İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr"

Transkript

1 İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI 1

2 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek değeri hakkında bir bilgimiz yok.) Veriler, daha önceden belirlenmiş bir değeri gösteriyor mu? (Parametrenin değeri hakkında bir fikrimiz var.) µ 0? 2

3 Hipotez nedir? Hipotez, karşılaşılan bir durum hakkında yapılan bir önermedir. İstatistikte, hipotez, bir anakütle paramatresi hakkında yapılan bir önermedir: Mesela, anakütle ortalaması Örnek: Bu şehirdeki ortalama aylık cep telefonu faturası μ = 42TL 3

4 Hipotez Testi nedir? Bir hipotez testi, iki tür hipotez oluşturmakla başlar: Sıfır hipotezi Alternatif (Karşıt) hipotez Sıfır hipotezi, arada fark yoktur, fark sıfırdır şeklinde kurulur. Hipotez testi, sıfır hipotezinin (H 0 ) doğru olduğu varsayımı ile başlar. Bir hipotez testinin amacı, sıfır hipotezinin (karşıt hipotez leyhine) reddedilip edilmemesine karar vermektedir. 4

5 Sıfır hipotezi, H 0 Test edilecek varsayımı ifade eder. Örnek: Amerikan evlerindeki ortalama TV sayısı 3 tür. H 0 : μ 3 Her zaman bir anakütle parametresi hakkındadır, asla örneklem istatistiği hakkında değildir. H 0 : μ 3 : X 3 H 0 5

6 Sıfır hipotezi, H 0 Anakütle parametresinin önceden belirlenmiş, bilinen değerinde herhangi bir farklılığın beklenmediğini ifade eden hipotezdir. Her zaman şu işaretleri içerir : =,, H 0 a aykırı yeterli kanıt bulunmadıkça bu hipotez geçerli sayılır. Suçluluğu ispat edilene kadar masum olma durumu gibi. 6

7 Alternatif (Karşıt) Hipotez, H 1 İlgili anakütle parametresinin bilinen değerinde istatistiksel olarak anlamlı farkların beklendiğini ifade eder. Ör. Amerikan evlerindeki ortalama TV sayısı 3 değildir: ( H 1 : μ 3 ) Asla şu işaretleri içermez : =,, Eğer doğru olduğunu destekleyen yeterli kanıt bulunursa, H 1 desteklenir ve H 0 reddedilir. 7

8 Alternatif (Karşıt) Hipotez, H 1 Eğer amaç, µ nün belirli bir değerden (µ₀), farklı olup olmadığını belirlemek ise, alternatif hipotezi şu şekilde yazılır : H 1 : µ µ₀ Bu durumda, hipotez testine iki-yönlü denir. Eğer amaç, µ nün belirli bir değerden (µ₀) düşük olup olmadığını belirlemek ise, alternatif hipotezi şu şekilde yazılır : H 1 : µ < µ₀ Bu durumda, hipotez testine tek yönlü (sol taraflı) denir. Eğer amaç, µ nün belirli bir değerden (µ₀) yüksek olup olmadığını belirlemek ise, alternatif hipotezi şu şekilde yazılır : H 1 : µ > µ₀ Bu durumda, hipotez testine tek yönlü (sağtaraflı) denir. 8

9 Hipotezleri tanımlama Örnek : Anakütle ortalamasının 3 olmadığını test edin. Etaplar: Soruyu istatistiksel olarak yazın : (µ 3) Sorunun tersini istatistiksel olarak yazın (µ = 3) Bağdaşmaz ve bütünü kapsayıcı olacak şekilde olmalı. Alternatif hipotezi seçin (µ 3) Yazılmış olan iki önermeden içinde şu işaretlerden birini bulunduranı seçin :, <, > Sıfır hipotezini seçin (µ = 3) 9

10 Hipotezleri tanımlama Anakütlenin ortalama TV seyretme süresi 12 saat midir? Soruyu istatistiksel olarak yazın : µ = 12 Sorunun tersini istatistiksel olarak yazın: µ 12 Alternatif hipotezi seçin : H 1 : µ 12 Sıfır hipotezini seçin : H 0 : µ = 12 10

11 Hipotezleri tanımlama Anakütlenin ortalama TV seyretme süresi 12 saatten farklı mıdır? Soruyu istatistiksel olarak yazın : µ 12 Sorunun tersini istatistiksel olarak yazın: µ = 12 Alternatif hipotezi seçin : H 1 : µ 12 Sıfır hipotezini seçin : H 0 : µ = 12 11

12 Hipotezleri tanımlama Bir şapkanın ortalama maliyeti 20$ dan az ya da ona eşit midir? Soruyu istatistiksel olarak yazın : µ 20 Sorunun tersini istatistiksel olarak yazın : µ > 20 Alternatif hipotezi seçin : H 1 : µ > 20 Sıfır hipotezini seçin : H 0 : µ = 20 12

13 Hipotezleri tanımlama Bir kitapçıda yapılan ortalama harcama 25 $ dan fazla mıdır? Soruyu istatistiksel olarak yazın µ > 25 Sorunun tersini istatistiksel olarak yazın : µ 25 Alternatif hipotezi seçin : H 1 : µ > 25 Sıfır hipotezini seçin : H 0 : µ = 25 13

14 Hipotez testinde yapılan hatalar Karar H 0 ın red edilmemesi H 0 Doğru Doğru karar Olasılık :1 α Doğal durum H 0 Yanlış II. Tip hata Olasılık : β H 0 ın reddi 14 I. Tip hata Olasılık : α (anlamlılık düzeyi) Doğru karar Olasılık :1 β ( testin gücü)

15 I. Ve II. Tip Hatalar arasındaki ilişki I. ve II. Tip hatalar aynı anda gerçekleşemez. I. Tip hata yalnızca H 0 doğru olduğunda olur. II. Tip hata yalnızca H 0 yanlış olduğunda olur. Eğer I. Tip hata olasılığı artarsa ( ), II. Tip hata olasılığı azalır (β ) Anlamlılık seviyesi ( ) arttıkça, testin gücü de (1 β) artar. 15

16 Anlamlılık seviyesi, H 0 doğru olduğunda, örneklem istatistiğinin alabileceği pek mümkün olmayan değerlerin oranını verir. Örnekleme dağılımında red bölgesini tanımlar., ile gösterilir 16 Yaygın kullanılan seviyeler 0,01 ; 0,05 ; 0,10 Araştırmacı tarafından test başlangıcında belirlenir. Testin kritik değer(ler)ini verir.

17 Anlamlılık seviyesi ve Red bölgesi Anlamlılık seviyesi = Kritik değer H 0 : μ = 3 H 1 : μ 3 H 0 : μ 3 H 1 : μ > 3 İki yönlü test Sağ taraflı test /2 0 0 /2 Red bölgesi taralı olarak gösteriliyor. 17 H 0 : μ 3 H 1 : μ < 3 Sol taraflı test 0

18 Ortalama için Hipotez testi (σ biliniyor) Amaç : Anakütle ortalaması, µ, için hipotez testi uygulamak Varsayımlar: Rasgele örneklem Normal anakütle σ biliniyor Etap 1: Sıfır hipotezi H 0 : µ = µ₀, belirlenir. Alternatif hipotez olarak da aşağıdaki 3 durumdan biri belirlenir. H 1 : µ µ₀ veya H 1 : µ < µ₀ veya H 1 : µ > µ₀ (iki yönlü) (sol taraflı) (sağ taraflı) 18

19 Ortalama için Hipotez testi (σ biliniyor) Etap 2: Anlamlılık seviyesi α belirlenir Etap 3: Sıfır hipotezinde geçen değerin z değeri hesaplanır. z 0 = x μ 0 σ/ n Step 4: Kritik değerler bulunur ±z α/2 veya z α veya z α (İki yönlü) (Sol taraflı) (Sağ taraflı) 19

20 Ortalama için Hipotez testi (σ biliniyor) H 0 red edilemez H 0 red H 0 red red red red edilemez edilemez red İki yönlü Sol taraflı Sağ taraflı Etap 5: Eğer z 0 red bölgesine düşüyorsa, H 0 reddedilir, yoksa, H 0 reddedilmez. Etap 6 : Hipotez testinin sonuçları yorumlanır. 20

21 Ortalama için Hipotez testi (σ biliniyor) Tek taraflı Test İki taraflı Test H 0 : µ = µ 0 H 0 : µ = µ 0 H a : µ < or > µ 0 H a : µ µ 0 Test istatistiği: Test istatistiği: z x 0 x z x 0 x Red bölgesi: Red bölgesi: z > z α z > z α/2 21

22 Örnek1: Ortalama için sağ taraflı test Telefon sanayiindeki bir yönetici müşterilerin aylık cep telefonu faturalarında bir artış olduğunu ve artık ortalama faturanın 52TL nin üstünde olduğunu düşünüyor. Şirket bu düşünceyi test etmek istiyor. ( = 10) Hipotezleri tanımla: H 0 : μ 52 ortalama 52 TL den yüksek değil. H 1 : μ > 52 ortalama 52 TL den yüksek. (yani, yöneticinin düşüncesini destekleyen yeterli kanıt var.) 22

23 Örnek1: Red bölgeleri bulunur. Test için anlamlılık seviyesi = 0.10 seçildi. Red bölgesi: H 0 red = 0.10 Eğer H 0 reddedilemez 0 x μ0 z 1.28 σ/ n 1.28 H 0 Reddedilir ise, H 0 reddedilir. 23

24 Örnek1 : Örneklem sonucu Örneklemden yola çıkarak, test istatistiği hesaplanır Şu değerleri veren bir örneklem varsayıyoruz: n = 64, x = 53.1 ( = 10) Test istatistiği: x μ z 0 σ 10 n

25 Örnek1 : Karar H 0 reddilir = 0.10 H 0 reddedilemez 0 z = H 0 reddedilir H 0 reddedilemez çünkü z = 0.88 < 1.28 Yorum: telefon faturalarının 52 TL nin üstünde olduğunu destekleyen yeterli kanıt yoktur. 25

26 Örnek 2 «Amerika da evlerde bulunan ortalama TV sayısı 3 tür» önermesini test edin. (σ = 0.8 olarak varsayalım) Sıfır ve alternatif hipotezleri yazın H 0 : μ = 3, H 1 : μ 3 (Bu bir iki yönlü test olacaktır) Anlamlılık seviyesini belirleyin Bu test için = 0.05 seçilmiş olsun Örneklem büyüklüğü seçin. n = 100 olacak şekilde bir örneklem seçilmiştir. 26

27 Örnek 2 Kritik değerleri belirleyin = 0.05 için kritik z değerleri ±1.96 dır. Test istatistiğini hesaplayın Örneklem sonuçlarının şu şekilde olduğunu varsayalım. n = 100, x = 2.84 (σ = 0.8) Öyleyse, test istatistiği : X μ z 2.0 σ n

28 Örnek 2 Test istatistiği red bölgesinde mi? Eğer z < 1.96 veya z > 1.96 ise, H 0 ı reddederiz. Aksi durumda, H 0 reddedilmez. = 0.05/2 H 0 reddedilir H 0 reddedilemez z = z = = 0.05/2 H 0 reddedilir z = 2.0 < 1.96, Demekki test istatistiği red bölgesinde. 28

29 Örnek 2 Sonucu yorumla!!! = 0.05/2 = 0.05/2 H 0 reddedilir H 0 reddedilemez H 0 reddedilir z = z = z = 2.0 < 1.96 olduğu için sıfır hipotezini reddettik. Demekki, Amerika da evlerde bulunan ortalama TV sayısının 3 olmadığı yönünde yeterli kanıt vardır. 29

30 Örnek 3 Futbol hakemleri tarafından kuralların yeniden yorumlanması sonucunda maç başına düşen sarı kart sayısında bir artış olması bekleniyor. Şimdiye kadar maç başına düşen ortalama sarı kart sayısı 4, standart sapması da 0,5 olsun. 121 maçlık bir örneklemden elde edilen verilere göre maç başına ortalama 4,7 sarı kart çıktığı hesaplanmıştır. %5 lik anlamlılık seviyesinde, gerçekten sarı kartlarda artış olmuş mudur? Hipotezleri oluşturun: H 0 : μ = 4, H 1 : μ 4 Anlamlılık seviyesi 0,05 Kritik z değerleri ±1,96 dır. 30 ( İki yönlü test)

31 Örnek 3 Örneklem ortalaması x = 4,7 Örneklem büyüklüğü n = 121 Test istatiğini hesaplayın: z x 4,7 4 0, s x 10,94 H 0 reddedilir H 0 reddedilir H 0 reddedilmez 0,025 0,025-1,96 +1,96 10,94 Sonuç ve yorum: z₀ red bölgesine düştüğü için, H 0 reddedilir. Demekki,sarı kart sayısında bir artış olduğu konusunda yeterli kanıt vardır. 31

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Standart normal dağılıma sahip Z değişkeni için aşağıda istenilen olasılıkları hesaplayınız. S-2) 50 müşteriye yeni bir ürün tattırılır.

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi 5. ders Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi Hipotez Yazma Popülasyon hakkındaki

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013.

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013. SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-240.2013.02 Koordinatör: Dr. Fatma AKÇADAĞ 6 Ocak 2014 Gebze/KOCAELİ Bu yeterlilik

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

BİYOİSTATİSTİK ÖRNEKLEME

BİYOİSTATİSTİK ÖRNEKLEME BİYOİSTATİSTİK ÖRNEKLEME B Doç. Dr. Mahmut AKBOLAT *Bir araştırmada, üzerinde çalışılan konu için gerekli olan bilginin elde edilebilmesi için konu ile ilgili bütün verilerin tek tek araştırılmasına tamsayım

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler Mühendislikte İstatistik Yöntemler Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt, Beyhan Oğuz, Birsen Yayınevi Mühendislikte İstatistik Metodlar, Erdem KOÇ,ÇÜ, Müh.Mim.Fak.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-3 KITLIK, TERCİH VE FAYDA

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-3 KITLIK, TERCİH VE FAYDA İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-3 KITLIK, TERCİH VE FAYDA 1. Fırsat maliyeti; A) Mal ve hizmetlerin parasal maliyetidir, B) Mal ve hizmet alımlarında borç olarak alınan para ve faizinin toplamıdır, C)

Detaylı

KALİTE KONTROL. Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.

KALİTE KONTROL. Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ SORU 1. Arz-talep grafiğini çizerek; a) Arz ve talepteki değişmenin fiyatı nasıl etkilediğini yazınız. b) Arz ve talebin hangi faktörlerden ve nasıl etkilendiğini yazınız. c) Arz ve talep ile istihdam

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 1: Temel Kavramlar

Su Ürünlerinde Temel İstatistik. Ders 1: Temel Kavramlar Su Ürünlerinde Temel İstatistik Ders 1: Temel Kavramlar Ben kimim? Yalçın İŞLER Yardımcı Doçent Doktor İ.K.Ç.Ü. Biyomedikal Mühendisliği Bölümü http://me.islerya.com islerya@yahoo.com Cep telefonumdan

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini İçindekiler Önsöz Simgeler ve Kısaltmalar Dizini v xv I Varyans Analizi (ANOVA) 1 1 Varyans Analizine Giriş 3 1.1 TemelKavramlar... 3 1.2 Deney Tasarımının Temel İlkeleri... 5 1.2.1 Bloklama... 5 1.2.2

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

B. Sermaye stoğunun durağan durum değerini bulunuz. C. Bu ekonomi için altın kural sermaye stoğu ne kadardır?

B. Sermaye stoğunun durağan durum değerini bulunuz. C. Bu ekonomi için altın kural sermaye stoğu ne kadardır? A.Ü. SBE 2015-2016 Bahar Dönemi Makro İktisat - II Çalışma Soruları - 2 1. Nüfus artışı veya teknolojik ilerlemenin olmadığı Solow Modeli nde bazı parametreler şu şekilde olsun: s = 0.2(tasarruf oranı)

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ Evren DİREN Serkan ATAK Çiğdem CİHANGİR Murat Caner TESTİK ÖZET Kusurları ve israfı önleyerek müşteri memnuniyetini ve karlılığı arttırmayı

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

Envanter Neden Önemlidir? Envanter Neden Önemlidir? Envanter Yönetimi 10.10.2013. Bölüm II Envanter Yönetimi ve Risk Havuzu Oluşturma

Envanter Neden Önemlidir? Envanter Neden Önemlidir? Envanter Yönetimi 10.10.2013. Bölüm II Envanter Yönetimi ve Risk Havuzu Oluşturma Envanter Neden Önemlidir? Bölüm II Envanter Yönetimi ve Risk Havuzu Oluşturma Doç. Dr. Kazım Sarı Uluslararası Lojistik ve Taşımacılık Bölümü Beykent Üniversitesi Dağıtım ve lojistik maliyetleri oldukça

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Risk ve Getiri. Dr. Veli Akel 1-1

Risk ve Getiri. Dr. Veli Akel 1-1 Bölüm m 1 Risk ve Getiri Dr. Veli Akel 1-1 Risk ve Getiri urisk ve Getirinin Tanımı uriski Ölçmek Đçin Olasılık Dağılımlarını Kullanmak uportföyün Riski ve Getirisi uçeşitlendirme ufinansal Varlıkları

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

YGS DE ŞİFRE VAR MI? 1

YGS DE ŞİFRE VAR MI? 1 YGS DE ŞİFRE VAR MI? 1 1. GİRİŞ Bu çalışmanın amacı 2011 yılı Yükseköğretime Geçiş Sınavında (YGS) adaylara dağıtılan tüm kitapçıklarda bazı yöntemler kullanılarak doğru çözümlere ulaşılabileceği (yani,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 9 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

2014 yılı 22. Ulusal Fizik Olimpiyatı 2. Aşama Deney Sınavı 1. Deney sorusu

2014 yılı 22. Ulusal Fizik Olimpiyatı 2. Aşama Deney Sınavı 1. Deney sorusu 2014 yılı 22. Ulusal Fizik Olimpiyatı 2. Aşama Deney Sınavı 1. Deney sorusu Sınav 2 sorudan oluşmaktadır. Sınav süresi 3 saattir, deney sınavı 9:00 da başlayıp 12:00 te bitecektir. Her şıkkın puanı soruda

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) Ozan Eksi Çal şma Sorular - Cevaplar. 1 Ozan Eksi (TOBB-ETU)

TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) Ozan Eksi Çal şma Sorular - Cevaplar. 1 Ozan Eksi (TOBB-ETU) TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) Ozan Eksi Çal şma Sorular - Cevaplar 1 1-) (Faizler) Y ll k %10 basit faizden bankaya koyulan 100 tl nin 2 y l sonraki getirisini hesaplay n z? Cevap:

Detaylı

PARA-ZAMAN İLİŞKİSİNİN UYGULAMALARI

PARA-ZAMAN İLİŞKİSİNİN UYGULAMALARI PARA-ZAMAN İLİŞKİSİNİN UYGULAMALARI KONU : 4 EMY 521 MÜHENDİSLİK EKONOMİSİ 1 PARA ZAMAN İLİŞKİSİNİN UYGULAMALARI Para-Zaman ilişkisi düşünülecek olursa Mühendislik Ekonomisinin temel bazı metotlarının

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Özel Bir Hastanede Diyabet Polikliniğine Başvuran Hastalarda İnsülin Direncini Etkileyen Faktörlerin Araştırılması

Özel Bir Hastanede Diyabet Polikliniğine Başvuran Hastalarda İnsülin Direncini Etkileyen Faktörlerin Araştırılması Özel Bir Hastanede Diyabet Polikliniğine Başvuran Hastalarda İnsülin Direncini Etkileyen Faktörlerin Araştırılması 20 24 Mayıs 2009 tarihleri arasında Antalya da düzenlenen 45. Ulusal Diyabet Kongresinde

Detaylı

ECZACI İSKONTOSU UYGULAMASI

ECZACI İSKONTOSU UYGULAMASI ECZACI İSKONTOSU UYGULAMASI Amaç ve Fayda Yayın Tarihi Kategori Ürün Grubu Bu uygulama ile, ecza depolarının eczacılara kestikleri satış faturalarında, ilaçların perakende ve depo satış fiyatları baz alınarak,

Detaylı

- Mali analizin Tanımı - Türlerine göre mali analiz - Değerlendirme Kuruluşları

- Mali analizin Tanımı - Türlerine göre mali analiz - Değerlendirme Kuruluşları - Mali analizin Tanımı - Türlerine göre mali analiz - Değerlendirme Kuruluşları Elbistan Meslek Yüksek Okulu 2012 2013 Bahar Yarıyılı Öğr. Gör. Murat KEÇECĠOĞLU Finansal Analiz Eğilim Yüzdeleri (Trend)

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) S-1) Bir matematik dersinin sınavı aynı anda iki farklı gruba uygulansın. Bu gruplardan rasgele seçilen 15 öğrencinin sınav notları aşağıdaki

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Bu tip yemek yardımı uygulamalarında Ayni olarak hesaplatılan tutar gelir vergisinden istisna tutulabilir. İstisna şartları şunlardır.

Bu tip yemek yardımı uygulamalarında Ayni olarak hesaplatılan tutar gelir vergisinden istisna tutulabilir. İstisna şartları şunlardır. AYNİ YEMEK YARDIMI UYGULAMASI Yemek yardımının ayni olarak verilmesi ; yemek bedellerinin personele değil, doğrudan veya yemek fişleri yoluyla yemek hizmeti verenlere ödenmesidir. Gelir vergisi açısından

Detaylı

Araştırma Problemi Nedir? Nasıl belirlenir?

Araştırma Problemi Nedir? Nasıl belirlenir? Araştırma Problemi Nedir? Nasıl belirlenir? Araştırma Konusu - Araştırma konusu araştırma yapılması düşünülen alandaki bir konudur. (Konu, Problem, Araştırma Sorusu, Hipotez) Suat ÇELİK & Levent AKGÜN

Detaylı

Bilimsel Makale Yazmak ve Yayınlamak. Fahri YAVUZ Atatürk Üniversitesi Ziraat Fakültesi Tarım Ekonomisi Bölümü 25240 Erzurum fyavuz@atauni.edu.

Bilimsel Makale Yazmak ve Yayınlamak. Fahri YAVUZ Atatürk Üniversitesi Ziraat Fakültesi Tarım Ekonomisi Bölümü 25240 Erzurum fyavuz@atauni.edu. Bilimsel Makale Yazmak ve Yayınlamak Fahri YAVUZ Atatürk Üniversitesi Ziraat Fakültesi Tarım Ekonomisi Bölümü 25240 Erzurum fyavuz@atauni.edu.tr Üniversite??? Eğitim, araştırma ve halka dönük hizmetlerinde

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

MONTE CARLO BENZETİMİNİN BİR KARAR PROBLEMİNE UYGULANMASI

MONTE CARLO BENZETİMİNİN BİR KARAR PROBLEMİNE UYGULANMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2001 : 7 : 1 : 145-149

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı