θ A **pozitif dönüş yönü

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "θ A **pozitif dönüş yönü"

Transkript

1 ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı. Bm : t.m, t.cm, kg.cm,n.m,

2 ** Vektöel çapımın tanımına göe o moment ve kuvvetnn e aldığı düzleme dk olu. ** o momentnn önü sağ el kualı le bulunu. Sağ eln döt pamağı kuvvetnn noktasına göe csme aptımak stedğ dönüş önü baş pamak momentn önünü göste. o o o d. o. d (Saat akebnn tes ) (Saat önü -)

3 (0,0) (,) j j o k k j ) ( 0 0

4 ÖNEK 1 10 kg 20 cm B (0,0) 30 cm 60º C(30,20) D 10 kg lık kuvvet 2030 cm levhaa etk etmekted. Kuvvetn a göe momentnn hesabı? C o o j 10.cos sn ,66j C C (30,20) (0,0) 30 20j C j k ( ) k 160k 5 8,66 0

5 Vagnon Teoem B noktada bleşen çok saıda kuvvetn bleşkesnn b noktasına göe moment, bu kuvvetlen noktasına göe momentlenn toplamına eştt. n Z n 3 1 o n (... ) v n 2 1 X Y

6 Üç Boutlu Halde oment Hesabı Y X (0,0,0) (,,z) k j zk j k j z o o z v Z k j z o k j z z z k j z z z o ) ( ) ( ) (

7 ÖNEK 3 Y 8 m C 3 m D TB350 kg E X 2 m Z 6 m B Pefabke beton duva bölmes geçc olaak şekldek kablolala tutulmuştu. B kablosunda 700 kg kuvvet vasa da duvaa gelen TB kuvvetnn başlangıç noktasına göe momentn hesaplaınız

8 ÖNEK 6 Y D P75 kg X 12 cm B 20 cm C 9 cm Z Eğk b pamde şekldek gb şddet 75 kg olan b P kuvvet etk etmekted. P nn ) D kenaına göe B) B kenaına göe C) C kenaına göe momentn hesaplaınız?

9 Kuvvet Çft Tes çzgle paalel, şddetle eşt ancak önle zıt k kuvvetn oluştuduğu ssteme kuvvet çft adı vel. d θ θ 2 Kuvvet çftnn noktasına göe moment : d..sn. ) ( θ

10 * Kuvvet çftnn moment, kuvvet çftnn oluştuduğu düzleme dk olup şddet kuvvetleden bnn şddet le k kuvvet aasındak uzaklığın çapımıdı..d d - * Kuvvet çftnn moment, moment alınan noktaa bağlı değld. Kuvvetle kaan vektöle göstelmesne kaşın kuvvet çftle sebest vektö le göstel. Dolaısıla kuvvet çftle kendne paalel stenen noktaa taşınabl.

11 * Kuvvet çftle momentle sabt kalacak şeklde ötelenebl, döndüülebl vea aalaındak uzaklık değştlebl. -12 knm 4 kn 3 m 4 kn 6 kn 2 m 6 kn.d -.d - 2.d/2-2 d d -2 d/2

12 Velen B Kuvvet Hehang B Noktaa Etken Kuvvet-Kuvvet Çftne Dönüştümek v v **Hehang b kuvvet, asgele b noktasına götüülebl ete k nn a göe momentne eşt momente sahp b kuvvet çft eklensn. **B kuvvet etk ettğ noktasından b noktasına v taşıınca elde v edlen kuvvet-kuvvet çft sstem kuvvet le kuvvet çft vektöünden baett. **Tes olaak bbne dk b kuvvet le o kuvvet çft vektöü ene tek b kuvvet konulabl.

13 ÖNEK 8 4 m 2 m 5 ton B B noktasındak 5 ton luk kuvvet noktasına taşıınız 5 ton 5 ton 10 tm 5 ton B B 5 ton

14 ÖNEK 9 8 ton 24 tm noktasına etk eden 8ton- 24tm lk kuvvet-kuvvet çft B ene B aasında b kuvvet tanımlaınız. 7 m 7 m 8 ton 8 ton 8 ton 24 tm d 8 ton B 7 m 3 m 4 m B d. d m

15 k ÖNEK 10 j 10 cm 14 cm 8000 kg C B ken kolu 8000 kg lık b ükü taşımaktadı. Yükü B bounca etken b eksenel kuvvet le b kuvvet çftne ndgenz 8000j v v C 24 ( 8000j) 19200k( kgcm) 8000 kg B 24 cm 8000 kg kgcm 8000 kg C 8000 kg B B

16 ÖNEK 11 j Y 2,5 t 10 cm k Z G 4 cm X 2,5 ton luk b kuvvet b kolona dışmekez olaak ugulanmıştı. 2,5 t luk üke eşdeğe G dek kuvvetkuvvet çftnn bleşenlen bulunuz? 2,5j G G (10,0, 4) (0,0,0) 10 4k G (10 4k) ( 2,5j) 25k 10 2,5t z 10tcm 0 25tcm

17 ÖNEK kg 200 kg 400 kg 400 kg 200 kg 400 kg 400 kg 200 kg B C 3m 6 m D E 3m 3m 3m 3m 3m 3m B bna çeçevesnn çatısına şekldek üzga ükle etk etmekted. ) D de etken eşdeğe kuvvet-kuvvet çft sstemn B) Yüklen bleşkesn ve bleşkenn tes çzgsn bulunuz

18 1200 kg 1200 kg 1140 kg 1140 kg 384 kg 384 kg 4,5 m 4,5 m 7,5 m 768 kg 4,5 m 4,5 m 7,5 m D Düşe bleşenle 1140 kg lk kuvvet çft oluştuu kg D 7,5.( ) kgm 768 7,5(384 5,85m 384) D 5,85 m 768 kg

19 B Kuvvetle Sstemnn B Kuvvet ve B Kuvvet Çftne İndgenmes 1 2 C B o 1 (a) (b) (c) 3 1- Kuvvetle sstem ne kada kamaşık olusa olsun velen b noktasına göe etken eşdeğe b kuvvet-kuvvet çft sstemne ndgenebl.

20 2- (b) de göüldüğü üzee 1, 2, kuvvet çft vektölenn he b kendne kaşı gelen kuvvete dk olduğu halde bleşke kuvvet le bleşke kuvvet çft genel olaak bbne dk değld. o Eşdeğe kuvvet-kuvvet çft sstem: n 1 o o n 1 ( ) Bu denklemle şunu fade etmekted: kuvvet ssteme etk eden n adet kuvvet toplaaak elde edlmekte, buna kaşın sstemn moment bleşkes denlen kuvvet çftnn o momentlen toplaaak elde edlmekted. moment sstemdek bütün kuvvetlen a göe

21 k j z k j z o kuvvetlenn,, z bleşenlenn toplamı sstemn jt csme,,z doğultusunda aptımak stedğ ötelenme haeketnn eğlmd. z,,,,z doğultusunda aptımak stedğ ötelenme haeketnn eğlmd. bleşenle velen kuvvetlen,,z eksenlene göe momentlenn toplamı olup sstemn jt csme,,z eksenle etafında aptımak stedğ dönme haeket eğlmd. z,,

22 o o s o o o s s B kuvvetle sstemn b kee noktasındak b kuvvetle b kuvvet çftne ndgense atık başka b noktasındak b kuvvetle b kuvvet çftne ndgenmes koladı. bleşke kuvvet anı olduğu halde vektöü, o o kuvvet çft kuvvet çft le dak kuvvetnn a momentnn toplamıdı.

23 Eşdeğe Kuvvet Sstemle Eğe k kuvvet sstem, velen b noktasında anı kuvvet-kuvvet çft sstemn ndgeneblosa bbne eşdeğed. o o bleşke kuvvet ve bbne dk sele dak kuvvet-kuvvet çft sstemnn ene en b tek kuvvet komak mümkün olduğu daha önce sölenmşt. Buna göe b tek kuvvet vea bleşkee ndgenen kuvvet sstemle kuvvet le o kuvvet çft bbne dk olan sstemled. Bu şat (1) b noktada bleşen kuvvetle (2) düzlem kuvvetle (3) paalel kuvvetleden baet sstemlede sağlanı.

24 1-B Noktada Kesşen Kuvvetle : Doğudan doğua toplanaak bleşke bulunu. 2-nı Düzlemde Kuvvetle o d o d

25 3- Paalel Kuvvetlen Tes Çzgle Paaleled Y Z X Z z k Y o X Y X

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLATIMLI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 4 Manyetzma 1.. Ünte 4. Konu (Manyetzma) A nın Çözümle P 1 1 3. Üzenen akımı geen yaıçaplı b halkanın

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY FİZ10 FİZİK-II Ankaa Ünvestes Fen Fakültes Kmya Bölümü B-Gubu 014-015 Baha Yaıyılı Bölüm-II 5.0.015 Ankaa Aysuhan OZANSOY Bölüm : Elektk Alan 1. Elektk Alan. Elektk Alan Çzgle 3. Süekl Yük Dağılımlaı 4.

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

Fizik 101: Ders 19 Gündem

Fizik 101: Ders 19 Gündem Fzk 101: Ders 19 Gündem Açısal Momentum: Tanım & Türetmeler Anlamı nedr? Sabt br eksen etrafında dönme L = I Örnek: 2 dsk Dönen skemlede br öğrenc Serbest hareket eden br csmn açısal momentumu Değneğe

Detaylı

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr.

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr. ÖLÜM I ESKĐŞEHĐ-ŞUT 14 1 http://mian.ogu.edu.t. ÖLÜM I ÖLÜM ĐÇĐNEKĐLE ÖNSÖZ... ÖLÜM 1.... Safa ı 1.1 Giiş... 1.. Statikte Kullanılan Temel iimle... 1.3. Vektöel [Sinüs] ve Skale Çapım... ÖLÜM : MOMENT....1.

Detaylı

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU MÜHENİSLİK MEKNİĞİ STTİK ES NOTLI Yrd. oç. r. Hüsen YIOĞLU İSTNUL 6 . Mekanğn tanımı 5. Temel lkeler ve görüşler 5 İçndekler GİİŞ 5 EKTÖLEİN E İŞLEMLEİNİN TNIMI 6. ektörün tanımı 6. ektörel şlemlern tanımı

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD TAŞIMA GÜCÜ PROBLEM 1: Diğer bilgilerin şekilde verildiği durumda, a) Genişliği 1.9 m, uzunluğu 15 m şerit temel; b) Bir kenarı 1.9 m olan kare tekil temel; c) Çapı 1.9 m olan dairesel tekil temel; d)

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Ffth E CHPTER MECHNICS OF MTERILS Ferdnand P. eer E. Russell Johnston, Jr. John T. DeWolf Davd F. Mazurek Lecture Notes: J. Walt Oler Texas Tech Unversty. Eksenel Yüklemede Toplam uzama-hperstatk problemler-termal

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

Şekil 2 Hareketin başladığı an

Şekil 2 Hareketin başladığı an Şekil 2 Hareketin başladığı an Bir savaş uçağı şekildeki gibi 1500 km/sa hızla sorti (dalışa geçerek bombardıman gerçekleştirmek) için harekete başlıyor ve eğrilik yarıçapı 300m. olan dairesel yörüngede

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ BÖLÜM ĞLK MERKEZİ-TLET MOMENTİ BÖLÜM 5: ĞRLK MERKEZ-TLET MOMENTİ 5.. ĞRLK MERKEZİ HESB [LNN BİRİNCİ MOMENTİ] ğılık, csme uulnn kütle çekm kuvvetd. Dnmomete le ölçülü. Dün'd csm ele lısk ükseğe çıkıldıkç

Detaylı

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy FİZ121 FİZİK naa Ünvestes Dş Hemlğ Faültes 2. Des naa suhan Oanso ölüm:2 Vetöle 1. Vetöel ve Sale Ncelle 2. Vetölen Göstem 3. Vetölede Toplama 3.1. Koodnat Sstemle 3.2. Uç uca eleme Yöntem 3.3. Paalele

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x.

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x. BÖLÜ V KİRİŞLERİN ve KOLONLARIN BETONARE HESABI a-) 1.Normal katta - aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin yapılması. Hesap yapılmayan x-x do rultusu için kolon momentleri: gy

Detaylı

İLERİ DİNAMİK. Yücel Ercan

İLERİ DİNAMİK. Yücel Ercan İERİ DİNAİK Yücel Ecan İERİ DİNAİK Yücel Ecan Bnc Süüm: Aalı 4 SBN: 978-65-3-98- Coght 4: Yücel Ecan Bu tabın telf halaı aaa att. Yaa tabın açı ana olaa ullanımına n vemşt. Kta ana beltme suetle sebestçe

Detaylı

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde; MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd STTİK-MUKVEMET 1. YI İÇİ SINVI dı /Soadı : No : İmza: 06-11-2013-Öğlen Örnek Öğrenci No 010030403 abcd Şekildeki kabloda minimum ve maksimum kablo kuvvetleri ile 1 ve 2 uzunluklarını bulunuz Kablo denklem

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

Mahya Aşığı. Kenar Aşık

Mahya Aşığı. Kenar Aşık . AŞIK HESABI.1 Yük Analizi lar makas üzerine basit mesnetli olarak teşkil edildikleri için, çatı örtüsü vasıtasıla her iki taraftan gelen alan ükünün arısına maruz kalacakları kabul edilebilir. Bu durumda;

Detaylı

SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI. Gökhan YAZICI 1,.Feridun ÇILI 2

SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI. Gökhan YAZICI 1,.Feridun ÇILI 2 SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI Gökhan YAZICI 1,.Fedun ÇILI 2 Öz: Bu çalışmada, sıvı deposuna gelen yanal depem kuvvetlen azaltmak amacıyla ssmk yalıtım teknğ kullanılmıştı.

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ

YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ YOĞUNLUK FONKSİYONEL TEORİSİ METODUYLA İDEAL OKTAHEDRAL Co(II) BİLEŞİKLERİNDE KOVALENSİ FAKTÖR ANALİZİ Sevgi GÜRLER YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI Tez Yöneticisi: Yd. Doç. D. Fiket İŞIK EDİRNE-0

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

TEST SORULARI STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd

TEST SORULARI STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd dı /Soyadı : No : İmza: STTİK-MUKVEMET 1. YI İÇİ SINVI 31-10-2013 Örnek Öğrenci No 010030403 abcd Şekildeki kafes sistemde daki bağ kuvvetleri ile 1, 2, 3 numaralı çubuk kuvvetlerini bulunuz. =12(a+c)

Detaylı

Ağırlık Kuv. / Atalet Kuv. Viskoz Kuv. / Atalet Kuv. Basınç Kuv. / Atalet Kuv. Basınç ve basınç farkının önemli olduğu problemler

Ağırlık Kuv. / Atalet Kuv. Viskoz Kuv. / Atalet Kuv. Basınç Kuv. / Atalet Kuv. Basınç ve basınç farkının önemli olduğu problemler INS 6 Hidolik Hidolik Anabili Dalı Uygulaa Model benzeşii, fiziksel bi olayın laboatuvada yaılan benzeine o olayın fiziksel odeli deni. Geoetik benzeşi, odel ve ototite bibiine kaşı gelen uzunlukla aasında

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

MAK 207: MEKANİK. Ağırlık Merkezi AĞIRLIK MERKEZİ AĞIRLIK MERKEZİ. X. da. W4 W5 W6 W7 W = W1 + W2 + W3 +...Wn = ΣW i. Öğr.Gör.Dr.

MAK 207: MEKANİK. Ağırlık Merkezi AĞIRLIK MERKEZİ AĞIRLIK MERKEZİ. X. da. W4 W5 W6 W7 W = W1 + W2 + W3 +...Wn = ΣW i. Öğr.Gör.Dr. MK 07: MEKNİK Öğr.Gör.Dr. het Tşkesen ğırlık Merkez ĞRK MERKEZİ ğırlık Merkez W W W W ĞRK MERKEZİ W W5 W6 W7 W W + W + W +...Wn W W8 G M 0 B.R W W W W..W n n 0 ve den W R W W İk outlu r csde R W. d d.

Detaylı

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m dı /Soadı : No : İmza: STTİK-MUKVEMET 1. YI İÇİ SINVI 06-11-2013 Örnek Öğrenci No 010030403 abcd DF deki çekme kuvveti 15(a+c)kN olduğuna göre E noktasındaki bağ kuvvetlerini 20 kn 20 kn 20 kn 20 kn h

Detaylı

ZEMİNLERİN KAYMA DİRENCİ

ZEMİNLERİN KAYMA DİRENCİ ZEMİNLERİN KYM İRENİ Problem 1: 38.m çapında, 76.m yüksekliğindeki suya doygun kil zemin üzerinde serbest basınç deneyi yapılmış ve kırılma anında, düşey yük 129.6 N ve düşey eksenel kısalma 3.85 mm olarak

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A 0 - LYS/MT GOMTRİ ÇÖZÜMLRİ NM.. 70 k k 70 40 m ( X ) m ( ) m ( ) 70 kolsun.. k ln( ) sn m ( ) 80-40 40 + 40 70 0 evp: de sn olduğun göe k k ln( ). 8 cm k evp: 4.. 0 0 y y H çıotyın kollın ndlen dkmele

Detaylı

KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY

KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY ıı! "#$$%$ ıı ı KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY SÜNEKLK: Taıyıcı sistemin yük taıma kapasitesinde önemli bir azalma olmadan yer deitirme yapabilme yetenei

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur.

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur. . BÖÜ EETİ II IŞTI ÇÖZÜE EETİ II. k sa devre X - noktaları arasındak eşdeğer drenç, - noktaları arasındak eşdeğer drenç, 4 - noktaları arasındak eşdeğer drenç, - noktaları arasındak üç drençte paralel

Detaylı

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 6 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 4 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması Çevre ve Şehircilik Bakanlığı Alt Yapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü Kontrol edilecek noktalar Bina RBTE kapsamında

Detaylı

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar.

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar. . BÖÜ EETROSTATİ AIŞTIRAAR ÇÖÜER EETROSTATİ. 3 olu. 3. kü e si ön ce ye o kun - u ul u ğun a top lam yü kü ya çap la y la oğ u oan t l ola ak pay la ş la. top 3 olu. Bu u um a, 3 6 ve olu. Da ha son a

Detaylı

1. Düğüm noktası ve eleman tabloları hazırlanır.

1. Düğüm noktası ve eleman tabloları hazırlanır. Yapı tatğ - Mats Ye Değştme Yöntemne Gş / Doç DBlgeDOAN Öne : Şelde göülen sstem Mats Deplasman Yöntem le, velen dış yüle çn çözülmüş ve ç uvvetle hesaplanmıştı x Nm N N N/m z N/m m m EI Nm,EA 7 N Düğüm

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt:13 Sayı:2 sh.75-87 Mayıs 2012 ÇELİK YAPI SİSTEMLERİNDE İKİNCİ MERTEBE ANALİZ YÖNTEMLERİNİN İNCELENMESİ (INVESTIGATION OF SECOND ORDER ANALYSIS

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi ÖLÜM IV üzlem Kafesler En çok kullanılan köprü kafesleri En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi Mühendislik olalarında genel olarak birden çok katı cisim birbirine

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ İnş.Yük.Müh. Bülent DEVECİ Proje Künyesi : Yatırımcı Mimari Proje Müellifi Statik Proje Müellifi Çelik İmalat Yüklenicisi : Asfuroğlu Otelcilik : Emre Arolat Mimarlık

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

DİJİTAL GÖSTERGELİ 300WATT MODİFİYE SİNÜS INVERTER

DİJİTAL GÖSTERGELİ 300WATT MODİFİYE SİNÜS INVERTER Lİ 300WATT INVERTER /EMC ARALIĞI KISA DEVRE MSD300-121 MSD300-122 MSD300-241 300W 600W 0,35 A 1x600mm çakmak girişli DC kablo - 2xbatarya kablosu 20 ± 1 V DC 23-15 - 16 V DC 30-32 V DC 40 A 50 A / 3-5

Detaylı

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU MÜHENİSLİK MEKNİĞİ STTİK ES NOTLI Yrd. oç. r. Hüsein YIOĞLU İSTNUL 3 . Mekaniğin tanımı 5. Temel ilkeler ve görüşler 5 İçindekiler GİİŞ 5 EKTÖLEİN E İŞLEMLEİNİN TNIMI 6. ektörün tanımı 6. ektörel işlemlerin

Detaylı

İÇİNDEKİLER Sayfa. ÖZET...xi. ABSTRACT...xii

İÇİNDEKİLER Sayfa. ÖZET...xi. ABSTRACT...xii İÇİNDİL Safa Sİ LİSSİ...v SALA LİSSİ...v ŞİL LİSSİ...v ÇİZL LİSSİ... ÖNSÖZ... ÖZ... ABSAC.... İİŞ..... enel ususla...... aalel ekanzmala...... Se ekanzmala.... Sewa lafom ekanzması..... Sewa lafom ekanzmalaının

Detaylı

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi:

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi: LÜ SOULA SOU. Şekilde gösterilen D m = mm çapında bir mil D =,5 mm çapında ve L = mm genişliğinde bir atak içerisinde eksenel doğrltda kp lk bir kvvetle anak,5 m/s ızla areket ettirilebilior. Bna göre

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

Deprem Etkisi Altında Tasarım İç Kuvvetleri

Deprem Etkisi Altında Tasarım İç Kuvvetleri Prof. Dr. Günay Özmen gunayozmen@hotmail.com Deprem Etkisi Altında Tasarım İç Kuvvetleri 1. Giriş Deprem etkisi altında bulunan çok katlı yapılarda her eleman için kendine özgü ayrı bir elverişsiz deprem

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi 3B Kuvvet Momenti Üç Boyutlu Kuvvet Sistemi M = r (vektör) X F (vektör) Her F kuvvetinin uzunluk r vektörünü bul Eğer verilmemişse, F kuvvetini de vektörel ifade et. Uzunluk vektörünü r bulmak için: Uzunlık

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı