Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+..."

Transkript

1 MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim Cebir Notları Gökha DEMĐR, Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız ispat yötemleride biri de Tümevarım metoduru. Bu ispat metodu, birkaç deeme soucu bulduğumuz formülü bütü deemeler içi doğru olup olmadığıı göstermek içi kullaılır. Bu Tümevarım metoduda iki aşama vardır. ) Doğruluğu ispatlaacak formülü içi doğruluğu gösterilir. ( D) ) içi doğruluğu kabul edilir. + içi doğruluğu ispatlaır. ( D ( + ) D) Bu durumda formül bütü N + içi doğru olur. Öreği, ( ) = ) içi doğru mudur? = I D olduğu görülür. ) D olsu ( ) = ise ( + ) terim ( + ) = + dir.) ( ) + (+) = + (+) = (+) buluur ki bu da + tae ardışık tek sayı toplamıı, (+) olduğu gösterilmiş olur. Formül doğrudur. Matematikte çok kulladığımız bazı semboller vardır. Bularda toplam içi, çarpım içi sembolleri kullaır. Toplam Sembolü ( ) N olmak üzere a i = a + a + a a biçimide kullaırız. i idisie de başlayarak e kadar doğal sayıları vererek toplam aldığımıza dikkat ediiz. 7 Öreği, k = , biçimide yazılırlar. 5 k = k= ) ) ) 4) 5) ) 7) c = c i= ca i = c a i (a i +b i ) = a i + b i k a i (b i + c i ) = a i b i + a i c i a i + a i = a i a i = a i = i= r i=r i= k +r i= r + ( r) a i (r ) a i ( r) i= m f(ij) = j= m j= f(ij) (Bu gibi problemlerde i içi j sabit, j içi i sabit alıır.) r k 8) 0 < r < = + r + r +... = r dir. Σ sembolü içi bazı formüller vardır. Buları ezbere bilmekte yarar vardır. Σ sembolü ile bilimesi gerekli bazı formüller : ( +) ) k = = k= ) k = ( +)( +) = ) k = ( + ) = 4) k = = ( +) 5) (k ) = ( ) = ) r k = r 0 + r + r +...+r = r r 7) k(k +) = ( +) = + (r, r 0) A) 95 B) 495 C) 50 D) 5 E) 5 Toplamı Özelikleri :

2 (k ) = olduğu içi, k =...= 50 = 495 buluur. Yaıt : B 7 (k + ) k= 5 A) 8 B) 9 C) 49 D) 5 E) Σ ı sıırıı de başlatalım. 7 (k + ) = (k + ) = (k 4) k= 5 k= = k.4 4 = 4. = 9 Yaıt : B < y < olmak üzere = + y aşağıdakilerde hagisie eşittir? A) y B) y D) y E) + y y = + 9 = + y = toplamı C) y = = + y y = ; α y < =. + y. y = + y y = y + y y Yaıt : E = + y y (ÖYS 995) 80 log + k A) B) C) D) 4 E) 8 80 log + 80 k = k + log k= k 4 = log + log log log 8 80 (Çarpımı logaritması logaritmalar toplamıdır.) = log Yaıt : C = log 7 = buluur A) 47 B) 570 C) 57 D) 574 E) si k 70 A) 0 B) soucu kaçtır? B) D) E) k(k +) = dir. O halde, (k +k) + k + k =.. = = 57 Yaıt : C +. si(80 α) = siα, si(80+α) = siα dır. 90 si k 70 = si70 + si si si89 + si90 = si0 + si si9 si0 = 0 buluur. Yaıt : A

3 0 ( + a) = 70 0 = A) 5 B) olduğua göre a kaçtır? C) 7 D) 8 E) 9 k= 0 A) 9 D) 0 9 k B) 9 0 E) 0 C) ( + a) = + a = 40 + a. = = = O halde, a = 70 a = 0 0 = 7 Yaıt : C 0 k= 0 k = ( 9 = )0 Yaıt : D = s= (4s k + ) ifadesii değeri kaçtır? A) B) 8 C) 0 D) E) s k + = (4. 4k + ) s= 4 s= s= = (4 4k) = = 5 40 = Yaıt : D f ve g N N aşağıdaki biçimde taımlı iki foksiyodur. x x ; g:x x f : x = = Buagöre (fog) () i değeri kaçtır? A) B) C) 4 D) 5 E) x f:x = = x g:x = = x(x +) f(x) = x + x x(x + )(x +) g(x) = (x + x)(x +) O halde (fog)() = f(g()) = f Yaıt : D = f(5) = =5 dir. Çarpma Sembolü ( Π ) Çarpma Sembolü içi Π kullaılır. a i = a.a.a...a 0 k =...0 = 0! dir. Öreği, Π i Özelikleri. c = c. ca i = c a i a. a i.b i = a i. b i 4. c a i i = c i= i= i= +r +( r) 5. a i = a i (r ) a i = a i ( r) i=r i=r Π sembolüde bilimesi gerekli bazı eşitlikler :. k =..... =! k=. k =..... = (!). k =..... = (!) (Dikkat: (!)! dir.) 4. r N ve r < ike (k r) = 0 dir. k=

4 = + ifadesii değeri kaçtır? A) B) 7 C) 8 D) 7 E) (k 5) ifadesii değeri kaçtır? A) 0! B) 0! 5 0 C) 5 9 0! D) 0! E) 0 = + =.. 4 Yaıt : B... 7 = 7 buluur. 0 (k 5) çarpımıda k = ike 45 olduğu içi souç (0) olur. Yaıt : E 0 = 8 (m ) m= ifadesii değeri kaçtır? A) 7 B) C) 0 D) E) 7 0 = 8 0 (m ) = 7 8. (m ) m= = m= 8 (m ) = 0 m= Yaıt : C 0 cos = 80 A) 0 B) C) 0 0 = 0 olduğu içi, m= ifadesii değeri kaçtır? D) E) dır. DĐZĐLER f : N + R her f foksiyoua bir dizi deir. N + R ye f(x) bir dizi belirler. { f(), f(), f(),... f(),...} dizisi ( f() ) biçimide gösterilir. Geel olarak, f() dizisi a olarak belirtilir. (f()=a ) = içi f() = a e. terim, = içi f() = a ye. terim f() = a e de. terim ya da geel terim adı verilir. a geel terim ise dizi (a ) = {a, a, a,..., a,...} dir. Dizii elema sayısıı sosuz olduğuu söyleyebiliriz. Öreği a = + foksiyou bir dizi belirler. (a ) = + = 4, 5,,... +,... Bir dizi geel terimi ile belirlidir. Geel terimi verilmeye bir dizi bir kaç terimi ile belli olmaz. Öreği,,,,? üç terim verile bir dizi ise 4. terimii bilemeyiz. 4. terimi her sayı olabilir. Dizi () ise 4. terimi 4 gelir. Dizi a = ( ) ( ) + biçimide ise 4. terimi a 4 = = 8 buluur. Dikkat : Geel terimi verilmeye bir dizi belirleemez. 0 cos = 80 = cos80. cos8...cos90... cos0 çarpımıda cos90 = 0 olduğu içi bu çarpım 0 dır. Yaıt : A Sabit Dizi : Bütü terimleri sabit ola dizilere sabit dizi deir. N + içi a = c (c R) ise (a ) = (c) dizisi sabittir. (a ) = () = {,,,...,...} her terimi ola bir diziyi belirler. Dizileri Eşitliği : Her terimleri eşit ola iki diziye eşit diziler deir : N + içi a = b ise (a ) = (b ) olarak taımlaır.

5 N + da taımlı geel terimi a = 5 (!) ola bir dizide a, a i kaç katıdır? A) 5 ( ) B) 5 C) + 5 D) 5 E) + 5 a = 5.! ve a = 5. ( )! dir. Bua göre, a = 5.! = 5.5. ( )! = 5. a olduğu içi, a, a i 5 katı olur. Yaıt: B a 0 =, a = a ve N, olduğua göre, a b kaçtır? A)! B) 5! Taıma göre a =. a 0 = C) 5! D)! E)! a =. a =, a =. a =. =! a 4 = 4. a = 4.! = 4! O halde, bezer olarak a =! Yaıt : A ALT DĐZĐ buluur. N + içi k ve k < k + koşuluu sağlaya k N + ( a k ) dizisie a dizisii bir alt dizisi deir. Öreği, a = + k = + içi dizisi içi 4+ a k = ++ = 4+ + dizisi a i bir alt dizisidir. (b ) = {,, 4, 4 5, } ( b k ) = { 4, 5, 7 8, ,...} ( b k ) dizisii her terimi (b ) dizisii de bir terimi olduğu içi (b k ) dizisi (b ) dizisii bir alt dizisidir. Bir dizide daima sosuz terim vardır. Dizilerde Dört Đşlem (a ), (b ) dizileri içi Toplama : (a ) + (b ) = (a +b ), Çıkarma : (a ) (b ) = (a b ), Çarpma : (a. (b ) = (a. b ), Bölme (b 0) : (a) (b) = (a b ) Bir k sayısı ile çarpma : k R olmak üzere k.(a ) = (k.a ) dir. Öreği, (a ) = ( + ) ve (b ) = (+) dizileri içi yapıla aşağıdaki işlemleri iceleyiiz. ) (a ) + (b ) = = ) (a ) (b ) = ( +) + = ) (a ).(b ) =.( +) + = 4) (a ) (b ) = + + = ( + ) 5) 5.(a ) = 5. + = 5 + Mooto Arta Dizi : + (a ) diziside N + içi a < a + ise bu diziye mooto arta dizi deir. Öreği, (a ) = ( + ) dizi içi, a = + ve a + = + + de + < + + paydaları eşitlersek ve N + olduğu içi, + < < olduğu içi bu dizi mooto arta bir dizidir. N + içi a > a + ise (a ) dizisi mooto azaladır. Mooto Azala Dizi : Öreği, a > a + +5 a = +5 a + = + + dizisi içi dir. Buları karşılaştırırsak, > > + 5 > 0 sağlar. O halde, (a ) dizisi mooto azala bir dizidir. Sıırlı Diziler :

6 Bir (a ) diziside N + içi, a M olacak biçimde bir M R sayısı varsa bu diziye üste sıırlı dizi ve M ye bir üst sıır adı verilir. Üst sıırları e küçüğüe e küçük üst sıır deir ve Eküs biçimide gösterilir. Veya üst sıırları e küçüğü diye ifade edilir. Üsek biçimide gösterilir. Öreği, (a ) = (0 ) diziside a = 9, a = 8, a = 7,... gibi a 9 olduğu içi, a < 0 gibi 9 da büyük her sayı bu dizii bir üst sıırı olur. Yai ; { 9, 0,, 0, 0,... } kümesi bir üst sıırlar kümesidir. Eküs : 9 (dizii elemaıdır.) Bir (a ) diziside her a terimi içi a m olacak biçimde belirli sabit bir m sayısı varsa, (a ) dizisi altta sıırlı bir dizidir. Alt sıırlar bir küme oluştururlar. Bu kümei bir e büyük elemaı vardır. Bua alt sıırları e büyüğü deir. ASEB biçimide gösterilir. Ya da e büyük alt sıır deir, EBAS biçimide gösterilir. Öreği; (a ) = ( ) diziside N + içi (a ) = {,, 5, 7, 9,...} a buluur. de küçük her sayıda bir alt sıırdır. EBASI ise dir. Sıırlı Dizi : Bir (a ) diziside N + içi a k ise böyle dizilere sıırlı dizi deir. 4. Bir aritmetik dizii ilk terim toplamı : S = (a+a) veya S = [a+( )r] formülleri ile buluur. 5. a, b sayıları arasıa terim yazıla aritmetik dizide r = b a + dir. Bir aritmetik dizii. terimi 40 ve 7. terim 84 ise bu dizii 5. terimi kaçtır? A) 0 B) 0 C) 40 D) 44 E) 0 Aritmetik dizii geel terimi a = a + ( ) r dir. Burada a ve r yi bulmamız gerekir. a = 40 ve a 7 = 84 de 40 = a + 5r 84 = a + r sistemide a ve r buluur. r = 4 ve a = 0 dur. O halde, a = a + ( ). r de a 5 = 0 + (5 ). 4 = 0 buluur. Yaıt : A ARĐTMETĐK DĐZĐLER Taım : a ve k sabit olmak üzere geel terimi a = a + ( ) r biçimide ola dizilere aritmetik dizi deir. a = a ilk terim, r ye ortak fark deir. Öreği, a = ve r = ola aritmetik dizii geel terimi a = + ( ). dir. (a ) = {, 5, 7, 9,,...} buluur. Aritmetik Dizileri Özelikleri :. Her terim (varsa) kedide öce ve kedide sora gele terimleri, aritmetik ortasıdır. (Buda dolayı aritmetik dizi adı verilmiştir.). Aritmetik dizide ardışık iki terim farkı sabittir. (Bu ortak fark r dir.) Bir aritmetik dizii ilk terim toplamı daima 0. terimi kaçtır? A) 7 B) 8 C) 9 D) 0 E) S S ( ) = a dir. O halde S 0 S 59 = a 0 olacağı içi a 0 = 0 a 0 = 9 Yaıt : C 59 buluur. (0 59) (0+59) = ise. Bir aritmetik dizide solu sayıda ardışık terim alıdığı zama başta ve soda ayı uzaklıkta bulua terimleri toplamı sabittir.

7 Bir aritmetik dizii 8. terimi a olduğua göre,. ve 4. terimlerii toplamı edir? A) a B) a C) a D) a E) a Bir aritmetik dizide başta ve soda ayı uzaklıkta bulua terimleri toplamı sabittir. a + a 4 = a 8 + a 8 = a buluur. Yaıt : B Yaşları toplamı 48 ola kardeşi yaşları bir aritmetik dizi oluşturmaktadır. E küçük kardeş yaşıda olduğua göre e büyük kardeş kaç yaşıdadır? A) 9 B) C) 4 D) 5 E) 7 Aritmetik dizide ilk terim toplamı S = (a+a) dir. E küçüğü, e büyük x ise,. terim olduğua göre, 48 = (+x) Yaıt : B GEOMETRĐK DĐZĐ x = 9 = buluur. a ve r sabit olmak üzere geel terimi; a = a.r biçimide ola dizilere geometrik dizi deir. a = a ilk terim, r ye ortak çarpa deir. Öreği a =, r = ise geometrik dizi (a ) = (. ) = {,,, 4, 9, 9,...} Eğer a =, r = ise geometrik dizi (a ) = (. ) = {,,,,...} olur. Geometrik Dizii Özelikleri :. Eğer kedide öce ve sora terim varsa her terim kedide öce ve kedide sora gele terimleri geometrik ortasıdır. (Geometrik dizi adı her terimi geometrik orta olduğu verilmiştir.) 4. a ve b sayıları arasıa terim yerleştirerek geometrik dizi yapmak içi ortak çarpa : + r = b a dır. 5. Bir geometrik dizide ilk terim toplamı S = a. r r dir. Not : r > ise toplam çok büyük sayılar verir. r < ise (S ) dizisi yakısaktır ve limiti S = a r dır. Bir geometrik dizii ilk altı terimii toplamıı ilk üç terim toplamıa oraı dir. Bu dizii r ortak oraı kaçtır? A) D) S = a r r r r B) C) E), S = a r r = ( r) (+r) r r + = r = Yaıt : E S S = = (ÖYS 99) Bir geometrik dizii ilk terimi, ikici terimi olduğua göre, altıcı terimi kaçtır? A) 8 B) 0 C) D) 9 E) 48 a = a.r olduğu içi =. r, r = buluur. a =. r a =. 5 a =. 4 = 48 buluur. Yaıt : E (ÖYS 99). Ardışık terimleri oraları sabittir. (Bu ora ortak çarpa olur.). Bir geometrik dizide solu sayıda ve ardışık ola terimlerde başta ve soda ayı uzaklıkta bulua terimler çarpımı sabittir. SERĐLER a bir dizii geel terimi olma koşulu ile

8 a S = = toplamıa seri deir. S = a + a + a a +... S = a ; S = a + a ; s = a + a + a S = a + a + a +... a Toplamlarıa parça toplamlara (kısmi toplamlar, parçasal toplamlar deir.) S, S, S,... S 4,... bir dizi oluşturur. Bu diziye S serisii parça toplamları dizisi (ya da kısmi toplamlar dizisi) deir. Bir serii limiti parça toplamları dizisii limiti olarak taımlaır. k= 0 k ifadesii değeri kaçtır? A) 9 8 B) 8 C) 5 D) 4 E) 4 k= 0 k = geometrik serisi olduğu içi S = = 9 8 buluur. 9 Yaıt : A Aritmetik Seri : a (a ) dizisi bir aritmetik dizi ise = serisie aritmetik seri deir. Serbest bırakıla bir top bırakıldığı yüksekliği 4 ü kadar sıçramaktadır. m yükseklikte bırakıla bir top degede kalıcaya kadar kaç m yol alır? A) 8 B) 4 C) D) 40 E) 4 Geometrik Seri : a a dizisi bir geometrik dizi ise = seri deir. serisie geometrik Geometrik serilerde; a ) r > ise = geometrik serisie ıraksak seri, a ) 0 < r < ise = geometrik serisi yakısaktır ve a limiti r dir serisii limiti kaçtır? A) B) C) D) E) 4 Düşüşler : ( 4 ) +... geometrik seriside 4 = 4m buluur. Çıkışlar burada m eksiktir. Yai 8m dir. O halde aldığı yol : = 4 m buluur. Yaıt : E Şekilde ABCD karesii bir kearı 8 cm dir. Kearlarıı orta oktaları birleştirerek yie bir kare elde ediliyor. Tekrar bu karei de kearlarıı orta oktaları birleştirilerek bir kare elde ediliyor ve bu işleme okta kalıcaya kadar devam ediliyor. Oluşa tüm kareleri alaları toplamı kaç cm dir? A) 9 B) C) D) 8 E) 9 D A C B Bu seri bir a = ve r = Limiti = buluur. Yaıt : C ola bir geometrik seridir. Kareleri alaları 8, 8, 8 4, olarak yarıları alıarak toplaacak, yai : geometrik serisii toplamı a = 8 ; r = toplamı S = 8 = 8 cm buluur. olduğu içi

9 Yaıt : D KONU TESTĐ A) + B) + D) E) + 4 C) (+) 4. (5k + ) A) 58 B) 59 C) 54 D) 59 E) A) 0 k(k + ) B) 0 C) 0 7 D) E) 5 5. k= (k + 7) A) 5 B) C) 8 D) 78 E) log 4 +. k= 4 k 4. k= A) B) C) 4 D) 5 E) k= 80 log k (k+ ) çarpımı kaçtır? A) B) C) D) 4 E) 5 00 cosk A) 0 B) C) D) E) 0. k + 4 A) 4 B) C) 8 D) 4 E) 4. (k + 4) A) 8 B) 7 C) 48 D) 8 E) A) 807 B) 80 C) 805 D) 804 E) k= log (tak ) A) 0 B) C) D) E). 4 log k A) 80 B) 80 C) 840 D) 880 E) 0 4. (k! (k+)!) A)! B)! C) 4! D) 5! E)! A) 440 B) 44 C) 4480 D) 480 E) ( ) k k + 5. k= A) 0 B) 9 C) 0 D) 0 E) 0 8. k= k = x olduğua göre x i türüde değeri edir? A) 080 B) 08 C) 08 D) 08 E) 084

10 log k + k A) B) C) 4 D) 5 E) A) 8 48 D).48 B) E) 48.8 C) sik A) 0 B) C) D) E) 4 5. (p 7) k= p= ifadesi kaça eşittir? A) 5 B) 9 C) 8 D) 7 E) (k ) çarpımı kaçtır? A) 84 B) 484 C) 584 D) E) 0. k= 0 = 0 ( + p ) ü değeri edir? A) B) C) D) 4 E) 5 0. x N N f(x) = i, g(x) = i= = x ise (fog) () i değeri kaçtır? A) 5 B) C) 5 D) E) (k! (k+)! ) toplamı eye eşittir? A) 8! B) 8! C) 8! + 7! D) 8! 7! E) 7!. j= i (j+) i değeri kaçtır? A) 9 B) 0 C) D) E) 8 8. k= 0 (e k+ e k ) A) e 9 e B) e 9 C) e 8 D) e 7 E) e 9. k= 0 = ( + k ) A) 7 B) 7 C) 7 D) 74 E) k 9 k A) 8 9 B) 9 0 k(k + ) C) 0 D) E) 0. ( + k.x) = 5 ise x kaçtır? A) B) C) D) E) 7 4. k KONU TESTĐ

11 . lim + 4 kaça eşittir?. A) + + a B) C) D) E) dizisi mooto ise a hagi aralıktadır? 9. lim + 5 i eşiti edir? A) e B) e 5 C) e 5 5 D) e E) e A) a < B) a > D) a < E) a > C) a > 0..Si 5 dizisii limiti edir? A) B) 5 C) 5 D) E). + + dizisii ASEB ve ÜSEK A) 7 B) 5 C) 7 D) E) 7. 0 ( a )= + 5 dizisii kaç terimi bir tamsayıdır? A) 8 B) C) 4 D) E) 4. (a ) dizisi yakısak ve her terimi pozitiftir N + içi a.a + 4a +7 = 5 ise a dizisii limiti edir? A) B) C) D) 4 E) A) + + dışıdadır? B) C) 4 dizisii limiti edir? D) E) 8 dizisii kaç terimi i 50 komşuluğu A) 97 B) 9 C) 99 D) 00 E) 50 ( a )= 4 dizisii 4. terimi kaçtır? A) 8 B) 0 C) D) 4 E) Si 5 dizisii limiti edir?. ( a )=. a = + ve b + + ( ) = ( (a ) + (b ) ) limiti eye eşittir? + ise A) B) C) D) 4 E) Bu dizii ASEB'i kaçtır? A) B) 4 C) 5 D) E) 7 5 ; = 0 (mod ) ; = (mod ) + 4. a = ; = (mod ) + dizisii. terimi kaçtır? A) 5. (a ) = B) 9 58 C) 5 D) E) + 5 dizisii EKÜSÜ kaçtır? A) B) C) 0 D) 9 E) A) 5 B) C) D) E)

12 dizisii limiti edir? A) B) e C) e D) e E) e 7. ( 4 + 7) dizisii EBASI kaçtır? A) B) C) D) 4 E). Bir aritmetik dizii 5. terimi ;. terimi 4 ise bu aritmetik dizii 4. terimi kaçtır? A) B) 7 C) 9 D) 0 E) 40. Bir işçi ayı. güü lira alıyor. Her gü bir öceki güde 5000 lira fazla aldığıa göre bu işçii 0 gülük aylığı kaç liradır? A) B) C) D) E) diziside kaç tae terim i 50 komşuluğuu dışıda buluur? A) B) C) 4 D) 5 E). ( a 0) ike, (a ) limiti 0 ike si a a lim edir? A) B) C) D) 5 E) 7 + cos 5 si 9. (a ) = 8 +7 si lim (a ) i limiti edir? A) 8 7 B) 7 C) 7 8 ike D) E) π ( ) dizisii limiti aşağıdakilerde hagisidir? A) B) C) D) E) (a ) = 8. + A) 8 B) C) 9 dizisi içi lim(a ) =? D) E) 5..si dizisii limiti edir? A) 4 B) 5 C) D) E) 0. (a ) = A) 7 cos + 5si B) ike lim(a ) =? C) 5 KONU TESTĐ D) 7 E) 0. Bir top serbest bırakıldığı zama bırakıldığı yüksekliğii 5 i kadar sıçrıyor. m de bırakıla bir top degede kalıcaya kadar kaç m yol almıştır? A) 0 B) 0 C) 04 D) 00 E) 5 7. Şekilde bir kearı ola bir kare verilmiştir. Bu karei kearlarıı orta oktaları köşe alıarak bulua karei de kearlarıı orta oktaları köşe ola kareler çiziliyor. Bu işleme okta kalıcaya kadar devam ediliyor. Bulua kareleri çevrelerii toplamı e kadardır? A) 4 (+ ) B) (+ ) D A C B

13 C) (+ ) D) 4( +) E) 4( ) ola bir arit Đlk terim toplamı daima metik dizii 4. terimi edir? A) B) 4 C) D) 44 E) 5 8. Bir fida m dir.. yıl souda ü kadar büyüyor ve her yıl bir öceki yıl büyümesii kadar büyüyor. Bu ağaç e çok kaç metre yüksekliğe ulaşabilir? A) 5 B) C) 8 D) E) 9 5. a = A) e p e π ike si a a B) e C) e dizisii limiti edir? D) E) 0 9. Đlk terimi 5 ve ortak çarpaı r ola bir geometrik dizii 7. terimi 0 ise bu dizii 4. terimi kaçtır? A) 0 B) 40 C) 80 D) E) = 0 8 A) 7 B) limiti edir? C) 8 D) E) 0. (a ) aritmetik diziside a + a = 0 ve a + a 8 = ise ilk terim kaçtır? A) B) C) D) E) 7. a aritmetik dizisii a = 8 ve a 4 = 8 ise 0. terim kaçtır? A) 48 B) 49 C) 50 D) 5 E) 5 7. Bir geometrik dizii a7 a = 8 ise bu geometrik dizii ortak çarpaı kaçtır? A) B) C) D) 4 E) 5 8. ( a )=, a dizisii limiti edir? 8. Bir geometrik dizide a 7 =, a 0 = 9 ise a terim kaçtır? A) 84 B) 85 C) 9 D) 484 E) 58 A) B) e C) e D) e E) e ( ) k+. k= 0 A) ( ) k serisii limiti edir? B) C) 9 k 9. K= 0 A) D) toplamı eye eşittir? B) 0 9 E) C) 0 9 D) E) 0. k= 0 k! (k +)! =?

14 A) B) C) D) 4 E) 0. Đlk terim toplamı + ola herhagi birdizii 40. terimi kaçtır? A) 78 B) 79 C) 80 D) 8 E) 8. Bir aritmetik dizide 8. terim ile 4 terim toplamı a dır. Bu dizii. terimi edir? A) a B) a C) a D) a 4 E) a. (θ ) dizisii limiti 0 ise. si θ θ dizisii limiti edir? A) B) C) 4 D) 5 E) 4.. ta dizisii limiti kaçtır? A) B) C) D) E) 5. Bir geometrik dizii. terimi 4 ; 7. terimi 4 ise bu dizii ilk terimi kaçtır? A) B) C) 4 D) 4 E)

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

h)

h) ĐZMĐR FEN LĐSESĐ TÜMEVARIM-DĐZĐLER-SERĐLER ÇALIŞMA SORULARI TÜME VARIM:. Aşağıdaki ifadelerde geel bir kural çıkarabilir misiiz? a) p()= ++4 poliomuda değişkeie 0,,,, değerleri verdiğimizde elde edile

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve GEOMETRİK DİZİ Bir () dizisinin ardışık terimleri arasındaki oranı ayni sabit sayi ise, bu di zi ye geom etrik dizi denir. a n N +, n +1 =r ise, () ortak çarpanı r olan geom etrik dizi dir. Örnek...4 :

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

Bu bölümde birkaç yak nsak dizi örne i daha görece iz.

Bu bölümde birkaç yak nsak dizi örne i daha görece iz. 19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir İstabul L ıseler Arası Matemat ık Ol ımp ıyatı ILMO 9 Çözümler ı c www.sbelia.wordpress.com sbeliawordpress@gmail.com Her yıl KOÇ Üiversitesi Bi Topluluğu Öğreci Klübü tarafıda düzelee, İstabul Liseler

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU.

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU. T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisas Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU Elif SERİN Tez Daışmaı Yrd. Doç. Dr.Abdullah SÖNMEZOĞLU Yozgat 202

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI GAUSS BALANS VE GAUSS KOBALANS SAYILARI ÜZERİNE YÜKSEK LİSANS TEZİ MUSTAFA YILMAZ DENİZLİ, TEMMUZ - 07 T.C. PAMUKKALE ÜNİVERSİTESİ

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz GAMA FONKSİYONU H. Turgay Kaptaoğlu A. Taım Gama foksiyou, < < değerleri içi Euler itegrali dediğimiz Γ( = t e t dt itegrali ile taımlaır. Öce bu ifadei e demek olduğuu alamaya çalışalım. bir gerçel sayı

Detaylı

MATEMATİK ANABİLİM DALI

MATEMATİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Serka ÖKTEN -NORMLU UZAYLAR MATEMATİK ANABİLİM DALI ADANA, 00 ÖZ YÜKSEK LİSANS TEZİ -NORMLU UZAYLAR Serka ÖKTEN ÇUKUROVA ÜNİVERSİTESİ FEN

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

11. SINIF KONU ÖZETLİ SORU BANKASI

11. SINIF KONU ÖZETLİ SORU BANKASI . SINIF MATEMATİK KONU ÖZETLİ SORU BANKASI Mil li Eği tim Ba ka lı ğı Ta lim ve Ter bi ye Ku ru lu Baş ka lı ğı ı 4.8. ta rih ve sa yı lı ka ra rı ile ka bul edi le ve - Öğ re tim Yı lı da iti ba re uy

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı