu, Mtb Teknisyenleri Bsımevi, İstnbul ;i2)

4 (4) Shigley s E.J: Uicker, JJ ; Theory of Mchines nd Mechnisms, Newyork, McGrw-Hill 1980 Interntionl Compny (5) Volmer» J: Getriebetechnik, 3. Auflge, Veb, Verlg Technik» 1975 (6) Yılmz.Y. Dış Mlt Hçı Meknizmsı l.t.ü, Dergisi, Cilt 40» Yıl 40, Syı 2, 1982

5

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri Dynıklılık, Yüzey Gerilimi ve ılcl Olylr Test Çözümleri Test 'in Çözümleri.. /2 Aynı mddeden ypılmış düzgün geometrik biçimli cisimlerin dynıklılığı bğıntısıyl esplnır. üp ve silindirin leri eşit olduğun

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ÜÇ ÇUBUK MEKANİZMASI

ÜÇ ÇUBUK MEKANİZMASI ÜÇ ÇUBUK MEKNİZMSI o l min l, lmaks B l,, B o Doç. Dr. Cihan DEMİR Yıldız Teknik Üniversitesi Dört çubuk mekanizmalarının uygulama alanı çok geniş olmasına rağmen bu uygulamalar üç değişik gurupta toplanabilir.

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKNİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız e İme - Newton Knunlrı 2. MDDESEL NOKTLRIN KİNEMTİĞİ - Doğrusl Hreket - Düzlemde Eğrisel

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü OU 17 ÜRS R - - - - Çözümler S 17-1 ÇÖÜR 5. α 1. - - - - ve ynlış çizilmiş olup doğru çizimleri yukrıd verilmiştir.. sü ise doğru çizilmiştir. Cevp: Odk nin sğınddır. den çizilen doğru normldir. Bundn

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

Fizik 101: Ders 8 Ajanda

Fizik 101: Ders 8 Ajanda Fizik 0: Ders 8 Ajnd Sürtüne Engelleyici kuvvetler Son(uç) hız Çok prçcıklı sistelerin diniği Atwood kinesi Eğik düzlede iki kütleli genel durulr İlginç probleler Sürtüne (özetle): Sürtüne iki yüzey rsınd

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ

BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ Seher Küçüközkn 1, Sibel Bulut 2, Gülsemin Şhin 3 1 Aşçı Bekirliköyü İÖO, Pozntı, Adn 2 Cumhuriyet YİBO, Kht, Adıymn 3 Akmeşe YİBO, Koceli

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar Kristl Ypılr Kristl ypı Kristl ypı, tomlrın üç boyutt belirli bir geometrik düzene göre yerleştiği ypılrdır. Kristl Ypılr Amorf ypılı Kristl ypılı Amorf ypı, düzensiz ktılşmış mikroypılrdır, bütün doğl

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

«VftEK «EKAHlZrT/i.ıRINIH HAREKET KANUNLARI ÜZERİNE

«VftEK «EKAHlZrT/i.ıRINIH HAREKET KANUNLARI ÜZERİNE «VftEK «EKAHlZrT/i.ıRINIH HAREKET KANUNLARI ÜZERİNE Profesör Doktor Mustafa KöSIOİLlf Yardımcı Doçent Doktor Yûksti YILMAZ 1, 6İRÎŞ Özellikle tekstil makinalarında hareket dönüştürücü mekanizmalar olarak

Detaylı

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C.

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C. OU 7 OĞRUS HRT Çözümler TST 7-1 ÇÖÜMR 1. meleri ynıır ikisi e poziifir. er eğişirmeler nin +X nin X olup frklıır. X Orlm sür ir. 7. V or = yer eğişirme oplm zmn. 1 = = 1 & & 3 = 1. = = 3. - leri yöne.

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

a) Newton un 2. yasasının direkt uygulanması (Hareket Denklemi) b) İş-Enerji ilkesi c) İmpuls-Momentum yöntemleri

a) Newton un 2. yasasının direkt uygulanması (Hareket Denklemi) b) İş-Enerji ilkesi c) İmpuls-Momentum yöntemleri GİRİŞ Kinetik dengelenmemiş kuvvetler ile onlrın hrekette yrttıklrı değişiklikler rsındki bğıntıyı inceleyen dinmiğin bir koludur. Dengelenmemiş kuvvetler sistemine mruz bir cismin hreketi temelde üç genel

Detaylı

FREN DİNAMİĞİ. Prof. Dr. N. Sefa KURALAY

FREN DİNAMİĞİ. Prof. Dr. N. Sefa KURALAY FREN DİNAMİĞİ Prof Dr N Sef KURALAY Objektif reksiyon tlebi Ayğın gz pedlındn kldırılmsı Yğın gz pedlındn kldırılmsı Fren pedlın bsılmsı Frenleme imesinin bşlmsı Mksimum frenleme imesi Arcın durmsı Frenleme

Detaylı

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü 1. DC MOTORLAR Mntık olrk bobin üzerinden geçen kıın sonucund oluşturduğu ğnetik kçklr syesinde oluşturduğu kutuplşyı ileri ve geri yönlü olrk kullnrk yni zıt kutuplrın çekesi vd ynı kutuplrın birbirini

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7. KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1-

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- Mekanizma Tekniği Fatih ALİBEYOĞLU Ahmet KOYUNCU -1- 2 Mek. Tek. DERSİN İÇERİĞİ DERSİN AMACI Mekanizma Tekniğinde Ana Kavramlar Eleman Çiftleri Kinematik Zincirler Serbestlik Derecesi Üç Çubuk Mekanizmaları

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU

Mekanizma Tekniği. Fatih ALİBEYOĞLU Ahmet KOYUNCU Mekanizma Tekniği Fatih ALİBEYOĞLU Ahmet KOYUNCU KİNEMATİK DİYAGRAM 2 Kinematik Diyagram, mekanizmaların uzuvlarını şekil ve ölçülerinden ziyade şematik olarak göstermeyi ve uzuvların mafsallarla bağlanabilirliğini

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre SORU 1 : Bhr, t=1,3,5. yıllrın sonund 1000(1,025) t TL ödeyerek bir fon oluşturmuştur. Üç ylığ dönüştürülebilir nominl iskonto ornı 4/41 olrk verildiğine göre, bu fonun 7. yıl sonundki birikimli değeri,

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR TMMOB İNŞAAT MÜHENDİLERİ ODAI İTANBUL ŞUBEİ YAPI TAARIM KURLARI YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR Prof. Dr. Zeki Cele İstnbul Teknik Üniversitesi, İnşt Fkültesi Betonrme Yılr ve Derem

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI: ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ

Detaylı

DC ŞÖNT JENERATÖR DENEY

DC ŞÖNT JENERATÖR DENEY İNÖNÜ ÜNİVRSİTSİ MÜHNDİSLİK FKÜLTSİ LKTRİKLKTRONİK MÜH. BÖL. 35 LKTRİK MKİNLR LBORTUVR DC ŞÖNT JNRTÖR DNY 3504. MÇ: Şönt bğlnmış DC jenertörün çlışmsını incelemek.. UYGULMLR:. ln kımının şönt bğlı DC jenertörün

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05 İNÖNÜ ÜNİVSİTSİ MÜHNDİSLİK FAKÜLTSİ LKTİKLKTONİK MÜH. BÖL. 35 LKTİK MAKİNALAI LABOATUVAI I KLMLİ DC KOMPOUND JNATÖ DNY 3505. AMAÇ: Kompound bğlnmış DC jenertörün çlışmsını incelemek.. UYGULAMALA:. Yük

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

Bölüm- Parametrik Hesap

Bölüm- Parametrik Hesap MAK 0: İNAMİK r. Ahmet Tşkese Fil hzırlık ölüm- Prmetrik Hesp 1 ölüm-rijit Cisim Sbit merk. Etr. döme * θ = 6 devir dödüğüde 4(6=3θ C θ C = 8 devir 8(5=4.5(θ A θ A = 8.889 devir α A =rd/s ω A = t + 5 rd/s

Detaylı

Yrd. Doç. Dr. Cihan Demir. Mekanizma Tekniği 2

Yrd. Doç. Dr. Cihan Demir. Mekanizma Tekniği 2 Yrd. Doç. Dr. Cihan Demir Mekanizma Tekniği 2 Dersin İçeriği Mekanizmalarda Hız ve İvme Analizi Düzlemsel Yürek (kam) Mekanizmaları, Hareket Diyagramları, Yürek Profillerinin Tayini, Yürek Mekanizmaları

Detaylı

I. Kısım Şekil ile ilgili sorular

I. Kısım Şekil ile ilgili sorular I. Kısım Şekil ile ilgili sorulr GEM 311 Gemi Mkinlrı I Adı ve Soydı No İmz I. KISIM II. KISIM III.KISIM TOPLAM 1. E ile işretlenen elemn hngisidir?. Yüksek bsınçlı yğlm yğı borusu b. Düşük bsınçlı yğlm

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

Harita Dik Koordinat Sistemi

Harita Dik Koordinat Sistemi Hrit Dik Koordint Sistemi Noktlrın ir düzlem içinde irirlerine göre konumlrını elirlemek için, iririni dik çı ltınd kesen iki doğru kullnılır. Bun dik koordint sistemi denir. + X (sis) Açı üyütme Yönü

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ Ordu Üniv. Bil. Tek. Derg.,Cilt:,Syı:,,3-4/Ordu Univ. J. Sci. Tech.,Vol:,No:,,3-4 İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ İmdt İŞCAN *, Selim

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ (ÖABT) ÇÖZÜMLERİ FİZİK

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ (ÖABT) ÇÖZÜMLERİ FİZİK ÖĞRETMENİ AAN BİGİSİ TESTİ (ÖABT) ÇÖZÜMERİ FİZİ. v 0 c 0 036c c 0 ñú 0,36 3. Negtif yüklü elektroskob dokunduğund yprklr hreket etiyors nin işreti ile elektroskobun yük işretleri ve potnsiyelleri ynıdır.

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı