Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu"

Transkript

1 Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye yayılım algoritması tercih edilmektedir. Son zamanlarda geriye yayılım algoritmasının dezavantajlarından dolayı LM algoritması da tercih edilmektedir. Bu çalışmada dinamik sistem öğrenemsinde geriye yayılım ve LM algoritmalarının başarımları karşılaştırılmıştır. LM algoritması geriye yayılım algoritmasına göre daha maliyetli olmasına rağmen ağ eğitiminde ve eğitim hızında üstünlük kurmuştur.. Giriş Son zamanlarda yapay sinir ağları(ysa) kontrol[], görüntü işleme[2-3], modelleme[4] gibi uygulama alanlarında başarıyla kullanılmıştır. Bu ağlarda, giriş çıkış eşleşmesine uygun veri setine ile modelleyebilmek için genellikle geriye yayılım algoritması tercih edilmektedir[5]. Birinci dereceden türev bilgisi gerektiren bu algoritma, düşük eğitim verimi[5] ve kötü yakınsama hızı gibi dezavantajlara sahiptir[6]. Dinamik öğrenme oranı ile geriye yayılım algoritmasının hızını, momentum da yakınsama hızını artırabilir[5,7]. Buna ek özelliklere rağmen geriye yayılım algoritması pratik uygulamalar için maliyetlidir[5]. Newton, Levenberg&Marquardt(LM) gibi ikinci dereceden türev gerektiren algoritmalar öğrenme hızını belirgin bir şekilde artırmaktadır[5]. Newton algoritması hızı ve steepest descent metodonun kararlılığını birleştiren LM algoritması[6] gümümüzde ağ eğitiminde etkili olarak kullanılmaktadır[8-9]. Bu çalışmada dinamik sistemlerin modellenmesinde geriye yayılım ve LM algoritmalarının başarımları test edilmiştir. Algoritma başarımları eğitim datalarıyla birlikte test dataları üzerinde de test edilmiştir. 2. Yapay Sinir Ağlarının Eğitilmesi Yapay Sinir Ağları, öğrenme sürecinden sonra bilgiyi toplama, hücreler arasındaki bağlantı ağırlıkları ile bu bilgiyi saklama ve genelleme yeteneğine sahip paralel dağıtık bir işlemcidir. Öğrenme süreci, arzu edilen amaca ulaşmak için YSA ağırlıklarının yenilenmesini sağlayan öğrenme algoritmalarını ihtiva eder. Öğrenme algoritmaları öğrenme denen olguyu matematiğin kuralları ile ölçülebilir büyüklüklere dönüştürerek başarım ölçütünün oluşturulmasına ve bu ölçütün zaman içerisinde artırılmasını sağlayacak parametre değişikliklerinin hesaplanmasına dayanır. Öğrenme algoritmaları YSA çıkışında elde edilen hata bilgisini kullanarak parametre değişikliklerini belirlerler. Denklem ()'da YSA çıkışında elde edilen hata değeri gösterilmektedir. Denklem ()'da d ağ eğitimi esnasında giriş olarak verilen data setine k ilişkin k. çıkış hücresine ait beklenen değerini göstermektedir. e k ise giriş data setine ilişkin k. çıkış hücresinde oluşan hata değerini göstermektedir. ek dk yk ()

2 2. Geriye Yayılım Algoritması Geriye Yayılım algoritması, ağa gösterilen o anki data setinden elde edilen hata değerini kullanarak eğim düşüm bilgisini hesaplayarak parametre güncelleme işlemini yapmaktadır (Şekil ). Denklem (2)'de ağa eğitimi esnasında giriş olarak verilen data setine ilişkin ağ çıkışında elde edilen hataların karelerinin toplamı ile elde edilen maliyet fonksiyonunun ( E ) en küçük değeri aldığı noktanın Denklem (3) ile verilen kural ile iteratif olarak bulunabilmesine dayalıdır. Denklem (3)'de J Jacobian matrisini, ise güncellenecek ağ parametresini göstermektedir. n 2 E ek 2 k (2) E J e (3) Şekil. Eğim düşümü grafik gösterimi Çok Katmanlı Algılayıcı için ağ paramtere güncelleme işlemi Şekil 2'de gösterilmiştir.

3 Şekil 2. Geriye Yayılım Algoritması ile ÇKA parametre güncelleme blok diyagramı Şekil (2)'de gösterilen v değerleri Denklem (4)'deki gibi bulunur. katmanındaki eşik parametrelerinin güncelleme değeri Denklem (5)'deki gibi bulunur. Gizli katmanda bulunan hücrelerin çıkış değerlerine ait ağırlıklandırma parametrelerinin güncelleme değeri Denklem (6)'daki gibi bulunur. Şekil (2)'de gösterilen z değerleri Denklem (7)'daki gibi bulunur. Gizli katmanındaki eşik parametrelerinin güncelleme değeri Denklem (8)'deki gibi bulunur. Girişlere ait ağırlıklandırma parametrelerinin güncelleme değeri Denklem (9)'deki gibi bulunur. ' k k k v e. ; k,, n (4) 2 b v k n (5) ;,, k k 2 s v ; k,, n; i,, q (6) ik i k n ' 2 i k kik k i i z. v ; i,, q (7) b z ; i,, q (8) x z ; i,, q; k,, m (9) ki k i 2.2 Levenberg & Marquardt Algoritması Steepest descent ve Newton algoritmalarından türetilerek, LM algoritması güncellemesi Denklem () da verilmiştir. Denklem ()'da ω ağırlık vektörü, I birim matris, kombinasyon katsayısıdır. J, P n, N boyutunda Jacobian matrisini, e P n, boyutunda hata vektörünü göstermektedir. P, eğitim örnek sayısını, n çıkış sayısını ve N ağırlık sayısını göstermektedir.

4 ( T T ω J J I ) J e () Levenberg & Marquardt algortiması Geriye Yayılım algoritmasından farklı olarak parametre güncelleme işlemleri için tüm giriş örnek değerleri için oluşturduğu hata vektörünü ve Jacobian matrisini kullanarak yapmaktadır. Denklem ()'de Jacobian matrisini elde edilmesi gösterilmektedir. Jacobian matrisi parametrelerinin oluşumu ise Şekil (3)'de gösterilmiştir. vektörü ise Denklem (2)'deki gibi elde edilir. Şekil 3. Geriye Yayılım Algoritması ile ÇKA parametre güncelleme blok diyagram J e e e 2 N e n e n e n 2 N ep ep ep 2 N epn epn epn 2 N ()

5 e en e (2) e P e Pn Denklem ()'da ayarlanabilir bir parametredir (Denklem (3)). Eğer bu parametre çok büyükse yöntem steepest descent metodu gibi davranmaktadır. Eğer çok küçükse Newton metodu gibi davranmaktadır. t t k E( t) E( t ) t k E( t) E( t ) (3) 3. Sonuçlar Bu çalışmada LM ve geriye yayılım algoritmaları ile eğitilmiş çok katmanlı algılayıcıların başarımı 2 farklı dinamik sistem üzerinde denenmiştir. Dinamik sistem tanıma problemi sistemi temsil edecek olan parametrelerin uygun bir şekilde ayarlanması işlemidir. Bu ayarlama işlemi, tanınacak sistemin gerçek çıkışı ile tanıma için seçilen modelin çıkışı arasındaki hata üzerine kurulmuş başarım işlevinin en iyilemesi(optimizasyonu) ile gerçeklenir. : Bu örnek için Denklem. (4) de verilen sistem tanımlaması yapılmıştır. Sisteme giriş olarak Denklem (5)'de verilerek eğitim yapılmıştır. 2 y k 3 y k u k y k (4) Sistem tanıma için girişleri [ uk, 2 k cos, k, 2,, (5) u k yk ] olan, gizli katmanında 3 ve çıkış katmanında hücresi olan ileri beslemeli YSA kullanılmıştır. Gizli katman hücreleri için logaritmik sigmoidal seçilmiş, çıkış hücresi için lineer aktivasyon fonksiyonları kullanılmıştır. Şekil 4a LM algoritması kullanılarak eğitilen ağın dinamik sistem tanıma işlemine ait çıktıları göstermektedir. Şekil 4b dinamik sistem tanımanın hatalarını göstermektedir. Şekil 5a geriye yayılım algoritması kullanılarak eğitilen ağın dinamik sistem tanıma işlemine ait çıktıları göstermektedir. Şekil 5b dinamik sistem tanımanın hatalarını göstermektedir.

6 .5.5 Sistem ı Şekil 4 için LM algoritması kullanılarak eğitilen ağ için deneysel sonuçlar: a) Deneysel başarım b) Sistem tanıma hatası Sistem ı Şekil 5 için geriye yayılım algoritması kullanılarak eğitilen ağ için: a) Deneysel başarım b) Sistem tanıma hatası Denklem (5) de verilen giriş dizisine göre eğitilen YSA Denklem (6) teki giriş dizisi için test edilmiş ve elde edilen deneysel sonuçlar LM algoritması için Şekil 6 ve geriye yayılım algoritması için Şekil 7 de verilmiştir. 2 k sin, k, 2,, (6) u k

7 .5.5 Sistem ı Şekil için LM algoritması kullanılarak eğitilen ağın eğitimde kullanılmayan girişler için: a) Deneysel başarım b) Sistem tanıma hatası.5.5 Sistem ı Şekil için geriye yayılım algoritması kullanılarak eğitilen ağın eğitimde kullanılmayan girişler için: a) Deneysel başarım b) Sistem tanıma hatası Çizelge 'de geriye yayılım algoritması ve LM algoritmalarının eğitim ve test datalarından elde edilen ortalama karesel hata değerleri gösterilmektedir. Çizelge Eğitim ve test dataları için MSE değerleri Eğitim MSE Test MSE İterasyon LM BP : Bu örnek için Denklem. (7) de verilen sistem tanımlaması yapılmıştır. Sisteme giriş olarak Şekil 8'de oluşturulan rastgele oluşturulmuş giriş dizisi verilmiştir. (7).5uk.4 yk. y k.6 e

8 Sistem tanıma için girişleri [ uk, yk ] olan, gizli katmanında 3 ve çıkış katmanında hücresi olan ileri beslemeli YSA kullanılmıştır. Gizli katman hücreleri için logaritmik sigmoidal seçilmiş, çıkış hücresi için lineer aktivasyon fonksiyonları kullanılmıştır Giriş Şekil 8. 2 için eğitimde kullanılacak giriş dizisi Şekil 9a LM algoritması kullanılarak eğitilen ağın dinamik sistem tanıma işlemine ait çıktıları göstermektedir. Şekil 9b dinamik sistem tanımanın hatalarını göstermektedir. Şekil a geriye yayılım algoritması kullanılarak eğitilen ağın dinamik sistem tanıma işlemine ait çıktıları göstermektedir. Şekil b dinamik sistem tanımanın hatalarını göstermektedir Sistem ı Şekil 9 2 için LM algoritması kullanılarak eğitilen ağ için deneysel sonuçlar: a) Deneysel başarım b) Sistem tanıma hatası

9 Sistem ı Şekil 2 için geriye yayılım algoritması kullanılarak eğitilen ağ için: a) Deneysel başarım b) Sistem tanıma hatası Şeki (8) de verilen giriş dizisine göre eğitilen YSA Şekil () deki giriş dizisi için test edilmiş ve elde edilen deneysel sonuçlar LM algoritması için Şekil 2 ve geriye yayılım algoritması için Şekil 3 de verilmiştir Giriş Şekil. 2 için test işleminde kullanılacak giriş dizisi

10 Sistem ı Şekil 2 2 için LM algoritması kullanılarak eğitilen ağın eğitimde kullanılmayan girişler için: a) Deneysel başarım b) Sistem tanıma hatası Sistem ı Şekil 3 2 için geriye yayılım algoritması kullanılarak eğitilen ağın eğitimde kullanılmayan girişler için: a) Deneysel başarım b) Sistem tanıma hatası Çizelge 2 geriye yayılım algoritması ve LM algoritmalarının eğitim ve test datalarından elde edilen ortalama karesel hata değerleri gösterilmektedir. Çizelge 2 Eğitim ve test dataları için MSE değerleri Eğitim MSE Test MSE İterasyon LM BP Yorumlar

11 YSA'ların eğitim esnasında hız ve maliyet problemleri ön plana çıkmaktadır. Çalışma da elde edilen sonuçlara LM algoritmasının geriye yayılım algoritmasına göre daha maliyetli olduğunu göstermekte fakat daha başarılı sonuçlar verdiğini göstermektedir. Kaynaklar. Szabó, T., Fehér, B., Horváth, G., Neural network implementation using distributed arithmetic, in Proceedings of the International Conference on Knowledge-Based Electronic Systems, Adelaide, Australia, vol. 3, Pages. 5-52, Chau, K. W., A split-step PSO algorithm in predicting construction litigation outcome, Lecture Notes in Artificial Intelligence, Vol. 499, Pages.2-25, Kennedy, J., Eberhart, R. C., Particle swarm optimization, Proc. IEEE int'l conf. on neural networks, Vol. IV, IEEE service center, Piscataway, NJ, Pages , Guerra, F.A., Coelho, L. dos S., Multi-step ahead nonlinear identification of Lorenz s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization, Chaos, Solitons & Fractals, Volume 35, Issue 5, Pages , March Wilamowski, B. M., Yu, H., Improved Computation for Levenberg Marquardt Training, IEEE Transactions on Neural Networks, vol. 2, no. 6, pp , 2 6. Wilamowski, B. M., Chen, Y.,"Efficient algorithm for training neural networks with one hidden layer," in Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp , S. Ferrari and M. Jensenius, A constrained optimization approach to preserving prior knowledge during incremental training, IEEE Trans. Neural Netw., vol. 9, no. 6, pp , Jun Dohnal, J.: Using of Levenberg-Marquardt Method in Identification by Neural Networks. In Student EEICT 24. Student EEICT 24. Brno: Ing. Zdeněk Novotný CSc., 24, str , ISBN Khosravi.Z, M.H, Barghinia S., Ansarimehr, New Momentum Adjustment Technique for Levenberg- Marquardt Neural Network Used in Short Term Load Forecasting, 2st International Power System Conference (PSC 26), Tehran, Iran

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ U. Özveren 2, S. Dinçer 1 1 Yıldız Teknik Üniversitesi, Kimya Müh. Bölümü, Davutpaşa Kampüsü, 34210 Esenler / İstanbul e-posta: dincer@yildiz.edu.tr

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ 1 45 89 133 177 221 265 309 353 397 441 485 529 573 617 661 705 GW MW ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ Mehmet ÖZEN 1 e-posta: ozenmehmet.92@gmail.com Ömer GÜL 1 e-posta: enerjikalitesi@gmail.com

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

YEŞİLIRMAK NEHRİ İÇİN TOPLAM ORGANİK KARBON ÖNGÖRÜ MODELLERİ

YEŞİLIRMAK NEHRİ İÇİN TOPLAM ORGANİK KARBON ÖNGÖRÜ MODELLERİ YEŞİLIRMAK NEHRİ İÇİN TOPLAM ORGANİK KARBON ÖNGÖRÜ MODELLERİ Mehmet Yüceer a*, İlknur Atasoy b, Eda Semizer c, Erdal Karadurmuş d, Kazım Yetik e, Ayla Çalımlı c, Rıdvan Berber c a İnönü Üniversitesi Mühendislik

Detaylı

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ Levent AKSOY e-posta: levent@ehb.itu.edu.tr Neslihan Serap ŞENGÖR e-posta: neslihan@ehb.itu.edu.tr Elektronik ve

Detaylı

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D ĠS L ĠK B ĠL ĠM L E R ĠD E R G ĠS

Detaylı

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 905-913, 2011 Vol 26, No 4, 905-913, 2011 FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN YÜKSEK LİSANS TEZİ 2011 BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY

Detaylı

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12 Electronic Letters on Science & Engineering () (2005) Available online at www.e-lse.org A Study on Binary Gas Mixture Ali Gülbağ, Uğur Erkin Kocamaz, Kader Uzun Sakarya University, Department of Computer

Detaylı

ISSN : Hatay-Turkey YAPAY SİNİR AĞLARI YAKLAŞIMI İLE TAHTAKÖPRÜ BARAJINDAKİ AYLIK BUHARLAŞMA TAHMİNİ

ISSN : Hatay-Turkey YAPAY SİNİR AĞLARI YAKLAŞIMI İLE TAHTAKÖPRÜ BARAJINDAKİ AYLIK BUHARLAŞMA TAHMİNİ ISSN:136-3111 211, Volume: 6, Number: 1, Article Number: 1A132 Fatih Üneş ENGINEERING SCIENCES Hakan Varçin Received: October 21 Kazım Kadir Dindar Accepted: January 211 Mustafa Kemal University Series

Detaylı

Hava Kirliliğine Neden Olan PM10 ve SO 2 Maddesinin Yapay Sinir Ağı Kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması

Hava Kirliliğine Neden Olan PM10 ve SO 2 Maddesinin Yapay Sinir Ağı Kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD XX (201X) xxxxxx (xx s) AKU J. Sci.Eng.XX (201X) xxxxxx (xx pp)

Detaylı

YİĞİTLER ÇAYI GÜNLÜK AKIMLARININ YAPAY SİNİR AĞLARI VE REGRESYON ANALİZİ İLE MODELLENMESİ

YİĞİTLER ÇAYI GÜNLÜK AKIMLARININ YAPAY SİNİR AĞLARI VE REGRESYON ANALİZİ İLE MODELLENMESİ YİĞİTLER ÇAYI GÜNLÜK AKIMLARININ YAPAY SİNİR AĞLARI VE REGRESYON ANALİZİ İLE MODELLENMESİ Umut OKKAN 1, Ayşe MOLLAMAHMUTOĞLU 2 1 Balıkesir Üniversitesi Mühendislik-Mimarlık Fakültesi, İnşaat Mühendisliği

Detaylı

Hava Kirliliğine Neden olan PM10 ve SO 2 maddesinin Yapay Sinir Ağı kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması

Hava Kirliliğine Neden olan PM10 ve SO 2 maddesinin Yapay Sinir Ağı kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 14 (2014) 025201 (1-6) AKU J. Sci.Eng.14 (2014) 025201 (1-6) DOI:10.5578/fmbd.8200

Detaylı

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Solution of Forward Kinematic for Five Axis Robot Arm using ANN A. Mühürcü 1 1 Sakarya University, Electrical-Electronical

Detaylı

Ahmet Aydın a, Mustafa Şeker b,arif Memmedov c

Ahmet Aydın a, Mustafa Şeker b,arif Memmedov c MAKALE HAKKINDA Geliş : Kasım 2016 Kabul: Mart 2017 BİNGÖL ORTA GERİLİM ŞEBEKESİNİN TEKNİK KAYIPLARIN ANALİZİ İÇİN DİGSLİENT POWER FACTORY YAZILIMI İLE BİLGİSAYAR DESTEKLİ ŞEBEKE MODELİ COMPUTER ADDED

Detaylı

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ ELECTRICAL PEAK LOAD FORECASTING IN KÜTAHYA WITH ARTIFICIAL NEURAL NETWORKS. Y. ASLAN * & C. YAŞAR * & A. NALBANT * * Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi Dumlupınar Üniversitesi,

Detaylı

Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org Determination Of Breast Cancer Using ANN Armağan Ebru Temiz 1 1 Sakarya Üniversity Elektronic-Computer Education

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı BAÜ Fen Bil. Enst. Dergisi Cilt 13(1) 88-101 (2011) Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı Gürkan TUNA 1 Trakya Üniversitesi, Edirne

Detaylı

Tiroid Hastalığının Teşhisinde Parçacık Sürü Optimizasyonu ile Yapay Sinir Ağının Hibrit Kullanımı

Tiroid Hastalığının Teşhisinde Parçacık Sürü Optimizasyonu ile Yapay Sinir Ağının Hibrit Kullanımı 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Tiroid Hastalığının Teşhisinde Parçacık Sürü Optimizasyonu

Detaylı

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması th International Advanced Technologies Symposium (IATS 11), 1-1 May 211, Elazığ, Turkey Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması M. Kesler

Detaylı

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU *Yasin CANTAŞ 1, Burhanettin DURMUŞ 2 1 Sakarya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ADAPAZARI KENTSEL ATIKSU ARITMA TESĐSĐ ÇIKIŞ SUYU PARAMETRELERĐ VE VERĐM DEĞERLERĐNĐN

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu :

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : ÖZGEÇMİŞ 1. Adı Soyadı : Olcay Taner Yıldız 2. Doğum Tarihi : 15.05.1976 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Boğaziçi Üniversitesi 1997 Y.

Detaylı

SİMÜLASYON-YAPAY SİNİR AĞI İLE ESNEK ÜRETİM SİSTEMİ TASARIMI

SİMÜLASYON-YAPAY SİNİR AĞI İLE ESNEK ÜRETİM SİSTEMİ TASARIMI Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 18, No 2, 31-38, 2003 Vol 18, No 2, 31-38, 2003 SİMÜLASYON-YAPAY SİNİR AĞI İLE ESNEK ÜRETİM SİSTEMİ TASARIMI Akif KURT Endüstri Mühendisliği

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Derece Alan Üniversite Yıl Lisans Elektrik Mühendisliği Yıldız Teknik Üniversitesi 1994 Y. Lisans Elektronik

Derece Alan Üniversite Yıl Lisans Elektrik Mühendisliği Yıldız Teknik Üniversitesi 1994 Y. Lisans Elektronik ÖZGEÇMİŞ 1. Adı Soyadı : Ramazan ÇOBAN 2. Doğum Tarihi : 17 Mart 1973 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Elektrik Mühendisliği Yıldız Teknik Üniversitesi 1994 Y.

Detaylı

Parçacık Sürü Optimizasyonu İle Küme Sayısının Belirlenmesi

Parçacık Sürü Optimizasyonu İle Küme Sayısının Belirlenmesi Parçacık Sürü Optimizasyonu İle Küme Sayısının Belirlenmesi Yasin ORTAKCI 1, Cevdet GÖLOĞLU 2 1 Karabük Üniversitesi, Bilgisayar Mühendisliği Bölümü, Karabük 2 Karabük Üniversitesi, Makine Mühendisliği

Detaylı

Erdem Işık Accepted: January 2011. ISSN : 1308-7231 erdemis@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

Erdem Işık Accepted: January 2011. ISSN : 1308-7231 erdemis@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 2011, Volume: 6, Number: 1, Article Number: 1A0140 ENGINEERING SCIENCES Received: October 2010 Erdem Işık Accepted: January 2011 Mustafa İnallı Series

Detaylı

ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ

ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ S.Ü. Müh.-Mim. Fak. Derg., c.21, s.1-2, 2006 J. Fac.Eng.Arch. Selcuk Univ., v.21, n.1-2, 2006 ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ Ömer

Detaylı

Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi

Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi ISSN: 2148-0273 Cilt 3, Sayı 1, 2015 Vol. 3, Issue 1, 2015 Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi Halil Kaygısız 1, Abdülkadir Çakır 2 Özet Çift Tonlu Çoklu Frekans (Dual Tone Multi

Detaylı

BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI

BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI M. Emin YÜKSEL 1 Alper BAŞTÜRK 1 M. Tülin YILDIRIM 2 1 Erciyes Üniversitesi, Mühendislik Fakültesi, Elektronik

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

Günlük Buharlaşmanın Yapay Sinir Ağları Kullanarak Tahmin Edilmesi *

Günlük Buharlaşmanın Yapay Sinir Ağları Kullanarak Tahmin Edilmesi * İMO Teknik Dergi, 2007 4119-4131, Yazı 271 Günlük Buharlaşmanın Yapay Sinir Ağları Kullanarak Tahmin Edilmesi * Emrah DOĞAN* Sabahattin IŞIK** Mehmet SANDALCI*** ÖZ Yapay sinir ağlarının (YSA) hidroloji

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI

ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI A. BAHAR, E. GÜNER, C. ÖZGEN Department of Chemical Engineering, Middle East Technical University,

Detaylı

Yapay Sinir Ağları Kullanarak, Bilgisayar Ağlarında Saldırı Tespit Sistemi ve Başarımlarının İncelenmesi

Yapay Sinir Ağları Kullanarak, Bilgisayar Ağlarında Saldırı Tespit Sistemi ve Başarımlarının İncelenmesi ISSN: 2146-8168 Sayı: 11, Yıl: 2015, Sayfa: 21-40 http://bilader.gop.edu.tr Dergiye Geliş Tarihi: 22.06.2015 Yayına Kabul Tarihi: 18.08.2015 Baş Editör: Bilge Hilal ÇADIRCI Alan Editörü: Levent GÖKREM

Detaylı

TORNALAMA İŞLEMİNDE KESME KUVVETLERİNİN VE TAKIM UCU SICAKLIĞININ YAPAY SİNİR AĞI İLE TAHMİN EDİLMESİ

TORNALAMA İŞLEMİNDE KESME KUVVETLERİNİN VE TAKIM UCU SICAKLIĞININ YAPAY SİNİR AĞI İLE TAHMİN EDİLMESİ 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS 09), 13-15 Mayıs 009, Karabük, Türkiye TORNALAMA İŞLEMİNDE KESME KUVVETLERİNİN VE TAKIM UCU SICAKLIĞININ YAPAY SİNİR AĞI İLE TAHMİN EDİLMESİ PREDICTION

Detaylı

ELMAN AĞININ BENZETİLMİŞ TAVLAMA ALGORİTMASI KULLANARAK EĞİTİLMESİ

ELMAN AĞININ BENZETİLMİŞ TAVLAMA ALGORİTMASI KULLANARAK EĞİTİLMESİ Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19 (1-2), 28-37, 23 ELMAN AĞININ BENZETİLMİŞ TAVLAMA ALGORİTMASI KULLANARAK EĞİTİLMESİ Adem KALINLI Erciyes Üniversitesi, Kayseri Meslek Yüksek Okulu,

Detaylı

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 211, Elazığ, Turkey Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini S. Yıldız 1, Y. Bölükbaş

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

MERMER KESME İŞLEMİNDE KESİM SÜRESİNİN YAPAY SİNİR AĞI TABANLI MODELLENMESİ

MERMER KESME İŞLEMİNDE KESİM SÜRESİNİN YAPAY SİNİR AĞI TABANLI MODELLENMESİ 9 SDU International Technologic Science pp. 9-16 Constructional Technology MERMER KESME İŞLEMİNDE KESİM SÜRESİNİN YAPAY SİNİR AĞI TABANLI MODELLENMESİ Uğur Güvenç, Mustafa Dursun, Hasan Çimen Özet Doğrusal

Detaylı

Kablosuz Ağ Kapsaması için YSA(Yapay sinir Ağ) Modeli Kullanılarak Propagasyon Kayıplarının Hesaplanması

Kablosuz Ağ Kapsaması için YSA(Yapay sinir Ağ) Modeli Kullanılarak Propagasyon Kayıplarının Hesaplanması Kablosuz Ağ Kapsaması için YSA(Yapay sinir Ağ) Modeli Kullanılarak Propagasyon Kayıplarının Hesaplanması Umut Bulucu 1 Aktül Kavas 1 Nortel Networks NETAŞ Alemdağ cad. Ümraniye-İstanbul ubulucu@hotmail.com

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

BOĞAZİÇİ ÜNİVERSİTESİ MEKATRONİK UYGULAMA VE ARAŞTIRMA MERKEZİ FAALİYET RAPORU

BOĞAZİÇİ ÜNİVERSİTESİ MEKATRONİK UYGULAMA VE ARAŞTIRMA MERKEZİ FAALİYET RAPORU BOĞAZİÇİ ÜNİVERSİTESİ MEKATRONİK UYGULAMA VE ARAŞTIRMA MERKEZİ FAALİYET RAPORU MERKEZDE YÜRÜTÜLEN PROJELER Proje Adı Yürütücüsü Desteklendiği Fon Başlangıç Tarihi Durumu EUMECHA-PRO European Mechatronics

Detaylı

Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini

Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini International Journal of Research and Development, Vol.3, No., January 20 28 Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini İbrahim EKE Gazi Üniversitesi Mühendislik

Detaylı

İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının Belirlenmesi

İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının Belirlenmesi Fırat Üniv. Mühendislik Bilimleri Dergisi Firat Univ. Journal of Engineering 27(1), 35-42, 2015 27(1), 35-42, 2015 İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının

Detaylı

Güç Transformatörü Uç Empedans Eğrisinin Yapay Sinir Ağları Yardımıyla Kestirimi

Güç Transformatörü Uç Empedans Eğrisinin Yapay Sinir Ağları Yardımıyla Kestirimi Politeknik Dergisi Journal of Polytechnic Cilt: 7 Sayı: 3 s.185-189, 2004 Vol: 7 No: 3 pp. 185-189, 2004 Güç Transformatörü Uç Empedans Eğrisinin Yapay Sinir Ağları Yardımıyla Kestirimi İlhan KOŞALAY*,

Detaylı

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI Oğuz KAYNAR * Serkan TAŞTAN ** ÖZ Bu çalışmada zaman serisi analizinde yaygın olarak kullanılan Box-Jenkis modelleri

Detaylı

Uzmanlık Tezi Sunumu AKARÇAY HAVZASINDA ÇÖZÜNMÜŞ OKSİJEN DEĞERLERİNİN YAPAY SİNİR AĞLARI İLE BELİRLENMESİ

Uzmanlık Tezi Sunumu AKARÇAY HAVZASINDA ÇÖZÜNMÜŞ OKSİJEN DEĞERLERİNİN YAPAY SİNİR AĞLARI İLE BELİRLENMESİ AKARÇAY HAVZASINDA ÇÖZÜNMÜŞ OKSİJEN DEĞERLERİNİN YAPAY SİNİR AĞLARI İLE BELİRLENMESİ Uzmanlık Tezi Sunumu Bekir YILMAZ 13.07.2015 11:00 Su Yönetimi Genel Müdürlüğü [Bakanlık 19.Kat Toplantı Salonu 201507131100]

Detaylı

Parçacık Sürü Optimizasyonu ile Yapay Sinir Ağları Eğitimine Dayalı Bir Esnek Hesaplama Uygulaması

Parçacık Sürü Optimizasyonu ile Yapay Sinir Ağları Eğitimine Dayalı Bir Esnek Hesaplama Uygulaması Süleyman Demirel Üniversitesi Fen Bilimleri nstitüsü Dergisi Suleyman Demirel University Journal of Natural and Applied Science 17(2), 39-45, 2013 Parçacık Sürü Optimizasyonu ile Yapay Sinir Ağları ğitimine

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-1 Yıl: 2014 1-18

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-1 Yıl: 2014 1-18 LAZERLE KESMENİN DENEYSEL ANALİZİ VE YAPAY SİNİR AĞLARI YÖNTEMİ İLE MODELLENMESİ EXPERIMENTAL ANALYSIS OF THE LAZER CUTTING AND MODELING WITH ARTIFICIAL NEURAL NETWORK METHOD Bekir ÇIRAK 1 ve Zülfünaz

Detaylı

Anestezi Derinliği için Kullanılan Parametrelerin Etki Seviyelerinin Belirlenmesi

Anestezi Derinliği için Kullanılan Parametrelerin Etki Seviyelerinin Belirlenmesi Akademik Bilişim 2008 Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, 30 Ocak - 01 Şubat 2008 Derinliği için Kullanılan Parametrelerin Hamdi Melih SARAOĞLU Dumlupınar Üniversitesi, Elektrik Elektronik

Detaylı

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2004 CİLT 1 SAYI 4 (55-60) YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA Okyay KAYNAK Boğaziçi Üniversitesi Mühendislik Fakültesi

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 017101 (174 185) AKU J. Sci. Eng. 16 (2016) 017101 (174

Detaylı

A. SCI ve SCIE Kapsamındaki Yayınlar

A. SCI ve SCIE Kapsamındaki Yayınlar A. SCI ve SCIE Kapsamındaki Yayınlar A.1. Erilli N.A., Yolcu U., Egrioglu E., Aladag C.H., Öner Y., 2011 Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks.

Detaylı

Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org Maksimum Doğrultucu Moment Kolu Analizinin Bulanık Mantık ve Sinirsel Bulanık Mantık Kullanılarak Yapılması Ahmet

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

Parçacık Sürü Optimizasyonunda Yeni Bir Birey Davranış Biçimi Önerisi

Parçacık Sürü Optimizasyonunda Yeni Bir Birey Davranış Biçimi Önerisi Parçacık Sürü Optimizasyonunda Yeni Bir Birey Davranış Biçimi Önerisi Ö. Tolga ALTINÖZ A. Egemen YILMAZ Endüstriyel Elektronik Bölümü, Bala Meslek Yüksekokulu, Hacettepe Üniversitesi, Ankara Elektronik

Detaylı

Problemlerine Geliştirilmiş Parçacık

Problemlerine Geliştirilmiş Parçacık Çankaya University Journal of Science and Engineering Volume 9 (2012), No. 2, 89 106 Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemlerine Geliştirilmiş Parçacık Sürü Optimizasyonu Yaklaşımı Serdar

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı : Ömer AKGÖBEK Doğum Tarihi : 01.01.1970 Unvanı : Yardımcı Doçent Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Endüstri Mühendisliği İstanbul

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEZGİSEL ALGORİTMA ÖĞRENMELİ YAPAY SİNİR AĞLARI İLE EPİLEPSİ HASTALIĞININ TEŞHİSİ Nesibe YALÇIN YÜKSEK LİSANS TEZİ Bilgisayar Mühendisliği Anabilim Dalı

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Yapay Sinir Ağları ile Kısa Dönem Profil Katsayısı Tahmini. Short-term Profile Coefficient Forecasting Using Artificial Neural Network

Yapay Sinir Ağları ile Kısa Dönem Profil Katsayısı Tahmini. Short-term Profile Coefficient Forecasting Using Artificial Neural Network 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Yapay Sinir Ağları ile Kısa Dönem Profil Katsayısı

Detaylı

Matematiksel Optimizasyon ve Yapay Öğrenme

Matematiksel Optimizasyon ve Yapay Öğrenme Matematiksel Optimizasyon ve Yapay Öğrenme İlker Birbil Sabancı Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Endüstri Mühendisliği Programı Veri Bilimi İstanbul Buluşma 14 Şubat, 2017 Optimizasyon

Detaylı

Regresyon Analizi Kullanılarak Kısa Dönem Yük Tahmini. Short-Term Load Forecasting using Regression Analysis

Regresyon Analizi Kullanılarak Kısa Dönem Yük Tahmini. Short-Term Load Forecasting using Regression Analysis ELECO '0 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 9 Kasım - 0 Aralık 0, Bursa Regresyon Analizi Kullanılarak Kısa Dönem Yük i Short-Term Load Forecasting using Regression Analysis Hüseyin

Detaylı

Yerçekimsel Arama Algoritması ile PID Denetleç Parametrelerinin Tespiti PID Controller Parameters' Optimization Using Gravitational Search Algorithm

Yerçekimsel Arama Algoritması ile PID Denetleç Parametrelerinin Tespiti PID Controller Parameters' Optimization Using Gravitational Search Algorithm Yerçekimsel Arama Algoritması ile PID Denetleç Parametrelerinin Tespiti PID Controller Parameters' Optimization Using Gravitational Search Algorithm Nesibe Yalçın 1, Semih Çakır 2, Metin Kesler 1, Nihan

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

Yapay Sinir Ağı Tabanlı Modülasyon Tanıma Sistemlerinde Kullanılan Eğitim Algoritmalarının Karşılaştırmalı Başarım Analizi

Yapay Sinir Ağı Tabanlı Modülasyon Tanıma Sistemlerinde Kullanılan Eğitim Algoritmalarının Karşılaştırmalı Başarım Analizi Yapay Sinir Ağı Tabanlı Modülasyon Tanıma Sistemlerinde Kullanılan Eğitim Algoritmalarının Karşılaştırmalı Başarım Analizi Büşra ÜLGERLİ, Gökay YÜCEL, Ahmet ALTUN, Engin ÖKSÜZ, Ali ÖZEN Nuh Naci Yazgan

Detaylı

Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden Sistem Modeli Tasarımı Design of Lower Order System Model Using Evolutionary Algorithms

Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden Sistem Modeli Tasarımı Design of Lower Order System Model Using Evolutionary Algorithms 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden

Detaylı

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 6 Sayı 1-2, (2002), 45-54 İNCE CİDARLI ÜP SİSEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ Ömer KELEŞOĞLU *, Adem FIRA ÖZE Bu çalışmada, tüp sistemlerin

Detaylı

İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü

İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 10-3 (006),447-451 İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü Ömer KELEŞOĞLU, Adem FIRAT Fırat Üniversitesi,

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

Yük Tahmini İçin Hibrit (YSA ve Regresyon) Model. Hybrid Model for Load Forecasting (ANN and Regression)

Yük Tahmini İçin Hibrit (YSA ve Regresyon) Model. Hybrid Model for Load Forecasting (ANN and Regression) Yük Tahmini İçin Hibrit (YSA ve Regresyon) Model Fatih Onur Hocaoğlu, *Kübra Kaysal, Ahmet Kaysal Afyon Kocatepe Üniversitesi Mühendislik Fakültesi, Afyonkarahisar Özet Teknolojinin hızla gelişmesi enerji

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Cihan KARAKUZU Doğum Tarihi: 15 Ekim 1971 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Elektronik ve Haberleşme Mühendisliği Yıldız Üniversitesi

Detaylı

Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini

Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini 23 Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini Hasbi YAPRAK ve Abdulkadir KARACI Kastamonu University, Kastamonu, 37100 Türkiye, Kastamonu

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr Öz: Yapay sinir ağları birçok basit elemanın birleşmesinden oluşmuş paralel bağlantılı

Detaylı

MANYETİK FİLTRE VE DÜZENLERİNİN YAPAY SİNİR AĞLARI İLE KONTROLÜ THE MAGNETIC FILTER AND SYSTEMS CONTROLED BY ARTIFICIAL NEURAL NETWORK

MANYETİK FİLTRE VE DÜZENLERİNİN YAPAY SİNİR AĞLARI İLE KONTROLÜ THE MAGNETIC FILTER AND SYSTEMS CONTROLED BY ARTIFICIAL NEURAL NETWORK 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS 9), 3-5 Mayıs 29, Karabük, Türkiye MANYETİK FİLTRE VE DÜZENLERİNİN YAPAY SİNİR AĞLARI İLE KONTROLÜ THE MAGNETIC FILTER AND SYSTEMS CONTROLED BY ARTIFICIAL

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '01 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 9 Kasım - 01 Aralık 01, Bursa Sıcaklık Verisi Olmadan Kısa Dönem Yük Tahmini İçin Yapay Zeka Tabanlı Melez Yapılar Artificial Intelligence

Detaylı

YAPAY SİNİR AĞLARI TABANLI SİLİNDİRİK DÜZ DİŞLİ ÇARK TASARIMI

YAPAY SİNİR AĞLARI TABANLI SİLİNDİRİK DÜZ DİŞLİ ÇARK TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2007 : 13 : 3 : 387-395

Detaylı

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI 1 ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI Erhan ÇETİN 1 *, Mehmet Fatih IŞIK 2, Halil AYKUL 1 1 Hitit Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü,Çorum

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

DENGELİ ELEKTRİK GÜÇ SİSTEMİ VERİLERİNİ KULLANARAK DENGESİZ SİSTEM KAYIPLARININ YAPAY SİNİR AĞLARI İLE BELİRLENMESİ

DENGELİ ELEKTRİK GÜÇ SİSTEMİ VERİLERİNİ KULLANARAK DENGESİZ SİSTEM KAYIPLARININ YAPAY SİNİR AĞLARI İLE BELİRLENMESİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2005 : 11 : 1 : 47-52

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 5, SAYI: 1, OCAK 2012 19 Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi Kerim Kürşat ÇEVİK 1, Emre DANDIL 2 1 Bor Meslek Yüksekokulu,

Detaylı

Murat Yavuz Solmaz Accepted: January 2011. ISSN : 1308-7231 mysolmaz@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

Murat Yavuz Solmaz Accepted: January 2011. ISSN : 1308-7231 mysolmaz@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 2011, Volume: 6, Number: 1, Article Number: 1A0130 ENGINEERING SCIENCES Received: October 2010 Murat Yavuz Solmaz Accepted: January 2011 Oğuz Yakut

Detaylı

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 897-904, 2011 Vol 26, No 4, 897-904, 2011 YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Yeşim OK *, Mehmet ATAK

Detaylı

DENEYSEL BİR ORGANİK RANKİNE ÇEVRİMİNDE YAPAY SİNİR AĞLARI (YSA) YARDIMIYLA GÜÇ TAHMİNİ

DENEYSEL BİR ORGANİK RANKİNE ÇEVRİMİNDE YAPAY SİNİR AĞLARI (YSA) YARDIMIYLA GÜÇ TAHMİNİ SUJEST, c.4, s.1, 2016 SUJEST, v.4, n.1, 2016 ISSN: 2147-9364 (Elektronik) DENEYSEL BİR ORGANİK RANKİNE ÇEVRİMİNDE YAPAY SİNİR AĞLARI (YSA) YARDIMIYLA GÜÇ TAHMİNİ 1 Hasan Hüseyin BİLGİÇ, 2 Hüseyin YAĞLI,

Detaylı

Antakya Bölgesi Rüzgar Hızı Verisinin Yapay Sinir Ağı ve Çoklu Lineer Regresyon Yaklaşımı Yöntemleri ile Tahmini

Antakya Bölgesi Rüzgar Hızı Verisinin Yapay Sinir Ağı ve Çoklu Lineer Regresyon Yaklaşımı Yöntemleri ile Tahmini EEB Elektrik-Elektronik ve Bilgisayar Sempozyumu, - Mayıs, Tokat TÜRKİYE Antakya Bölgesi Rüzgar Hızı Verisinin Yapay Sinir Ağı ve Çoklu Lineer Regresyon Yaklaşımı Yöntemleri ile i Hasan Hüseyin BİLGİÇ

Detaylı

Otomatik Doküman Sınıflandırma

Otomatik Doküman Sınıflandırma Otomatik Doküman Sınıflandırma Rumeysa YILMAZ, Rıfat AŞLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Aydın rumeysa2903@gmailcom, rasliyan@aduedutr, kgunel@aduedutr

Detaylı