LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ"

Transkript

1 LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha fazla kullanırlar. Bunun nedenleri VE-Değil, VEYA-Değil kapılarının üretiminin daha kolay olması ve bütün sayısal mantık ailelerinde kullanılan temel kapılar olmasıdır. VE, VEYA ve DEĞİL kapıları ile verilen Boolean fonksiyonlarını eşdeğer VE-Değil ve VEYA-Değil mantık şemalarına dönüştürmek gerekir. Aşağıdaki Tabloda DeMorgan teoremleri temel dönüşümleri göstermektedir. VE-DEĞİL LOJİK DİYAGRAMLAR Karnough haritaları ile elde edilen sadeleştirilmiş eşitliklerin VE-Değil (NAND) lojik diyagramlarına dönüştürülmesi için: I. Karnough haritası çarpımların toplamı formunda sadeleştirilir. II. Elde edilen sadeleşmiş eşitlikte terimler birden fazla değişkenli VE ifadelerinden oluşuyorsa her bir terimin VE-Değil eşdeğeri yazılır. III. VE-Değile dönüştürülmüş terimler değiştirilmeden terimler arasındaki VEYA ifadeleri fonksiyonun değili alınarak VE ifadelerine dönüştürülür. IV. İfadenin bir daha değili alınarak gerçek fonksiyona ulaşılır. Aşağıda verilen lojik fonksiyonu VE-Değil kapılarını kullanarak gerçekleştirin Q(A,B,C)=Σ(1,2,3,4,5,7) Fonksiyon çarpımların toplamı formunda sadeleştirilir. Sadeleşmiş fonksiyon şu şekilde olacaktır:

2 İfadenin bir kez değili alınırsa ifade içerisindeki bütün VEYA işlemleri VE işlemine, VE işlemleri ise VE-Değil işlemine dönüşecektir, ifadenin bir kez daha değili alınarak fonksiyon VE-Değil olarak ifade edilebilir.

3 VEYA-DEĞİL LOJİK DİYAGRAMLAR Karnough haritaları ile elde edilen sadeleştirilmiş eşitliklerin VEYA-Değil (NOR) lojik diyagramlarına dönüştürülmesi için: I. Karnough haritası toplamların çarpımı formunda sadeleştirilir. II. Elde edilen sadeleşmiş eşitlikte terimler birden fazla değişkenli VE ifadelerinden oluşuyorsa her bir terimin VE- Değil eşdeğeri yazılır. III. VE-Değile dönüştürülmüş terimler değiştirilmeden terimler arasındaki VEYA ifadeleri fonksiyonun birkez değil alınarak VE ifadelerine dönüştürülür. IV. İfadenin birkez değili alınarak gerçek fonksiyona ulaşılır. Aşağıda verilen lojik fonksiyonu VE-Değil kapılarını kullanarak gerçekleştirin Q(A,B,C)=Π(0,1,2,4,6,7) Fonksiyon toplamların çarpımı formunda sadeleştirilir. Elde edilen ifade gerçek fonksiyonun değilidir. İfade içindeki VE li terimlerin VEYA-Değil karşılıları yazılır. ifade edilebilir. olacaktır. İfadenin bir kez daha değili alınarak fonksiyon VEYA-değil olarak

4 DİKKATE ALINMAYAN (DON T CARE) DURUMLAR Bir doğruluk tablosunda giriş değişkenlerinin durumlarına bağlı olarak çıkış değişkeninin aldığı durumlar (1 veya 0) devreye ait fonksiyon için önemlidir. Karnough haritası yardımı ile lojik ifade elde edilirken genellikle çıkış ifadesinin 1 olduğu durumlar uygun bileşkelere alınır. Haritadaki diğer durumlarda fonksiyon çıkış ifadesinin 0 olduğu kabul edilir. Bu kabullenme her zaman doğru değildir. Örneğin dört bitle ifade edilen BCD kodu 0-9 arasındaki rakamlar için ifade edilir. Geri kalan altı durum hiç kullanılmayacaktır. Bu durumların hiçbir zaman olmayacağı varsayılarak fonksiyonun daha ileri düzeyde sadeleşmesi için bu durumları önemli dikkate alınmayan (don t care) durumlar olarak tanımlayabiliriz Dikkate alınmayan durumları Karnough haritası üzerinde 1 olarak göstermek giriş değişkenlerinin aldığı bu durumda fonksiyonun daima 1 olacağı anlamına gelir ki bu doğru değildir. Aynı şekilde 0 yazmakta fonksiyonun daima 0 olduğu anlamına gelecektir. Dikkate alınmaz durumlar Karnough haritasında X ile gösterilecektir. Dikkate alınmaz durumlar eğer sadeleştirme için uygun bileşkeler oluşmasını sağlıyorsa 1, sadeleştirme işleminde işe yaramıyorsa 0 kabul etmek, fonksiyonu en basit haline indirgemede kullanışlıdır. Önemli olan hangi durumun en basit ifadeyi verdiğidir. Bununla beraber dikkate alınmaz durumlar hiç kullanılmayabilir. Burada yapılacak şeçim hangisinin indirgemeye fayda sağladığıdır. Aşağıda verilen Boolean fonksiyonlarını sadeleştiriniz. Q(A,B,C,D)=Σ(1,5,9,11,13) dikkate alınmaz durumlar ise d(a,b,c,d)=σ(0,2,8,15) Burada Q fonksiyonun 1 yapan minterimleri, d ise dikkate alınmaz durumlara ait minterimleri vermektedir. Terimleri Karnough haritasın aktararak sadeleştirme işlemini yapalım.

5 Sadeleştirme işleminde bileşkeler oluşturulabilecek en fazla kareden oluşmuştur. Dikkate alınmaz durumların tümünü veya bir kısmın dahil etmek zorunluluğu yoktur. Sadece herhangi bir sadeleştirme işleminde yararlı olanlar kullanılmıştır. Yapılan sadeleştirme işleminde m15. minterime ait dikkate alınmaz durum kullanılmış diğer durumlar kullanılmamıştır. Sadeleştirilmiş ifade olsaydık; olacaktır. Dikkat edilirse eğer dikkate alınmaz durumu indirgemede kullanmamış olacaktır.

6 SAYISAL DEVRE TASARIMI Sayısal devre tasarımında dikkat edilmesi gereken nokta, tasarım istenen devrenin çalışmasının anlaşılmasıdır. Devrenin çalışması, yani girişlerin durumuna bağlı olarak çıkışın ne olması gerektiğinin belirlenmesi gerekmektedir. Bu durumlara bağlı olarak doğruluk tablosu hazırlanır. Doğruluk tablosundan elde edilen bu değerler Karnough haritaları yardımı ile sadeleştirildikten sonra devre çizilerek tasarım tamamlanır. Bir sayısal devrenin çalışması dört anahtarla kontrol edilecektir. Eğer anahtarlardan sadece herhangi ikisi kapalı ise devre çıkışının 1, diğer bütün durumlarda devre çıkışının 0 olması istenmektedir. Gerekli devreyi tasarlayınız. Devre tasarlanırken yapılacak ilk işlem devrenin kaç giriş değişkenine sahip olduğunun bulunmasıdır. Sayısal devrenin çalışması dört anahtarla kontrol edilmek isteniyorsa giriş değişken sayısı dört tane olmak zorundadır. Bu değişkenleri A,B,C ve D harfleri ile gösterelim. Bu üç anahtar devrenin çalışmasını kontrol edilecektir. Gerekli koşul sağlandığı zaman devre çıkışının 1,geri kalan diğer bütün durumlarda devre çıkışının 0 olması istenmektedir. Bu durumda çıkış ifadesi bir değişkenle tanımlanmalıdır. Devre çıkışını Q harfi ile gösterelim. Bu durumda devreye ait doğruluk tablosu aşağıdaki gibi olacaktır. Lojik ifade: olacaktır. En son adım olarak devre çizilerek tasarım tamamlanır.

7

BÖLÜM - 5 KARNOUGH HARITALARI

BÖLÜM - 5 KARNOUGH HARITALARI ÖLÜM - 5 KRNOUGH HRITLRI KRNOUGH HRITLRI oolean fonksiyonlarını teoremler,kurallar ve özdeşlikler yardımı ile indirgeyebileceğimizi bir önceki bölümde gördük. ncak yapılan bu sadeleştirme işleminde birbirini

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 DENEYİN ADI: LOJİK FONKSİYONLARIN SADECE TEK TİP KAPILARLA (SADECE NAND (VEDEĞİL), SADECE NOR (VEYADEĞİL)) GERÇEKLENMESİ VE ARİTMETİK İŞLEM DEVRELERİ

Detaylı

Mantık Devreleri Laboratuarı

Mantık Devreleri Laboratuarı 2013 2014 Mantık Devreleri Laboratuarı Ders Sorumlusu: Prof. Dr. Mehmet AKBABA Laboratuar Sorumlusu: Emrullah SONUÇ İÇİNDEKİLER Deney 1: 'DEĞİL', 'VE', 'VEYA', 'VE DEĞİL', 'VEYA DEĞİL' KAPILARI... 3 1.0.

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi BÖLÜM 4 (Boolean lgebra and Logic Simplification) maçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Başlıklar Booleron Kurallarını

Detaylı

Minterm'e Karşı Maxterm Çözümü

Minterm'e Karşı Maxterm Çözümü Minterm'e Karşı Maxterm Çözümü Şimdiye kadar mantık sadeleştirme problemlerine Çarpımlar-ın-Toplamı (SOP) çözümlerini bulduk. Her bir SOP çözümü için aynı zamanda Toplamlar-ın-Çarpımı (POS) çözümü de vardır,

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-6 28.03.2016 Lojik Kapılar (Gates) Lojik devrelerin en temel elemanı, lojik kapılardır. Kapılar, lojik değişkenlerin değerlerini

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Sayısal Elektronik Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine

Detaylı

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ İkili Kodlama ve Mantık Devreleri Özer Çelik Matematik-Bilgisayar Bölümü Kodlama Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Mantık Devreleri EEE307 5 3+0 3 3 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ

SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ Prof. Dr. Avni Morgül İÇİNDEKİLER ÖNSÖZ LABORATUVAR KURALLARI ii iii. Deney: LOJİK KAPILAR 2. Deney: LOJİK KAPILAR İLE TASARIM 6 3. Deney: YARIM VE TAM TOPLAMA

Detaylı

BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR

BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR OOLE ERİ 54 YILINDA GEORGE OOLE, LOJİĞİ SİSTEMATİK OLARARAK ELE ALIP OOLE ERİNİ GELİŞTİRDİ. 93 DE.E. SHANNON ANAHTARLAMA ERİNİ GELİŞTİREREK OOLE ERİNİN ELEKTRİKLİ ANAHTARLAMA DEVRELERİNİN ÖZELLİKLERİNİ

Detaylı

BÖLÜM 6. Karnaugh (Karno) Haritaları. (Karnaugh Maps) Amaçlar. Başlıklar

BÖLÜM 6. Karnaugh (Karno) Haritaları. (Karnaugh Maps) Amaçlar. Başlıklar Karnaugh (Karno) Haritaları ÖLÜM 6 (Karnaugh Maps) maçlar Lojik eşitliklerin sadeleştirilmesinde kullanılan Karnaugh Haritası yönteminin tanıtılması İki-üç-dört değişkenli Karnaugh Haritalarının hücrelerin

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-4 07.03.2016 Standart Formlar (CanonicalForms) Lojik ifadeler, çarpımlar toplamı ya da toplamlar çarpımı formunda ifade

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak DENEY #1 LOJİK KAPILAR Deneyin Amacı : Lojik kapılarının doğruluk tablosunu oluşturmak Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Switch ve LED 3) Çeşitli Değerlerde Dirençler ve bağlantı kabloları

Detaylı

Lojik Devre Laboratuvarı

Lojik Devre Laboratuvarı 1. Deney ödev soruları 1. Verilen devreyi sadece NAND kapıları kullanarak gerçekleyin. 2. Verilen devreyi sadece NAND kapıları kullanarak gerçekleyin. 3. Verilen devreyi sadece NOR kapıları kullanarak

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ LOJİK DEVRELER ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

1 ELEKTRONİK KAVRAMLAR

1 ELEKTRONİK KAVRAMLAR İÇİNDEKİLER VII İÇİNDEKİLER 1 ELEKTRONİK KAVRAMLAR 1 Giriş 1 Atomun Yapısı, İletkenler ve Yarı İletkenler 2 Atomun Yapısı 2 İletkenler 3 Yarı İletkenler 5 Sayısal Değerler (I/O) 8 Dalga Şekilleri 9 Kare

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER ARDIŞIL DEVRELER TANIM: ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ, GİRİŞLERİN YANLIZA O ANKİ DEĞERİNE BAĞLI OLAN DEVRELER KOMBİNASYONEL DEVRELER OLARAK İSİMLENDİRİLİR. ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ,

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003 BÖLÜM : ANALOG VE SAYISAL KAVRAMLAR ELK-28 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 23 Öğretim Üyesi: Yrd. Doç. Dr. Şevki DEMİRBAŞ e@posta : demirbas@gazi.edu.tr

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 TEMEL LOJİK ELEMANLAR VE UYGULAMALARI DENEY SORUMLUSU Arş. Gör. Erdem ARSLAN Arş. Gör.

Detaylı

Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) ÖLÜM 5 maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE, VEY ve DEĞİL işlemlerini tanıtıp, temel işlemleri gerçekleştirmek

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL ELEKTRONİK DERS NOTU. Doç. Dr. Ünal KURT. Arş. Gör. Ayşe AYDIN YURDUSEV

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL ELEKTRONİK DERS NOTU. Doç. Dr. Ünal KURT. Arş. Gör. Ayşe AYDIN YURDUSEV ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL ELEKTRONİK DERS NOTU Doç. Dr. Ünal KURT Arş. Gör. Ayşe AYDIN YURDUSEV 2 SAYISAL ELEKTRONİK ÖNSÖZ Bu kitapçıkta, Amasya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı T.C. Maltepe Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı Dersin Sorumlusu Yrd. Doç. Dr. Zehra Çekmen

Detaylı

5. LOJİK KAPILAR (LOGIC GATES)

5. LOJİK KAPILAR (LOGIC GATES) 5. LOJİK KPILR (LOGIC GTES) Dijital (Sayısal) devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilmektedir. Her lojik kapının bir çıkışı, bir veya birden fazla girişi vardır.

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 5. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. Birleşik Mantık Tanımı X{x, x, x, x n,}}

Detaylı

Pursaklar İMKB Teknik ve Endüstri Meslek Lisesi

Pursaklar İMKB Teknik ve Endüstri Meslek Lisesi E. Ö. Yılı: 013 014 Sınıf: 10. Sınıflar Okul Türü: EML ve ATL Dal: Ortak Modül 1: Doğru Akım ve Devreleri Eylül 3 (1) Elektrik kazalarına karşı alınacak tedbirleri kavrar. Elektrik çarpması durumunda alınacak

Detaylı

NEAR EAST UNIVERSITY LOJİK DEVRELER BMT 110 DERS NOTLARI

NEAR EAST UNIVERSITY LOJİK DEVRELER BMT 110 DERS NOTLARI NEAR EAST UNIVERSITY LOJİK DEVRELER DERS NOTLARI BMT 110 2016 İÇİNDEKİLER 1. SAYI SİSTEMLERİ 2. SAYI SİSTEMLERİ ARASINDAKİ DÖNÜŞÜMLER 3. SAYILARIN TÜMLENMESİ 4. SAYILARIN KODLANMASI 5. LOJİK KAPILAR, LOJİK

Detaylı

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEYİN AMACI 1. Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak. GENEL BİLGİLER Toplama devreleri, Yarım Toplayıcı (YT) ve

Detaylı

VE DEVRELER LOJİK KAPILAR

VE DEVRELER LOJİK KAPILAR ÖLÜM 3 VE DEVELEI LOJIK KPIL VE DEVELE LOJİK KPIL Sayısal devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilir. ir lojik kapı bir çıkış, bir veya birden fazla giriş hattına

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

n. basamak... 4. basamak 3. basamak 2. basamak 1. basamak Üstel değer 10 n-1... 10 3 10 2 10 1 10 0 Ağırlık 10 n-1...

n. basamak... 4. basamak 3. basamak 2. basamak 1. basamak Üstel değer 10 n-1... 10 3 10 2 10 1 10 0 Ağırlık 10 n-1... KAYNAK : http://osmanemrekandemir.wordpress.com/ SAYI SISTEMLERI Decimal(Onlu) Sayı sistemi günlük hayatta kullandığım ız 0,1,2,3,4,5,6,7,8,9 rakamlarından oluşur. Decimal(Onlu) Sayı sisteminde her sayı

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL MANTIK TEMELLERİ LABORATUARI DENEY FÖYLERİ KİTAPÇIĞI Sayfa 0 İçindekiler Laboratuarda Uyulması Gereken Kurallar... 2 Deneylerde Kullanılacak Ekipmanların

Detaylı

Temel Mantık Kapıları

Temel Mantık Kapıları Temel Mantık Kapıları Tüm okurlara mutlu ve sağlıklı bir yeni yıl diliyorum. Bu ay, bu güne kadar oynadığımız lojik değerleri, mantık kapıları ile kontrol etmeyi öğreneceğiz. Konuya girmeden önce, henüz

Detaylı

BİLİŞİM TEKNOLOJİLERİ

BİLİŞİM TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ ARİTMETİK DEVRELER Ankara, 2013 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya

Detaylı

Boolean Cebiri 1.

Boolean Cebiri 1. Boolean Cebiri 1 Boolean cebiri elektronik devre tasarımının temel matematiğidir. Tüm elektronik çipler, -ki buna bilgisayardaki CPU (mikroişlemcisi) de dahildir- boolean matematiğine dayanmaktadır. Boolean

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ SAYISAL DEVRE UYGULAMALARI Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ İÇİNDEKİLER ŞEKİLLER TABLOSU... vi MALZEME LİSTESİ... viii ENTEGRELER... ix 1. Direnç ve Diyotlarla Yapılan

Detaylı

(Random-Access Memory)

(Random-Access Memory) BELLEK (Memory) Ardışıl devreler bellek elemanının varlığı üzerine kuruludur Bir flip-flop sadece bir bitlik bir bilgi tutabilir Bir saklayıcı (register) bir sözcük (word) tutabilir (genellikle 32-64 bit)

Detaylı

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü Elektrik Elektronik Mühendisliği Bölümü BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi)

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 1 7 Parçalı Gösterge

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 1 7 Parçalı Gösterge SAYISAL DEVRE TASARIMI LABORATUVARI- DENEY TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU Deney No: 7 Parçalı Gösterge Yrd. Doç Dr. Ünal KURT Yrd.

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Sayısal Elektronik Ders No : 0690220088 Teorik : 2 Pratik : 1 Kredi : 2.5 ECTS : 3 Ders Bilgileri Ders Türü Öğretim Dili

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 4. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar Boole Cebiri Uygulamaları Standart Formlar Standart Formlar: Sop ve Pos Formlarının Birbirlerine Dönüştürülmesi

Detaylı

1. DENEY-1: DİYOT UYGULAMALARI

1. DENEY-1: DİYOT UYGULAMALARI . DENEY-: DİYOT UYGULAMALARI Deneyin Amacı: Diyotun devrede kullanımı.. DC ileri/geri Öngerilim Diyot Devreleri: Şekil. deki devreyi kurunuz. Devreye E = +5V DC gerilim uygulayınız. Devrenin çıkış gerilimini

Detaylı

SAYISAL ELEKTRONĠK DERS NOTLARI: SAYISAL (DĠJĠTAL) ELEKTRONĠK

SAYISAL ELEKTRONĠK DERS NOTLARI: SAYISAL (DĠJĠTAL) ELEKTRONĠK SAYISAL ELEKTRONĠK DERS NOTLARI: SAYISAL (DĠJĠTAL) ELEKTRONĠK Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine rağmen

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU : İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU : İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU DENEYİN ADI : İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER RAPORU HAZIRLAYAN : BEYCAN KAHRAMAN Toplam yedi (

Detaylı

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi ) ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) (Proje, İş Yeri ) Kredisi Bu derste, her türlü asenkron ve senkron elektrik makinalarının uçlarının bulunması, devreye bağlanması ve çalıştırılması

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

Görsel Programlama DERS 03. Görsel Programlama - Ders03/ 1

Görsel Programlama DERS 03. Görsel Programlama - Ders03/ 1 Görsel Programlama DERS 03 Görsel Programlama - Ders03/ 1 Java Dili, Veri Tipleri ve Operatörleri İlkel(primitive) Veri Tipleri İLKEL TİP boolean byte short int long float double char void BOYUTU 1 bit

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

Mantıksal İfadelerin Karnough Haritası Yöntemiyle En Basite İndirgenmesi için Bir Yazılım Geliştirilmesi

Mantıksal İfadelerin Karnough Haritası Yöntemiyle En Basite İndirgenmesi için Bir Yazılım Geliştirilmesi Akademik Bilişim 07 - IX. Akademik Bilişim Konferansı Bildirileri 31 Ocak - 2 Şubat 2007 Dumlupınar Üniversitesi, Kütahya Mantıksal İfadelerin Karnough Haritası Yöntemiyle En Basite İndirgenmesi için Bir

Detaylı

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir.

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Değişkenler 1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Örnek Kullanım : sayı değer= 3; sayı sayı1; 2- ondalık - Ondalık sayıları ifade etmek için

Detaylı

BİLİŞİM TEKNOLOJİLERİ

BİLİŞİM TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ ARİTMETİK DEVRELER 523EO0025 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri

Detaylı

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler Bilgisayar Mühendisliğine Giriş 2 Elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir. 5. KOMBİNEZONSAL LOJİK DEVRE TASARIMI 5.1. Kombinezonsal Devre Tasarımı 1. Problem sözle tanıtılır, 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır, 3. Probleme ilişkin doğruluk tablosu

Detaylı

ALGORİTMALAR. Turbo C Bilgisayarda Problem Çözme Adımları. Bilgisayarda Problem Çözme Adımları.

ALGORİTMALAR. Turbo C Bilgisayarda Problem Çözme Adımları. Bilgisayarda Problem Çözme Adımları. Turbo C ++ 3.0 ALGORİTMALAR http://vaibhavweb.tripod.com/others/tc3.zip http://www.top4download.com/turbo-c- /aklqwuba.html 1 2 Bilgisayarda Problem Çözme Adımları Bilgisayarda Problem Çözme Adımları 1-Problemi

Detaylı

Veritabanı Tasarımı. Basit Eşleme: Dönüşüm İşlemi

Veritabanı Tasarımı. Basit Eşleme: Dönüşüm İşlemi Veritabanı Tasarımı Basit Eşleme: Dönüşüm İşlemi Amaç Bu ders aşağıdaki hedefleri kapsamaktadır: Kavramsal model ile fiziksel modeli ayırt etme İki model arasındaki terminoloji eşleşmesini uygulama Tablolar

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

DENEY 1a- Kod Çözücü Devreler

DENEY 1a- Kod Çözücü Devreler DENEY 1a- Kod Çözücü Devreler DENEYİN AMACI 1. Kod çözücü devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kod çözücü, belirli bir ikili sayı yada kelimenin varlığını belirlemek için kullanılan lojik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

Mikrobilgisayarda Aritmetik

Mikrobilgisayarda Aritmetik 14 Mikrobilgisayarda Aritmetik SAYITLAMA DİZGELERİ Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Konumuz bu tarihi gelişimi incelemek değildir. Kullanılan sayıtlama

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN:

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN: ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ DENEYİ YAPANLAR Grup Numara Ad Soyad RAPORU HAZIRLAYAN: Deneyin Yapılış Tarihi Raporun Geleceği Tarih Raporun

Detaylı

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi Deneyin Amacı: Temel kapı devrelerinin incelenmesi, deneysel olarak kapıların gerçeklenmesi ve doğruluk tablolarının elde edilmesidir. Deney Malzemeleri:

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ TEMEL MANTIK DEVRELERİ 522EE0245 Ankara, 2012 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı