GÜZ YARIYILI MALZEME I

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2011-2012 GÜZ YARIYILI MALZEME I"

Transkript

1 GÜZ YARIYILI MALZEME I Dislokasyonlar 1

2 DİSLOKASYONLAR Dislokasyonlar çizgisel hatalardır. Teorisi 1930 lu yıllarda geliştirilmiştir. Deneysel olarak 1950 li yıllarda elektron mikroskoplarında kanıtlanmıştır. Malzemelerin mukavemeti ve tokluğu bu kusurla kontrol edilir. Türleri : Kenar Dislokasyonu Vida Dislokasyonu Karışık Dislokasyonlar Kırık Dislokasyonlar (Kink ve Jog) 2

3 DİSLOKASYONLAR Kenar Dislokasyonu Kenar dislokasyonu, kafes içinde atomların bir ekstra yarı düzlemi olarak düşünülür (Şekil 6.1). Çizgisel bir kusurdur, çünkü kafeste üretilen kusurlu noktaların geometrik yeri bir çizgi boyunca uzanır (ekstra yarı alanın altı boyunca). Şekil 6.1 deki dislokasyon içeren kristale kayma gerilmesi, t uygulandığında, atomların ekstra yarı düzlemi sağa doğru itilir ve kristalin dış yüzeyine çıkarak bir kayma çizgisinin başlangıcını oluşturur. 3

4 Şekil 6.1. Kenar dislokasyonu ekstra yarı düzlem kayma düzlemi dislokasyon çizgisi 4

5 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Dislokasyon hareketinin etkisi Şekil 6.2 de gösterilmiştir. Bir kayma gerilmesi altında tüm atomlar küçük bir miktar ötelendiğinde, ekstra yarı düzlem bir kafes parametresi a kadar itilerek 1 konumundan 2 konumuna yerleşir. Atomların ektra yarı düzleminin 2 konumuna kaydırılması ile, düzlemin tüm değişik atomlardan oluştuğu görülür. Ekstra düzlem artık 1L atomları yerine 1R atomlarından oluşur. Böylece, ekstra düzlem tam bir a mesafesi ile kaydırılmış olur. Bu hareketle beraber dislokasyonun çevresinde sınırlı ve bir göl üzerinde oluşan dalga hareketine benzer yöresel bir bozunum görülür. 5

6 Şekil 6.2. Kenar dislokasyonu hareketine bağlı olarak atom hareketleri 6

7 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Dislokasyon hareketine benzer hareketler ; Yerdeki halıyı çekerken Yatak düzeltirken Solucanın hareketi (Şekil 6.3a) Yılanın hareketi (Şekil 6.3b) vb. Şekil 6.3. Dislokasyon hareketine benzeyen doğal hareketler 7

8 8

9 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Dislokasyon hareketi için enerji gereksinimi Şekil 6.2 deki atom hareketi bir merkez doğru üzerinden simetriktir ; 1L atomunun hareketi 1R atomunun hareketine eşit ve zıt yönde 2L atomunun hareketi 2R atomunun hareketine eşit ve zıt yönde 3L atomunun hareketi 3R atomunun hareketine eşit ve zıt yönde Sonuç olarak bu harekette bağları gerdirme için gerekli enerji, bağları kısaltan enerji tarafından dengelenir. İlk yaklaşımda dislokasyonu hareket ettirme enerjisinin sıfır olacağı söylenebilir. Dislokasyon hareketleri çok düşük kayma gerilmesinde gerçekleşir. 9

10 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Dislokasyon hareketi için enerji gereksinimi (devamı) Şekil 6.4 dislokasyon hareketlerinin sonlu bir kayma gerilmesine gereksinimini açıklar. Dislokasyonla ilgili enerji 1 ve 2 pozisyonlarında aynıdır, ara konumda ise artar. Dislokasyonu 1 ve 2 pozisyonlarındaki simetrik konumlarından çıkarmak için mutlaka bir kuvvete ihtiyaç vardır. Dislokasyonu hareket ettirmek için gerekli bu kuvvete Peierls-Nabarro kuvveti denir. 10

11 Şekil 6.4. Kenar dislokasyonunun konumu ile enerji değişimi 11

12 Üstteki sıkı paket düzlemin sağa doğru bir başka sıkı paket pozisyonuna kayabilmesi için kararsız bir durumdan geçmesi gerekir. 12

13 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Şekil 6.5 de kenar dislokasyonu için değişik bir yaklaşım verilmiştir. Tek bir kristalin sağ üst tarafına bir kuvvet uygulandığında, kuvvet sağ taraftaki yüzeyin üstündeki atomların bir atom mesafesi kadar sola kaymalarını sağlar. Sol taraftaki yüzeyin üstündeki atomlar sola kaymadıkları için bu hareket bir ekstra düzlem üretir. Şekil 6.5. Kenar dislokasyonu 13

14 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Kavramlar Dislokasyon çizgisi : Kristal içinde biten ve atomların ekstra düzleminin kenarı boyunca uzayan çizgi. Kayma düzlemi : Kayma vektörü ve dislokasyon çizgisi tarafından saptanan kafes düzlemi. Eğer dislokasyon, kayma vektörü yönünde hareket ederse bu hareket kayma ile gerçekleşiyor denir ve dislokasyon çizgisi kayma düzlemi boyunca hareket eder. Sembol : Kenar dislokasyonları, genelde dikey işaret ile sembolize edilir,. İşaret yukarı yönü gösteriyorsa, ekstra düzlem kayma yüzeyinin üstünde bulunur ve dislokasyon pozitif olarak adlandırılır. İşaret aşağı yönü gösteriyorsa,, ekstra düzlem kayma yüzeyinin altında bulunur ve dislokasyon negatif olarak adlandırılır. Kayma vektörü : Kayma vektörü genellikle Burgers vektörü olarak adlandırılır ve Şekil 6.6 da gösterildiği gibi belirlenir. 14

15 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Burgers vektörünün belirlenmesi (Şekil 6.6) : 1) Dislokasyon çizgisi boyunca pozitif bir yön seçilir (keyfi). 2) Şekildeki gibi dislokasyon çizgisine dik bir düzlem oluşturulur. 3) Bu alanda dislokasyon çizgisi çevresinde bir yol belirlenir ve birbirine dik 4 karşılıklı yönde kafes vektörü kadar hareket edilir. Saat yönünde dislokasyon çizgisi etrafında çevrim gerçekleştirilir (Burgers döngüsü). 4) Bu işlemde çevrimin kapanmaması bir dislokasyon göstergesidir. Burgers vektörü, döngüde kapatımı oluşturan vektördür ve kayma vektörüne denktir. 15

16 Şekil 6.6. Kenar dislokasyonu ve ilgili Burgers döngüsü 16

17 Kenar Dislokasyonu 17

18 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Kenar dislokasyonunun hareketleri : Kayma hareketi : Dislokasyon çizgisi Burgers vektörü yönünde hareket eder. Tırmanma hareketi : Dislokasyon çizgisi Burgers vektörüne dik hareket eder (Şekil 6.7). Bu hareket ile ekstra yarı alan uzar veya kısalır. 18

19 Şekil 6.7. Kenar dislokasyonunun tırmanma hareketi Ekstra yarı düzlem kısalır (pozitif tırmanma) 19

20 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Tırmanma Hareketi, kayma hareketinden daha fazla enerji gerektirir, çünkü tırmanma hareketinde boşyerlerin yer değiştirmesi gerekir. Pozitif tırmanma ektra yarı alanın boyunu kısaltır Negatif tırmanma ekstra yarı alanın boyunu uzatır Pozitif tırmanma boşyerlerin yok olmasına neden olur. Negatif tırmanma boşyer oluşumuna yol açar. Baskı gerilmesi pozitif tırmanmaya neden olur. Çekme gerilmesi negatif tırmanmaya neden olur. 20

21 Şekil 6.8. Kenar dislokasyonunun kayma hareketi ile oluşan kafes yer değişimi Dislokasyon geçişinin net etkisi olarak, kayma gerilmesi ile kristalin üst tarafı alt tarafına göre bir b vektörü kadar kayar. Sonuç olarak kayma düzleminin üst tarafındaki atomlar alt taraftakilere göre bir b vektörü kadar ötelenir. 21

22 DİSLOKASYONLAR Kenar Dislokasyonu (devamı) Kenar dislokasyonunun özellikleri (özet) : Kenar dislokasyonları atomların bir ekstra düzlemi olarak görülür. Burgers vektörü dislokasyon çizgisine düşey (dik) konumdadır. Kayma düzlemi, dislokasyon çizgisi ve Burgers vektörü ile belirlenir. Kayma hareketi, kayma yüzeyinin üstündeki atomların, kayma yüzeyinin altındaki atomlara oranla bir Burgers vektörü miktarında yer değiştirmesine neden olur. Tırmanma hareketi, ekstra yarı düzlemin boyutunun değişimiyle ortaya çıkar ve boşyerin yok edilmesi veya oluşturulması ile bağlantılıdır. 22

23 DİSLOKASYONLAR Vida Dislokasyonu Geometrik olarak tasarımı daha zordur yılında Burgers tarafından bulunmuştur. Şekil 6.9(a) da gösterildiği gibi bir plakanın kenarına karşılıklı bir kayma gerilmesi uygulandığında plaka yırtılır. Bu yırtılma Şekil 6.9(b) de gösterildiği gibi düzlemsel açılmaya neden olur. Şekil 6.9. Vida dislokasyonu 23

24 DİSLOKASYONLAR Vida Dislokasyonu (devamı) Şekil 6.9(b) de plakanın üst yarısı, alt yarısına göre sabit bir kayma vektörü ile kayma düzlemleri üzerinden kaymıştır. Vida dislokasyon çizgisi, kaymanın öncü kenarındadır ve kayma vektörüne paraleldir (kenar dislokasyonunun tersine). Vida dislokasyonu dislokasyon çizgisi boyunca S harfi ile sembolize edilir. Şekil 6.10, bu tür dislokasyona neden vida denildiğini açıklar. 24

25 Vida Dislokasyonu Kayma gerilmesi sonucunda kristalin üst kısmı bir atom mesafesi kadar ötelenir. 25

26 Şekil (a) Vida dislokasyonu ile helisel yer değişimi (b) Vida dislokasyonu için Burgers halkası/devresi sağ el vida dislokasyonu Bir silindirin merkezine doğru hareket eden vida dislokasyonu gösterilmiştir. Silindirin eksenine dik ve b mesafesi ile birbirinden ötelenmiş düzlemler dislokasyon hareketi sonucu bir spiral çizgisi oluşturacak şekilde birbirine bağlanır, bu da bir vida dişidir. 26

27 Kenar Dislokasyonu 27

28 Vida Dislokasyonu 28

29 DİSLOKASYONLAR Vida Dislokasyonu (devamı) Vida dislokasyonunun özellikleri (özet) : Burgers vektörü dislokasyon çizgisine paraleldir. Bu nedenle hem çizgi, hem de b vektörünü belirlemek, kenar dislokasyonundaki gibi kayma düzlemini belirlemekle eşanlamlı değildir. Kayma hareketi, dislokasyon çizgisinin kayma yönüne dik açılarda hareketine neden olur. Bu nedenle çizginin hareketi hem gerilme vektörüne, hem de gerilme sonucu oluşan kaymaya dik açıdadır. Dislokasyonu atomların ekstra düzlemi olarak göstermek imkansızdır. Dislokasyon çizgisinin ilerlemesi, kayma düzleminde karşılıklı oturan atomların birbirlerine oranla bir b vektörü hareketine neden olur. 29

30 Dislokasyon hareketinin yönü Kenar dislokasyonunun kayma hareketinde dislokasyon çizgisi uygulanan gerilmeye paralel hareket eder. 30

31 Dislokasyon hareketinin yönü Vida dislokasyonunun kayma hareketinde dislokasyon çizgisi uygulanan gerilmeye dik hareket eder. 31

32 Şekil Kayma düzleminin değişmesi (a) Kenar dislokasyonunda kayma düzleminin değişmesi (ekstra düzlemin dönmesi gerekli) Kayma düzlemi (ABCD) boyunca sağa hareket eden bir kenar dislokasyonu kayma düzlemini değiştirirse (AEFD), yeni kayma düzlemi boyunca kayma hareketi için ekstra düzlemin dönmesi gerekir. Bu difuzyon gerektirir, yavaştır, enerji gerektirir. 32

33 Şekil Kayma düzleminin değişmesi; (b) Vida dislokasyonunda kayma düzleminin değişmesi (ekstra düzlem yok, rahatlıkla daha az enerji harcayan kayma düzlemine geçebilir) Vida dislokasyonu, herhangi bir ekstra düzlem içermez, bu nedenle kayma düzlemlerinde sınırlama yoktur. 33

34 DİSLOKASYONLAR Vida Dislokasyonu (devamı) Herhangi bir kayma düzleminde hareket eden bir kenar dislokasyonu takıldığında, takılma gerilmesini aşarak veya tırmanarak hareketini devam ettirir. Her iki durumda da enerji gerekir. Bir vida dislokasyonu takıldığında ise kayma hareketini, bu düzlemi kesen başka bir kayma düzlemi üzerinde (daha düşük bir enerji harcaması ile) devam ettirir. 34

35 Şekil Makroskopik deformasyon (şekil değişimi) oluşumu (a, b ve c sonucu) Çizginin hareketi kaymaya paralel Çizginin hareketi kaymaya dik Çekme gerilmesi ile eksra düzlem uzar (negatif tırmanma) 35

36 Kenar Vida Kenar ve vida dislokasyonlarının kayma hareketi aynı çıkıntıyı oluşturur! 36

37 Kayma hareketi sonucu makroskopik deformasyon Kenar Vida 37

38 DİSLOKASYONLAR Karışık Dislokasyonlar Burgers vektörünün çizgiye dik olduğu durumda dislokasyon saf kenar dislokasyonudur. Burgers vektörünün çizgiye paralel olduğu durumda dislokasyon saf vida dislokasyonudur. Burgers vektörü ile çizgi arasında oluşan diğer açılarda dislokasyon karışık bir dislokasyondur. 38

39 DİSLOKASYONLAR Karışık Dislokasyonlar (devamı) Şekil 6.13(a) da bir dislokasyon hareketi başlangıcının üretildiği görülür. Oluşan girinti, tüm A-C-B düzlemi üstünde bulunan atomların aşağıdaki atomlara göre bir kayma vektörüyle ötelenmesine neden olur. Atomların bu ötelenmelerinin sınırı, kristal içerisinde A dan C ye giden eğridir. Bu durum Şekil 6.13(b) de üstten gösterilmiştir. Kaymanın sınırını oluşturan bu eğri dislokasyon çizgisidir. Kayma vektörü her yerde aynı değerdedir, böylece dislokasyon çizgisinin b vektörü bu çizgi boyunca her noktada aynı değerdedir. Şekil 6.13(b) den A tarafında dislokasyonun saf vida, C tarafında ise saf kenar olduğu ve arasında karışık olduğu görülür. Karışık bir dislokasyon bir kenar komponentine ve bir vida komponentine ayrılır; bu doğrultuda dislokasyonun kenar ve vida karakteri olarak tanımlanır. 39

40 Şekil Karışık dislokasyon 40

41 DİSLOKASYONLAR Karışık Dislokasyonlar (devamı) Karışık dislokasyonun geometrisinin tasarımı oldukça zordur. Şekil 6.14 te bir önceki şeklin üstten bakışını sunmaktadır. İçi boş daireler kayma düzleminin hemen üstündeki atomları, içi koyu noktalar ise hemen altındaki atomları gösterir. Şekilde C konumunda saf bir kenar dislokasyonunun, A noktasında saf bir vida dislokasyonunun ve arasında karışık bir dislokasyonun üstten görünüşü verilmiştir. 41

42 Şekil Atom pozisyonlarını gösteren karışık dislokasyona üstten bakış (A kenarı: saf vida, C kenarı: saf kenar, A-C arası: karışık, o : kayma düzleminin hemen üzerindeki atomlar, i : kayma düzleminin hemen altındaki atomlar) 42

43 Karışık Dislokasyon 43

44 DİSLOKASYONLAR Kırık Dislokasyonlar Dislokasyonlar çoğu zaman dislokasyon çizgilerinde birkaç atom mesafesi boyutunda keskin kırıklar (geçişler) içerir. Bu kırılmalara Kink ve Jog adı verilir. Dislokasyon çizgisini kayma düzlemi dışına hareket ettiren keskin kırılma Dislokasyon çizgisini kayma düzlemi dışına hareket ettirmeyen keskin kırılma Jog Kink 44

45 Şekil Kenar (a) ve vida (b) dislokasyonunda Kink ve Jog Kenar dislokasyonunda kink segmenti vida, jog segmenti kenar Vida dislokasyonunda kink segmenti kenar, jog segmenti kenar 45

46 Bir kenar dislokasyonunun jog segmentinin tırmanması 46

47 DİSLOKASYONLAR Kırık Dislokasyonlar (devamı) Jog ve kink segmentlerinin kristal içi ileri-geri hareketleri tüm dislokasyonun ilerlemesine neden olabilir. Örneğin, Şekil 6.15(a) daki kink segmentinin okuyucuya doğru hareketi kenar dislokasyonunun sağa doğru hareketine neden olurken, jog segmentinin okuyucuya doğru hareketi pozitif tırmanmaya neden olur. 47

48 DİSLOKASYONLAR Dislokasyon Halkası Bir dislokasyon çizgisi kristal içinde sona eremez. Bu nedenle dislokasyon çizgileri serbest yüzeylerde veya tane sınırı gibi iç yüzeylerde sonlanır veya halkalar oluşturur. Şekil 6.16a da dairesel bir dislokasyon halkası ile kayma düzlemi görülür. Dislokasyon 4 belirli nokta (b vektörünün çizgiye dik olduğu iki nokta ve b vektörünün çizgiye paralel olduğu iki nokta) hariç karışık bir dislokasyondur. Şekilde b vektörü yönünde bir çift kayma gerilmesi uygulandığında; 1. Dislokasyon çizgisi, çizgiye dik olarak tüm yönlerde -çizgiye dik açılardaki oklarla belirtilen kayma hareketi nedeniyle- genişler. 2. Dislokasyon kristalin dış kenarlarına vardığında net etkinin kristalin üst kısmının alt kısmına göre bir b vektörü miktarındaki kayması olduğu görülür (Şekil 6.16b). 48

49 Şekil Dairesel dislokasyon halkasının ve kayma gerilmesi etkisiyle bitiş konumunun gösterilmesi 49

50 DİSLOKASYONLAR Dislokasyon Halkası (devamı) Hatasız bir kristalde böyle bir dislokasyon halkası üretimi Şekil 6.17 de gösterilmiştir. Şekilde bu halka, kayma düzlemi üstü ve iç kare içindeki tüm atomların düzlem altı atomlara göre bir b vektörü kaydırarak üretilmiştir. Bu kaymanın sınırlarını çizen kayma düzlemi üstü tüm noktalarının matematiksel yeri dislokasyon çizgisidir; bu da bu durumda bir karesel halkadır. Kayma düzlemine dik olan B-B düzleminde kaymanın atomlara etkisi ise Şekil 6.18 de görülmektedir. Bu kayma, B-B düzlemi birbirinden ayırmaya çalışır. I ve II de üretilen dislokasyonlar ise her iki durumda vida dislokasyonudur. Bu dislokasyonların kayma hareketi sonucu çizgileri direkt birbirlerinden uzaklaşarak kristalin dış kenarlarına hareket eder. 50

51 Şekil Karesel dislokasyon halkası 51

52 Şekil B-B atom düzlemine dislokasyon halkası girişinin efekti Şekilde görüldüğü gibi dislokasyon çizgisinin pozitif yönü seçildiğinde her iki dislokasyonun Burgers çevrimleri aynı b vektörünü verir. Her iki dislokasyon, aynı kayma ile üretildikleri için aynı b vektörüne sahiptir. Burada dislokasyon I sağ el vida, II ise sol el vidadır. 52

53 DİSLOKASYONLAR Dislokasyon Halkası (devamı) A-A düzlemindeki atomların üzerine kafes kayma etkisine bakıldığında bu kaymanın IV de kayma düzlemi üstünde bir ekstra düzlem ürettiğini ve III te kayma düzlemi altında bir ekstra düzlemi geride bıraktığını görürüz (Şekil 6.19). Bu iki kenar dislokasyonunun ters yönde olması sonucu uygulanan kayma gerilmesi altında birbirinden uzaklaşarak kristalin kenarlarına doğru hareket ederler. Şekil 6.17 de dislokasyon çizgisi için seçilen pozitif anlamlı hareketi kullanarak Şekil 6.19 dan her iki dislokasyonun gerektiği şekilde aynı b vektörünü ürettiğini görürüz. Dislokasyon III, kristal kenarına gelince ekstra düzlem kayma düzleminin altında dışarı çıkar ve dislokasyon IV, kristal kenarına gelince ekstra düzlem kayma düzleminin üstünde dışarı çıkar. Aynı kayma gerilmesi dislokasyon III ve IV ün, ve yine aynı tarzda dislokasyon I ve II nin birbirinden uzaklaşmasına neden olur, çünkü her iki çift karşıt anlamlıdır (karşıt yöne hareket eder). 53

54 Şekil A-A atom düzleminde dislokasyon halkası girişiminin efekti 54

55 55

56 DİSLOKASYONLAR Reel Kristallerde Hareketli Dislokasyonlar Her metalde katılaşma sonrası b vektörleri değişik birçok dislokasyon bulunmaktadır. Kararlı dislokasyonların b vektörü bir atomdan en yakın komşu atoma uzanır. Bu dislokasyonlara birim dislokasyon denir. Birim dislokasyonların enerjisi, b vektörlerinin sıkı paketlenmiş yön boyunca uzanması durumunda en düşük olma eğilimindedir. Genelde en düşük enerjili dislokasyonlar en hareketlilerdir ve kayma hareketini tanımlarlar. Kayma en yoğun düzlemlerde olur. 56

57 YMK Kristal Kayma Sistemi : <110>{111} Burgers Vektörü : a/2<110> 57

58 HMK Kristal Kayma Sistemi : <111>{110} <111>{211} <111>{321} Burgers Vektörü : a/2<111> 58

59 Tablo 6.1. (a) Tipik real kafeslerde hareketli dislokasyonlar ve kayma sistemleri 59

60 Tablo 6.1. (b) Tipik kafes yapıları ve bunların kayma düzlemleri, doğrultuları ve sistemleri 60

61 DİSLOKASYONLAR Dislokasyonların Belirlenmesi ve Görüntülenmesi Dağlama Çukurcuğu Tekniği Dislokasyonu bir kafes hatası olarak tanımladığımız için yüzeye çıkan bir dislokasyon çizgisinin çevresinde bozunum olur. Şekil 6.20 de te sunulan ışık mikroskopu görüntüsünde dağlanan yer, yani çukurcuk oluşumu dislokasyon çizgilerinin yüzeyle kesiştiği yerdir, çünkü bu kesitin çevresindeki atomik bozunum nedeniyle buradaki atomları çözündürmek daha kolay olmaktadır. Şekil 6.21 şematik olarak bu etkiyi göstermektedir. 61

62 Şekil LiF kristalinde dağlama çukurcukları 62

63 Şekil Dağlama tekrarlanmasıyla LiF kristalinden elde edilen dislokasyon hareketi 63

64 DİSLOKASYONLAR Dislokasyonların Belirlenmesi ve Görüntülenmesi (devamı) İnce Filmlerinin Transmisyon Elektron Mikroskopunda (TEM) Görüntülenmesi Transmisyon elektron mikroskobunda (TEM) dislokasyonun yakınındaki kafes düzlemlerinin yöresel eğilmesi, -elektron demeti incelenen metal film ile uygun açı yaptığında- orada yöresel kırınıma (difraksiyon) neden olur (Şekil 6.22 a ve b). Böylece dislokasyon, difraksiyon kontrast mekanizması nedeniyle görüntüde karanlık çizgi olarak görünüyor (Şekil 6.23). Şekil 6.23a da şematik olarak gösterilen metal numunesi hacminde arka sol tarafta bir dizilim hatası ve önde sağ tarafta ince filmin üstünden altına uzanan 3 dislokasyon görülmektedir. Şekil 6.23b de numunenin TEM görüntüsü yine şematik olarak verilmiştir. Şekil 6.24 de sunulan reel bir TEM görüntüsünde ikincil faz taneleri arası hareket eden dislokasyon çizgisi görüntülenmiştir. 64

65 Şekil (a) Bragg Kuralı: n. = 2.d hkl.sin n=1, 2, 3, 65

66 Şekil (b) Dislokasyon nedenli difrakte olarak geçirilen ışın 66

67 Şekil Transmisyon Elektron Mikroskobunda oluşturulan dislokasyonlar ve dizilim hatalarının görüntüleri 67

68 Şekil Ni-Alaşımı, TEM Görüntüsü, değişik dislokasyon içeren tane yapısı 68

69 Ti Alaşımında Dislokasyonların TEM Görüntüsü 51,450 x 69

70 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi Hatasız bir kafeste atomlar denge konumlarında bulunurlar. Bir çekme gerilmesi, uygulandığında atomlar denge konumlarından yavaşça ayrılır ve bu atomlararası mesafenin artmasına çekme testinde uzama (genelde gerinme) denir. Görüldüğü gibi dışarıdan uygulanan herhangi bir kuvvet sonucu atomlar denge konumlarından uzaklaştığında daima bir gerinme oluşur; bu gerinmeyi oluşturan enerjiye elastik gerinme enerjisi denir. Bir metali uzatırken ne kadar enerjiye ihtiyaç duyduğumuzu belirlemek amacıyla l uzunluğunda ve A kesitinde silindirik bir çubuğa çekme testi uygularız. Test sonucu Şekil 6.25 te tek eksenli çekmede yalnızca elastik (kalıcı olmayan şekil değiştirme) alan için gerilme-gerinme diyagramında verilmiştir. 70

71 Şekil Gerilme-Gerinme (uzama) ilişkisi 71

72 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) Gerilme : Gerinme : de F F A d d d A d Alan = Hacım/Uzunluk V d Uzama Enerjisi : de V d Birim hacım başına uzama enerjisi : HOOK Kanunu : E V 0 d E V d 0 σ Eε 72

73 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) Tek eksenli çekme, basma : Basit kayma : E V 1 2 σε Eε E V 1 2 τγ Gγ Kafeste basit bir gerilme, olduğu durumlarda bunun hacım başına bir gerinme enerjisi,olduğu görülür. Kafesi bozundurduğu ve çevresinde gerinme etkisinde bulunduğu için dislokasyonun ilgili bir gerinme enerjisi vardır. Kafesi bozunduran her hata kafeste gerinme alanı oluşturur. 73

74 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) Dislokasyonun kafeste yarattığı atomik öteleme hareketi dislokasyon çizgisinde maksimum seviyededir. Dislokasyon çizgisinde r o lık bir yarıçap içerisinde öteleme hareketi yeterince büyük olduğu için Hook kuralı artık geçerli değildir; bu nedenle dislokasyon enerjisi iki kısma ayrılır: E = E merkez +E gerinme E merkez merkez enerjisi olarak adlandırılır ve öteleme hareketi yeterince büyük olduğu için Hook kuralı artık geçerli olmadığı yöreye (gerinmenin aşırı yüksek olduğu yöre) atfedilir. 74

75 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) Vida dislokasyonu yalnızca basit kayma gerinmesi içerir ve bu nedenle onun uzama enerjisi için basit bir yaklaşım yapılabilir. Bu analiz silindirik diferansiyel bir hacim elemanında gerçekleştirilir (Şekil 6.26a) Bu hacım elemanı merkeze doğru ilerleyen bir vida dislokasyonunun ürettiği çıkıntı b yi içerir. Önce kayma gerinmesinin açısal değişim miktarı, belirlenir. b 2 r 75

76 t G DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) 1 de tdv 2 b/2r 2r dr L E L 0 de L r r 0 2 Gb 4 dr r E L vida Gb 4 2 ln r r 0 E L merkez Birimi : J/cm 76

77 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) E L kenar 2 Gb 4 (1 ) ln r r 0 E L merkez... Poissonsayısı enine boyuna ( d ( L 0 1 d L 1 0 ) ) d L G 2, G E 2. 6 Elastisite Modülü Kayma Modülü 77

78 DİSLOKASYONLAR Elastik Enerji ve Dislokasyon Enerjisi (devamı) Formüllerden bir dizi sonuç çıkarılabilir: Dislokasyonun gerinme enerjisi ln r a doğru orantılı olduğu için bunun yarıçapla yavaşça büyüdüğü görülür. Bu nedenle dislokasyonlar uzun düzen bir gerinme alanına sahiptir. Merkez enerji ile ilgili olarak yürütülen yaklaşımlar bunun toplam enerjinin 1/5 i (r10-4 cm koşulunda) olduğunu gösterir; bu nedenle merkez enerjisi dikkate alınmaz. Dislokasyonun gerinme enerjisi Burgers vektörün karesine doğru orantılı olduğu için metal kristallerindeki kararlı dislokasyonlar, en düşük gerinme enerjisine sahip olmaları nedeniyle en düşük b vektörüne sahiptir. Sabun köpüğünün daima küre şeklinde olması, küresel şeklin sabit hacım başına minimum yüzeyi üretmesi nedeniyledir. Yüzey alanının küçülmesiyle köpüğün yüzey enerjisi azalmış olur. Benzer şekilde dislokasyonun uzunluk başına sahip olduğu enerji çizgi enerjisi olarak adlandırılır. Buradan iki nokta arası düz bir dislokasyonun bükümlü bir dislokasyona göre daha az enerjiye sahip olacağı ve böylece doğrusal bir dislokasyonun daha kararlı olacağı anlaşılır. 78

79 DİSLOKASYONLAR Dislokasyon Üzerindeki Kuvvetler ve Çizgi Gerilmesi Dislokasyon halkalarının hareketlerinde dışardan uygulanan bir kayma gerilmesinin dislokasyon çizgisinin bu çizgiye dik olarak dışarı doğru hareketini sağlar. Bu hareketi dislokasyon kendisine dik normal bir kuvvet uygulanması doğrultusunda sağlar. Bu kuvvet, F ile dislokasyonu birim bir uzunluk miktarında hareket ettirmek için gerekli iş ; F dw dl Şekil 6.27a da benzer bir örnek mekanikten verilmiştir. Görüntüde verilen kütleyi X mesafesi boyunca hareket ettirebilmek için gerekli iş ; W = t. (kütle alanı). X. 79

80 Şekil (a) Kayma gerilmesiyle yüzey üstü bir kütlenin hareketi ve (b) Dislokasyon çizgi segmenti (ds) nin dl mesafesi kadar hareketi. Şekil 6.27b de verilen ds uzunluğundaki dislokasyon segmentini (parçası) dl uzunluğu kadar kaymasına neden olacak bir kayma gerilmesi uygulandığında bu çizgi segmentinin hareketi, da alanının üstündeki kristalin üst kısmını alt kısmına göre bir b vektörü kadar kaydırır. Mekanik kütlenin hareketine benzerlik doğrultusunda bu segmenti hareket için gerekli iş ; dl.ds dw t dab kayma vektörü yönündeki kayma gerilmesi komponenti 80

81 DİSLOKASYONLAR Dislokasyon Üzerindeki Kuvvetler ve Çizgi Gerilmesi (devamı) dw d F ds tds b F d tb Burada F d birim uzunluğa binen kuvvettir. Bu ilişki, bir kayma gerilmesi, t segmenti etkisi altında b vektörü yönünde bir dislokasyonun hissettiği birim uzunlukta etki eden kuvveti verir. Bu kuvvet kayma düzleminde dislokasyon üzerine daima dik olarak etki eder. Örneğin Şekil 6.28 de gösterildiği gibi bir vida dislokasyonunda çizgi üzerine binen kuvvet, F d = t.b kayma gerilmesi yönünde dik açıyla etki eder. F Bir kenar dislokasyonunda tırmanmaya neden olan, birim uzunluğa etki eden kuvvet: F d =.b, burada :çekme/basma gerilmesidir (dislokasyon çizgisine dik). 81

82 Şekil Saf vida dislokasyon çizgisi ve kuvvete neden olan kayma gerilmesinin uyguladığı kuvvetin geometrik bağlantısı dislokasyon çizgisi kuvvet çizgiye dik 82

83 DİSLOKASYONLAR Dislokasyon Üzerindeki Kuvvetler ve Çizgi Gerilmesi (devamı) Metallerin mukavemet ve sünekliği dislokasyonların hareketiyle belirlenir ve dislokasyon hareketlerini de üzerine binen kuvvetler kontrol eder. Bir metal içinde dislokasyon noktasında bir gerilme alanını ya dışardan gerilme uygulayarak, ya da kafeste hata oluşturarak üretiriz. Çözünen atomlar, çökelti tanecikleri ve özellikle diğer dislokasyonlar ilgili dislokasyonun çevresinde bir gerilme alanı oluştururlar ve böylece bu hatalar dislokasyon üzerine kuvvet uygularlar. 83

84 DİSLOKASYONLAR Dislokasyon Üzerindeki Kuvvetler ve Çizgi Gerilmesi (devamı) Yüzey gerilimine benzer bir şekilde bir dislokasyonun çizgi gerilmesi, dislokasyon çizgisinin bir birim uzunluğunu üretmek için gerekli iş olarak açıklanabilir. Doğru bir dislokasyonun çizgi gerilmesi daha önce formüle edilmişti. Bükümlü bir dislokasyon için çizgi gerilmesi: T 2 Gb 4 K ln R r 0 sabit kgb Burada R: büküm yarıçapı, K=1 (vida dislokasyon için), K=1- (kenar dislokasyonu için) dir. Sabit çizginin şekli ile ilgilidir (Çizgi gerilmesi için k=1/2 ). Çizgi gerilmesi, kuvvet gibi enerji/uzunluk birimine sahiptir. Böylece çizgi gerilmesi, çizgi yönünde kuvvet gibi düşünülebilir. 2 84

85 Şekil Dislokasyon çizgisinin bir segmentine etkiyen kuvvetler Şekilde gösterildiği gibi R büküm yarıçapına sahip, ds uzunluğunda bir dislokasyon segmentine etki eden çizgi gerilmesi dislokasyonu düzeltmeye (doğrultmaya) çalışır. Bu nedenle dislokasyon çizgisini bükmek için çizgiye dik olarak etki edecek bir kuvveti uygulamak gerekiyor: (F d = t.b) 85

86 DİSLOKASYONLAR Dislokasyon Üzerindeki Kuvvetler ve Çizgi Gerilmesi (devamı) Şekil 6.29 da ki bu kuvvet (F d ), çizgi gerilme kuvvetinin komponentleriyle dengelenene kadar dislokasyon çizgisini büker. Sağ tarafa, segment ds üzerine binen toplam kuvvet tb.ds dir. Çizgi gerilme komponentleriyle sol tarafa dengeleyen kuvvet, T.d (çok küçük da) olur. ds = R.d olduğunu hatırladığımızda: tb T R Gb 2R 2 Bu sonuç, bir kayma gerilmesi, dislokasyona tb lik bir kuvvet uyguladığında, -takılı kalmış veya kısmen tekrar gerinmiş olması nedeniyle- dislokasyon hareket edemeyince yukarıdaki denklem ile verilen R yarıçaplı bir bükülme olacak şekilde yuvarlaklaşmaya başlar. Bu sonuç, takılı kalmış dislokasyonların hareketini anlamak açısından önemlidir (Şekil 6.24). 86

87 DİSLOKASYONLAR Genişlemiş Dislokasyonlar Basit bir kenar dislokasyon modelinde atomların ekstra düzlemini 100 yönünde iki yanyana yarı atom düzlemi olarak kabullenelim (Şekil 6.30). Bunlar kayma düzleminde birbirlerini iterek sağ tarafda görüldüğü gibi iki dislokasyon (b 2, b 3 ) oluştururlar. Kimyasal reaksiyonlara analog şekilde ; b 1 b2 b3 olarak yazılabilir. Reaksiyon yönünü Gibbs serbest enerjisi saptar ; G G 2 G3 G1 G nin negatif olması durumunda ayrışan dislokasyonların serbest enerjisi daha düşüktür ve böylece ayrışmış konum daha kararlı bir konumu gösterir. 87

88 Şekil Ana (ebeveyn) dislokasyonun, dislokasyon bileşimlerine ayrışması/ayrılması Yukarıdaki örnek için, G = ka 2 + a 2-4a 2 = -2ka 2 buluruz. Bu durumda ayrışmış dislokasyonlar, uzunluk başına daha düşük gerinme enerji nedeniyle daha kararlı bir konumdadır. Bu nedenle iki ekstra yarı düzlemden oluşan dislokasyonun tek ekstra yarı düzlemden oluşan iki dislokasyona ayrışır. 88

89 DİSLOKASYONLAR Genişlemiş Dislokasyonlar (devamı) Benzer şekilde n.a Burgers vektörlü bir dislokasyon daima Burgers vektörü a olan n dislokasyonlara ayrışacaktır. Burgers vektörü a ya sahip olan herhangi bir dislokasyonun bir şekilde Burgers vektörü a dan daha düşük, örneğin a/2 olan iki dislokasyona ayrışması beklenir. Şekil 6.30 da b vektörü n.a olan dislokasyonun kayma hareketini incelendiğinde dislokasyonun veri bir noktayı geçtiğinde kristalin üst kısmının alt tarafa göre n.a kadar ötelendiği görülür. n nin tam sayı olmadığı durumda dislokasyon geçişinin kristal yapısında kayma düzlemi üzerinde düzlemsel bir faul (kristal yapıda hatalı bir bölge/zon) ürettiği görülür. Örneğin n=1/2 olması durumunda dislokasyonun geçişi kristalin üst kısmını alt kısmına göre ½.a miktarında kaydırır. Kayma düzleminde bu şekilde üretilen faullü zon Şekil 6.31 de gösterilmiştir. 89

90 Şekil Burgers vektörü 1/2a ile bir dislokasyonun kayma hareketiyle kayma düzleminde oluşan hata (faul) 90

91 DİSLOKASYONLAR Genişlemiş Dislokasyonlar (devamı) Kayma hareketi kristal içerisinde faullü bir bölge üreten her dislokasyon kısmi dislokasyon olarak adlandırılır. Mükemmel (Perfekt) dislokasyonda Burgers vektörü kristalin herhangi iki atomu arasında yer alması gerekirken, bu kural kısmi dislokasyonlar için geçerli değildir. Perfekt dislokasyonun, b=a iki kısmi dislokasyona, b 2 =½.a ve b 3 =½.a ayrıştığı düşünüldüğünde kafeste Şekil 6.32 de verilen etki görülür. b 2 nin stasyoner (hareket etmeden duran) olduğu kabul edildiğinde b 3 ün b 2 den kayarak uzaklaşması sonucu kayma düzlemi boyunca bir faullü zon üretilir. Şekil 6.33 te bu reaksiyon şematik olarak sunulmuştur. İki kısmi dislokasyon ve faullü zonun kombinasyonuna genişlemiş dislokasyon adı verilir: b 1 = b 2 + b 3 + faul 91

92 Şekil Bir birim dislokasyonun iki kısmi dislokasyona ayrışması 92

93 Şekil Kısmi dislokasyonlar olarak birim dislokasyonun ayrışmasının şematik gösterimi 93

94 DİSLOKASYONLAR Genişlemiş Dislokasyonlar (devamı) Reaksiyonun hangi yöne doğru akacağını belirlemek için faullü zonun serbest enerji katkısını saptamak gerekir. Dislokasyonun serbest enerjisi tekrar gerinme enerjisi olarak alınır. Şekil 6.32 den faullü bölgede atomların daha aşağıdaki atomların arasında metastabil (yarı kararlı) denge yörelerinde oturması nedeniyle- kafesin gerinmediği görülür. Faullü bölgenin enerjisi kafesin gerinmesi sonucu oluşmaz, aksine faullü düzlem boyu değişik atom konumları sonucu üretilen değişik bağ enerjileri nedeniyle oluşur. Bu enerji, dizilim hatasıyla üretilen aynı tür enerjidir. Eğer faulün birim alanı başına enerjisi, E f ve kısmi dislokasyonlar arası mesafe, r e ise (b 1 b 2 +b 3 + faul) reaksiyonunun çizgi uzunluğu başına serbest enerji değişimi: G = -2ka 2 + E f.r e E f.r e 2ka 2 konumunda dislokasyon iki kısmi dislokasyona ayrışır, diğer bir deyişle kararlı dislokasyonlar kısmi dislokasyonlara dönüşür. 94

95 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar YMK kristalde hareketli dislokasyonların Burgers vektörü a/2<110> dir. Şekil 6.34a da birim kafeste (111) düzleminde atomların konumları (B atomları) gösterilmiştir. Bir sonraki sıkı paket düzlemi olan (1/2 1/2 1/2) düzleminde atomlar C atomları ve köşe atomları da A atomları olarak adlandırılmıştır. Şimdi b vektörü C' atomundan C atomuna uzanan bir dislokasyonun B-C arasındaki düzlemde kaydığını düşünelim. Bu b vektörü a/2 101 dir. Bu dislokasyonun kayma hareketiyle kayma düzleminin üstündeki tüm atomlar, aşağıdaki atomlara göre b vektörüyle ötelenir; böylece C' atomu C konumuna gelir. C' dan C konumuna olan direkt yola ek olarak şekilden bu hareketin C' konumundan A ya ve A dan C konumuna iki basamaklı olarak yapılabileceği görülür. Hareket eğer bu şekilde iki basamaklı olarak gerçekleşirse dislokasyon Şekil 6.34b deki gibi iki kısmi dislokasyona ayrışır: a 2 a faul 6 a 6 95

96 YMK yapıda atom dizilişi en sık olan düzlemlerin birim hücredeki konumları a) ABC dizilişi b) Birim hücrenin çizimi YMK da atom dizilişi en sık olan düzlemler {111} kübün hacım diyagonaline <111> dik olan düzlemlerdir. 96

97 Şekil YMK kristalinde dislokasyonlar Sağdaki her iki kısmi dislokasyon genelde Shockley kısmi dislokasyonları olarak adlandırılır (1948 de Heidenreich ve Schockley tarafından ilk defa sunulmuştur); bunlar ortaklaşa genişlemiş bir dislokasyon oluşturur. 97

98 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) B-C arası düzlemde bir Shockley kısmi dislokasyonunun, a/6 112 kaydığını düşünelim. Bu hareket kayma düzlemi üzerindeki tüm kristali a/6 112 vektörüyle öteler. Böylece C' konumundaki atom A ya ve C konumundaki tüm atomlar ise A konumlarına ötelenir. Şekil 6.35 de B ve C düzlemlerine bir yandan bakışın sunulduğu yatay konumdaki çizimi gösterilmiştir. Kayma düzlemi üzerindeki tüm atomların a/6 112 miktarında kaymasına izin verilmiş ve böylece bu kaymanın kayma düzlemi üzerindeki tüm atomları C den A ya, A dan B ye ve B den C ye ötelediği belirlenmiştir. Bu nedenle bu Schockley kısmi dislokasyonunun hareketiyle bir tek-düzlem dizilim hatası üretilmiştir: -A-B-C-A-B A-B-C- 98

99 Şekil Schottky kısmi dislokasyonu a/6 112 nın kayması sonucu atomik kayma 99

100 Şekil Genişlemiş dislokasyonların TEM de görüntülenmesi Şekilde bir TEM görüntüsü sunulmuştur. İnce film üzerinde (111) düzleminde genişlemiş bir dislokasyon bulunmaktadır. Görüntü, genişlemiş dislokasyon arasında bulunan dizilim hatasını paralel çizgiler (fringe pattern) olarak göstermektedir. Gerilme uygulamasıyla kayma düzleminde kısmi dislokasyon çifti aralarındaki faullü bölgeyle beraber ortaklaşa hareket ettiği görülmüştür. 100

101 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) YMK kafesinin plastik deformasyon davranışında dislokasyon genişlemesinin olup olmayacağının büyük etkisi vardır. Veri bir kayma düzleminde kayma birçok dislokasyonun hareketiyle oluşur. Örneğin kaymanın (111) düzleminde 101 yönünde vida dislokasyon hareketiyle olduğunu ve herhangi bir nedenle kaymanın bloke edildiğini kabul edelim. Eğer artan gerilme ile yine 101 yönünde, ancak kesişen kayma düzlemi 111 üzerinde hareket devam ediyorsa, buna çapraz kayma denir. Vida dislokasyonda bu tarz bir kayma düzlemi değişimi çok kolay olur, çünkü kayma düzlemi çok rahat değiştirilebilir. Ancak kenar dislokasyonunda çapraz kayma çok daha zor olur, çünkü onlar kayma düzlemini çok rahat değiştiremezler. 101

102 Şekil YMK kafeste bir vida dislokasyonunun Schottky kısmi dislokasyonuna ayrışması Şekilde gösterildiği gibi bir vida dislokasyonunun bir genişlemiş dislokasyona ayrışmasını kabul edelim. Bu kısmi dislokasyonların hiç biri saf vida dislokasyonu değildir, bu nedenle çapraz kaymada genişlemiş dislokasyonların önce perfekt dislokasyon konumuna gelmesi gerekir. Kısmi dislokasyonların daha fazla birbirlerinden ayrılmasıyla bunları tekrar sıkıştırmak için gerekli enerji daha yüksektir. Bunun sonucu olarak dizilim hata enerjisi düşünce çapraz kayma daha zorlaşır, çünkü böylece kısmi dislokasyon ayrışması, r e büyüyor. 102

103 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) Bu tür çapraz kayma için: Saf vida dislokasyonu gerekir. Kısmi dislokasyonların önce birleşerek perfekt dislokasyon konumuna geçmesi ve böylece çarpraz kaymaya müsade etmesi gerekir. Genişleme ne kadar fazlaysa çapraz kayma o kadar zor gerçekleşir. 103

104 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) Hareketliliğine göre iki grup dislokasyon bulunur: kayabilen dislokasyonlar; bunlar saf kayma ile hareket ederler. kayamayan dislokasyonlar; bunlardan bazıları tırmanma ile hareket edebilir. Kısmi dislokasyonların hareketi yalnız faul alanı oluşturduğu düzlemde gerçekleşir. Faul düzleminden çıkış çok fazla enerji gerektirir, bu nedenle diğer dislokasyonlar hareket ederek gerilmeyi azaltabilir. Bu nedenle Shockley kısmi dislokasyonu kayabilen dislokasyon sınıfına girer, çünkü faul düzlemi aynı anda kayma düzlemidir. Ancak YMK kafeste kayamayan dislokasyonlar da bulunmaktadır, örneğin Frank kısmi dislokasyonu. 104

105 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) Şekil 6.38a bir YMK kristaldeki sıkı paket düzlemlerin bir kenar görüntüsünü verir. C düzleminden atomları kaldırarak bir boşyer diski oluşturalım. Bu boşyer diski birkaç atom boyutuna büyüyünce onu çevreleyen kafes boşyer hacmini destekleyemez ve bu yer Şekil 6.38b şıkkındaki konuma bozunur; böylece boşyer diski alanında -A-B-C-A-B A-B-C- türü bir dizilim hatası oluşur. Aynı şekilde iki kenar dislokasyonu şimdi dış disk sınırlarında görünür. Bu iki kenar dislokasyonu gerçekte yalnız bir dislokasyondur ve buna Frank kısmi dislokasyonu denir. Bu, boşyer disk yöresinin dış sınırında bir halka oluşturur. b vektörü (111) düzlemlerine diktir ve uzunluğu (111) düzlemleri ara mesafesidir. Bu mesafe hacım diyagonalinin 1/3 ü olduğundan Frank kısmi dislokasyonlarının b vektörü a/3111 dir. Bu dislokasyonlar saf kenar dislokasyonudur. Kısmi dislokasyonlar yalnızca kendi faul düzleminde hareket edebildiklerinden hareket için atomlarının ekstra düzleminin boyutunu değiştirir, yani tırmanır. Bunun sonucu olarak Frank kısmi dislokasyonları kayamayan dislokasyonlardır. 105

106 Şekil YMK kafeste {111} düzlemlerinde Frank kısmi dislokasyonunun oluşması 106

107 Frank Kısmi Dislokasyonu 107

108 DİSLOKASYONLAR YMK Metallerde Dislokasyonlar (devamı) Benzer bir durum gerinme enerjisini düşüren bir reaksiyonla oluşan ve Lomer-Cottrell dislokasyonu adı üç kısmi dislokasyon için geçerlidir: a 2 a a Her üç kısmi dislokasyonun kayma düzlemleri değişik olduğu için Lomer-Cottrell dislokasyonu yüksek derecede kayamayan dislokasyondur ve ayrışmadan hareket etmesi imkansızdır. Lomer-Cottrell dislokasyonu Lomer-Cottrell kilit i olarak da adlandırılır, çünkü bu dislokasyonlar dislokasyon hareketlerini her iki birbirini kesen {111} kayma düzlemlerinde bloke eder. Lomer-Cottrell dislokasyonları YMK kristallerde gözlenir ve dislokasyon hareketlerinin engellenmesinde bir mekanizmayı oluşturur. Böylece gerinme sertleşmesi adı verilen bu olay sonucu YMK yapılarda mukavemet artırımı elde edilir

109 DİSLOKASYONLAR Frank-Read Kaynağı Bir kristal içinde dislokasyon yoğunluğu, birim alandan geçen dislokasyon sayısı olarak karakterize edilir. Tavlanmış metallerde dislokasyon yoğunluğu yaklaşık 10 7 /cm 2 dir. Soğuk şekillendirilmiş (pekleşmiş) metallerde ise /cm 2 dir. Görüldüğü gibi metalin soğuk işlenmesi dislokasyon yoğunluğunu artırır. Dislokasyon miktarının artması için birkaç mekanizma bulunmaktadır; bunlardan en iyi bilineni Frank-Read kaynağıdır. Şekil 6.39a da gösterilen dislokasyon çizgisi A-B-C-D de yalnız B-C kısmının kayma düzleminde olduğunu düşünelim; böylece A-B ve C-D kayamaz. B-C ise tb normal kuvvetiyle hareket etmek istediğinde B ve C noktalarında takılı kalır. BC, kayma gerilmesi, t etkisi altında dışa doğru kayarak yuvarlaklaşmaya başlar; Şekil 6.39b de 5 birbirini takip eden hareket sunulmuştur. 5. konumda dislokasyon iki parçaya bölünür: B ve C noktalarına bağlı parça ve dislokasyon halkası. Böylece bu çevrimin tekrarında sürekli dislokasyon üretilecektir. 109

110 Şekil Frank-Read kaynağı 110

111 Frank-Read Kaynağı 111

112 Frank-Read Kaynağının Görüntülenmesi 112

113 DİSLOKASYONLAR Frank-Read Kaynağı (devamı) Şekil 6.39 daki hareketle ilgili dikkat edilecek noktalar : Dislokasyon çizgisi boyunca nerede olunursa olunsun b vektörü daima aynıdır. Çizgiye binen kuvvet tb, daima çizgiye dik olarak etki eder. Çizginin 4. pozisyondaki pozitif yönü, Şekil 6.39a da gösterilen ekstra düzlemin konumu ve b vektörüne uygundur. IV. ve II. noktalarda dislokasyon saf kenar olup ekstra düzlemi IV te kayma düzleminin altında ve II de kayma düzleminin üstündedir. I., III., V. ve VI. noktalarda dislokasyon saf vidadır. Vida I ve V de sol el, III ve VI da ise sağ el türüdür. Bu nedenle I ve VI nın karşıt anlamlı olması sonucu karşıt yönlerde birbirirlerine doğru hareket eder ve birbirlerine değdikleri zaman kesitlerinde iptal olurlar; böylece çizgi iki parçaya kopar (5. pozisyonda gösterildiği gibi). 113

114 DİSLOKASYONLAR Dislokasyon Hareketleri ile Plastik Akmanın Açıklanması Şekil 6.40 da tek kristal numunenin (YMK kafesi) çekme testi sonrası diyagramda görüldüğü gibi metalin soğuk sertleşmesinden önce oldukça büyük bir miktar plastik akma görülür. İlgili davranışı dislokasyon hareketleriyle aşağıdaki gibi yorumlayabiliriz (Şekil 6.41); I.Kısım: Gerilme artınca aktif kayma sisteminde kritik kayma gerilmesine ulaşılır. Bu noktada aktif kayma sisteminde dislokasyonlara etki eden kayma gerilmesi Peierls-Nabarro kuvvetini aşar ve bunun sonucu olarak dislokasyonlar hareket etmeye başlar; bu da kaymaya neden olur. Bu tür metal içi kayma ingilizce slip olarak adlandırılır ve kaymanın bazı düzlemler boyunca iki komşu kristal bölgesinin birbirlerine relatif paralel hareketi olarak gerçekleştiğini gösterir. Birçok yeni dislokasyon değişik kaynak mekanizmalarıyla, örneğin Frank Reed kaynağıyla üretilir; bunun sonucu olarak relatif büyük bir gerinme oluşur. I. Kısımda dislokasyon bu üretimi ve hareketi çok az engelle karşılaşır ve bu nedenle gerilme fazla artmaz. 114

115 DİSLOKASYONLAR Dislokasyon Hareketleri ile Plastik Akmanın Açıklanması (devamı) Şekil 6.41 in yorumlanması (devamı) ; II.Kısım: Burada kristal yeteri kadar dönerek kesit sisteminde kayma oluşturuyor. Bu nedenle kesit kayma sistemindeki dislokasyonlar hareket ederken birbirleriyle etkileşir. Bu etkileşim sonucu çoğu dislokasyonlar birbirlerine takılır ve böylece metal dislokasyon hareketinin giderek zorlaşmasıyla- sertleşmeye başlar. Takılı kalan bir dislokasyon, aynı anlamlı diğer dislokasyonların aynı kayma düzleminde hareketteki devamını takılı dislokasyonun gerilme alanının itici güç uygulaması nedeniyle engeller. Takılı dislokasyonun bu itici kuvveti, bu dislokasyonu üreten kaynağın kurumasına bile neden olabilir (Şekil 6.42a). Takılma mekanizmaları şunlar olabilir: Kesişen kayma düzlemlerinde Cottrell-Lomer kiliti oluşumu Hareket eden dislokasyonda jog oluşumu (böylece dislokasyon hareketliliğinin azaltılması) Dislokasyon düğümlerinin oluşumu 115

116 DİSLOKASYONLAR Dislokasyon Hareketleri ile Plastik Akmanın Açıklanması (devamı) Şekil 6.41 in yorumlanması (devamı) ; III.Kısım: Gerilmenin yeteri kadar artmasıyla takılı dislokasyonlar tekrar hareket etmeye başlar ve III. kısmın başında soğuk sertleşme hızı biraz düşer. Kilitli dislokasyonların hareketi için çapraz kayma öncelikli sorumlu mekanizma olarak görünür. Şekil 6.42b de çifte çapraz kayma prosesi gösterilmiştir. Burada dislokasyonlar aynı kayma sisteminde basitçe çapraz kayma ile paralel bir kayma düzlemine geçerek hareketi devam ettirebilir. 116

117 Şekil Tek kristal malzeme için gerilmegerinme diyagramı 117

118 Şekil Şekil 6.40 da görülen çekme testi diyagramının şematik tasarımı 118

119 Şekil (a) Takılı dislokasyonda dislokasyon yığılması (b) Çifte çapraz kayma ile ilerleyen dislokasyon hareketi 119

120 DİSLOKASYONLAR Dislokasyon Hareketleri ile Plastik Akmanın Açıklanması (devamı) Dislokasyon hareketliliğinin metallerin mukavemet ve tokluğunu nasıl kontrol ettiğini bu şekiller iyi bir şekilde yansıtmaktadır. Çok kristalli alaşımlarda ise içyapıda var olan değişik oryentasyonlu birçok taneler ve tane sınırlarındaki uyum gereksinimi nedeniyle olay daha da karmaşıktır. Metallerde plastik akmanın dört ana mekanizması vardır: Kayma (en önemli deformasyon şekli) İkizlenme (düşük sıcaklıklarda devrede ve düşük sıcaklıklarda sph metallerde önemli) Tane sınırı kayması (yüksek sıcaklıklarda önemli) Difuzyonal sürünme (yüksek sıcaklıklarda önemli) Kaymanın dışında dislokasyon hareketleri diğer üç mekanizmada da kuvvetli, ancak bu kadar iyi tanımlanmamış bir rol oynar. Herhangi bir sertleştirme mekanizması, belirli bir önem düzeyinde daima dislokasyonların etkileşimiyle ve bu etkileşim sonucu kontrol edilen dislokasyon hareketleriyle ilgilidir. Bu nedenle dislokasyonların doğasını ve hareketlerini dikkatlice incelemek zorundayız. 120

121 DİSLOKASYONLAR Plastisite Malzemenin plastik deformasyonu dislokasyonlarla açıklanır. Dislokasyonlar metal içinde değişik durumlarda oluşur, örneğin sıvıkatı dönüşümünde, soğuk plastik deformasyonda vb. Malzemede kayma (slip), bazı düzlemler boyunca iki komşu kristal bölgesinin birbirlerine relatif paralel hareketi olarak gerçekleşir. Böylece malzemede kayma çizgileri veya kayma bantları oluşur. Örneğin kayma bantları, binlerce kayma çizgisinin bir araya gelmesi ile oluşur ve ancak bu şekilde gözle görülebilir hale gelebilir. Bir atomsal çıkıntı 2-3 Å dür. Bir kayma çizgisinin gözle görülür hale gelebilmesi için 7000 Å olması, yani dislokasyon sayısının ortalama 3500 olması gerekir. 121

122 DİSLOKASYONLAR Plastisite (devamı) Metallerin teorik mukavemeti real mukavemetlerine göre çok daha yüksektir. Reel malzemelerde dislokasyonların varlığı çok daha düşük gerilmelerde kaymaya (=plastik deformasyona) neden olur. Dislokasyon enerjisini düşük tutmak için; En kısa b yi kullanır, Pürüzsüz yoğun düzlemlerde hareket eder. Atomsal yoğunluğun maksimum olduğu doğrultularda hareket eder. 122

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır. Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır. Bütün metal ve alaşımlarda bulunan dislokasyonlar, katılaşma veya plastik deformasyon sırasında veya hızlı soğutmadan

Detaylı

MMT407 Plastik Şekillendirme Yöntemleri

MMT407 Plastik Şekillendirme Yöntemleri K O C A E L İ ÜNİVERSİTESİ Metalurji ve Malzeme Mühendisliği Bölümü MMT407 Plastik Şekillendirme Yöntemleri 3 Şekillendirmenin Metalurjik Esasları Yrd. Doç. Dr. Ersoy Erişir 2012-2013 Güz Yarıyılı 3. Şekillendirmenin

Detaylı

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ Metalik malzemelerin geriye dönüşü olmayacak şekilde kontrollü fiziksel/kütlesel deformasyona (plastik deformasyon) uğratılarak şekillendirilmesi işlemlerine genel olarak

Detaylı

MALZEME BİLİMİ (DERS NOTLARI)

MALZEME BİLİMİ (DERS NOTLARI) MALZEME BİLİMİ (DERS NOTLARI) Bölüm 3 Atomik ve İyonik Dizilmeler Düzenlerde Hatalar Hedefler 1) 3 temel hatayı tanımlamak: Noktasal Hatalar Çizgisel Hatalar (dislokasyonlar) Yüzey Hataları 2) Değişik

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

PLASTİK ŞEKİL VERMEDE METALURJİK ESASLAR

PLASTİK ŞEKİL VERMEDE METALURJİK ESASLAR PLASTİK ŞEKİL VERMEDE METALURJİK ESASLAR METALLERİN KRİSTAL YAPISI Metallerde en sık rastlanan üç çeşit kristal kafes yapısı : Kayma Düzlemleri Metaller, ya kocaman tek kristalden ya da çok taneli çok

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Kristalleşme ve kusurlar Kristal Yapılar

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Kristalleşme ve kusurlar Kristal Yapılar Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Kristalleşme ve kusurlar Kristal Yapılar İçerik Kristalleşme Kristal yapı kusurları Noktasal kusurlar Çizgisel kusurlar Düzlemsel kusurlar Kütlesel kusurlar Katı

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot Paslanmaz Çelik Gövde Yalıtım Sargısı Egzoz Emisyonları: Su Karbondioksit Azot Katalizör Yüzey Tabakası Egzoz Gazları: Hidrokarbonlar Karbon Monoksit Azot Oksitleri Bu bölüme kadar, açıkça ifade edilmese

Detaylı

Doç.Dr.Salim ŞAHİN SÜRÜNME

Doç.Dr.Salim ŞAHİN SÜRÜNME Doç.Dr.Salim ŞAHİN SÜRÜNME SÜRÜNME Malzemelerin yüksek sıcaklıkta sabit bir yük altında (hatta kendi ağırlıkları ile bile) zamanla kalıcı plastik şekil değiştirmesine sürünme denir. Sürünme her ne kadar

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU Tozların Şekillendirilmesi Toz metalurjisinin çoğu uygulamalarında nihai ürün açısından yüksek yoğunluk öncelikli bir kavramdır.

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

Yeniden Kristalleşme

Yeniden Kristalleşme Yeniden Kristalleşme Soğuk şekillendirme Plastik deformasyon sonrası çarpıtılmış ise o malzeme soğuk şekillendirilmiş demektir. Kafes yapısına göre bütün özelikler değişir. Çekme gerilmesi, akma gerilmesi

Detaylı

Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok

Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok parçaya ayırmasına "kırılma" adı verilir. KIRILMA ÇEŞİTLERİ

Detaylı

MMT407 Plastik Şekillendirme Yöntemleri

MMT407 Plastik Şekillendirme Yöntemleri K O C A E L İ ÜNİVERSİTESİ Metalurji ve Malzeme Mühendisliği Bölümü MMT407 Plastik Şekillendirme Yöntemleri 2 Malzemelerin Mekanik Davranışı Yrd. Doç. Dr. Ersoy Erişir 2013-2014 Güz Yarıyılı 2. Malzemelerin

Detaylı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5. MALZEME BİLİMİ (DERS NOTLARı) Bölüm 5. Mekanik Özellikler ve Davranışlar Doç. Dr. Özkan ÖZDEMİR ÇEKME TESTİ: Gerilim-Gerinim/Deformasyon Diyagramı Çekme deneyi malzemelerin mukavemeti hakkında esas dizayn

Detaylı

ELASTİK PLASTİK. İstanbul Üniversitesi

ELASTİK PLASTİK. İstanbul Üniversitesi ELASTİK PLASTİK HOMOJEN HETEROJEN dislokasyon birkristalideformeetmekiçinharcananenerji, teorik ve hatasız olan kristalden daha daha az! malzemelereplastikdeformasyonuygulandığında, deforme edebilmek için

Detaylı

MUKAVEMET ARTIRICI İŞLEMLER

MUKAVEMET ARTIRICI İŞLEMLER MUKAVEMET ARTIRICI İŞLEMLER Malzemenin Mukavemeti; a) Kimyasal Bileşim b) Metalurjik Yapı değiştirilerek arttırılabilir Malzemelerin Mukavemet Arttırıcı İşlemleri: 1. Martenzitik Dönüşüm 2. Alaşım Sertleştirmesi

Detaylı

BMM 205 Malzeme Biliminin Temelleri

BMM 205 Malzeme Biliminin Temelleri BMM 205 Malzeme Biliminin Temelleri Dislokasyonlar ve Güçlendirme Mekanizmaları Bölüm - 2 Dr. Ersin Emre Ören Biyomedikal Mühendisliği Bölümü Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü TOBB Ekonomi

Detaylı

ATOMSAL YAPI TÜRLERİ Metalik malzemelerin çoğu küçük kristal kümeciklerinden oluştuğundan polikristal adını alırlar. Bu kristal kümeciklerinin

ATOMSAL YAPI TÜRLERİ Metalik malzemelerin çoğu küçük kristal kümeciklerinden oluştuğundan polikristal adını alırlar. Bu kristal kümeciklerinin ATOMSAL YAPI TÜRLERİ Metalik malzemelerin çoğu küçük kristal kümeciklerinden oluştuğundan polikristal adını alırlar. Bu kristal kümeciklerinin kristal yapısıda kendi içinde düzenlidir. Kristal kümeciklerinin

Detaylı

Bölüm 3 - Kristal Yapılar

Bölüm 3 - Kristal Yapılar Bölüm 3 - Kristal Yapılar Katı malzemeler, atomların veya iyonların oluşturdukları düzene göre sınıflandırılır. Kristal malzemede uzun-aralıkta atomsal ölçekte tekrarlayan bir düzen mevcuttur. Katılaşma

Detaylı

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI MALZEME KUSURLARI Deformasyonda Birinci Özelliğe Sahip Hatalar: A. Noktasal Hatalar: Kafes düzeninin çok küçük bölgelerindeki (1-2 atom boyutu) bozukluğa verilen addır. Bunlar ; 1. Boşluklar : Kafeslerde

Detaylı

MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş

MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş Yrd. Doç. Dr. Ersoy Erişir 2012-2013 Bahar Yarıyılı 1. Deformasyon ve kırılma mekanizmalarına giriş 1.1. Deformasyon

Detaylı

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması 1. Deney Adı: ÇEKME TESTİ 2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması Mühendislik tasarımlarının en önemli özelliklerinin başında öngörülebilir olmaları gelmektedir. Öngörülebilirliğin

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Türkçe Adı: MALZEMELERİN MEKANİK DAVRANIŞI

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Türkçe Adı: MALZEMELERİN MEKANİK DAVRANIŞI Dersi Veren Birim: Metalurji ve Malzeme Mühendisliği Dersin Türkçe Adı: MALZEMELERİN MEKANİK DAVRANIŞI Dersin Orjinal Adı: MALZEMELERİN MEKANİK DAVRANIŞI Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Mekanizma ve etkileyen faktörler Difüzyon İçerik Difüzyon nedir Difüzyon mekanizmaları Difüzyon eşitlikleri Difüzyonu etkileyen faktörler 2 Difüzyon nedir Katı içerisindeki

Detaylı

BÖLÜM 2. Kristal Yapılar ve Kusurlar

BÖLÜM 2. Kristal Yapılar ve Kusurlar BÖLÜM 2 Kristal Yapılar ve Kusurlar 1- ATOMİK VE İYONİK DÜZENLER Kısa Mesafeli Düzenler-Uzun Mesafeli Düzenler Kısa Mesafeli Düzenler (SRO): Kısa mesafede atomların tahmin edilebilir düzenlilikleridir.

Detaylı

MALZEME BİLİMİ (DERS NOTLARI)

MALZEME BİLİMİ (DERS NOTLARI) MALZEME BİLİMİ (DERS NOTLARI) Bölüm 4. Malzemelerde Atom ve İyon Hareketleri Doç.Dr. Özkan ÖZDEMİR Doç. Dr. Özkan ÖZDEMİR Hedefler Malzemelerde difüzyon uygulamalarını ve prensipleri incelemek. Difüzyonun

Detaylı

(A) Çekme. (B) Basınç. (C) Dengesiz İki eksenli çekme. (D) Dengeli İki eksenli çekme. (E) Hidrostatik Basınç. (F) Kayma Gerilmesi.

(A) Çekme. (B) Basınç. (C) Dengesiz İki eksenli çekme. (D) Dengeli İki eksenli çekme. (E) Hidrostatik Basınç. (F) Kayma Gerilmesi. İki eksenli gerilme Hidrostatik gerilme 1 (A) Çekme. (B) Basınç. (C) Dengesiz İki eksenli çekme. (D) Dengeli İki eksenli çekme. (E) Hidrostatik Basınç. (F) Kayma Gerilmesi. 2 Uygulamada yapı elemanları

Detaylı

1. Düzensiz yapı : Atom veya moleküllerin rastgele dizilmesi. Argon gibi asal gazlarda görülür.

1. Düzensiz yapı : Atom veya moleküllerin rastgele dizilmesi. Argon gibi asal gazlarda görülür. Malzemeler atomların bir araya gelmesi ile oluşur. Bu yapı içerisinde atomları bir arada tutan kuvvete atomlar arası bağ denir. Yapı içerisinde bir arada bulunan atomlar farklı düzenlerde bulunabilir.

Detaylı

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

Malzeme Bilgisi ve Gemi Yapı Malzemeleri Malzeme Bilgisi ve Gemi Yapı Malzemeleri Grup 1 Pazartesi 9.00-12.50 Dersin Öğretim Üyesi: Y.Doç.Dr. Ergün Keleşoğlu Metalurji ve Malzeme Mühendisliği Bölümü Davutpaşa Kampüsü Kimya Metalurji Fakültesi

Detaylı

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER Malzemelerin mekanik özelliği başlıca kimyasal bileşime ve içyapıya bağlıdır. Malzemelerin içyapısı da uygulanan mekanik ve ısıl işlemlere bağlı olduğundan malzemelerin

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

MALZEME BİLGİSİ DERS 5 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 5 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 5 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA BAĞ KUVVETLERİ VE ENERJİLERİ ATOMLARARASI BİRİNCİL BAĞLAR İKİNCİL VEYA VAN DER WAALS BAĞLARI MOLEKÜLLER BÖLÜM III KATILARDA

Detaylı

ANİZOTROPİ. Schmid s Tek kristle uygulandığında:

ANİZOTROPİ. Schmid s Tek kristle uygulandığında: ANİZOTROPİ Schmid s Tek kristle uygulandığında: En büyük kayma gerilmesi için: λ = φ = 45 o olmalıdır. Diğer düzlemlerde daha düşük gerilmeler elde edilir. Tek kristalde atom düzlemleri farklı açılar yapabilir.

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler. MALZEMELER VE GERĐLMELER Malzeme Bilimi mühendisliğin temel ve en önemli konularından birisidir. Malzeme teknolojisindeki gelişim tüm mühendislik dallarını doğrudan veya dolaylı olarak etkilemektedir.

Detaylı

FRACTURE ÜZERİNE. 1. Giriş

FRACTURE ÜZERİNE. 1. Giriş FRACTURE ÜZERİNE 1. Giriş Kırılma çatlak ilerlemesi nedeniyle oluşan malzeme hasarıdır. Sünek davranışın tartışmasında, bahsedilmişti ki çekmede nihai kırılma boyun oluşumundan sonra oluşan kırılma nedeniyledir.

Detaylı

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Faz Dönüşümleri ve Faz (Denge) Diyagramları Faz Dönüşümleri ve Faz (Denge) Diyagramları 1. Giriş Bir cisim bağ kuvvetleri etkisi altında en düşük enerjili denge konumunda bulunan atomlar grubundan oluşur. Koşullar değişirse enerji içeriği değişir,

Detaylı

Boya eklenmesi Kısmen karışma Homojenleşme

Boya eklenmesi Kısmen karışma Homojenleşme DİFÜZYON 1 Katı içerisindeki atomların hareketi yüksek konsantrasyon bölgelerinden düşük konsantrasyon bölgelerine doğrudur. Kayma olayından farklıdır. Kaymada hareketli atom düzlemlerindeki bütün atomlar

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

ÇÖKELME SERTLEŞMESİ (YAŞLANMA) DENEYİ

ÇÖKELME SERTLEŞMESİ (YAŞLANMA) DENEYİ 1. DENEYİN AMACI: Alüminyum alaşımlarında çökelme sertleşmesinin (yaşlanma) mekanik özelliklere etkisinin incelenmesi ve sertleşme mekanizmasının öğrenilmesi. 2. TEORİK BİLGİ Çökelme sertleşmesi terimi,

Detaylı

1.GİRİŞ. 1.1. Metal Şekillendirme İşlemlerindeki Değişkenler, Sınıflandırmalar ve Tanımlamalar

1.GİRİŞ. 1.1. Metal Şekillendirme İşlemlerindeki Değişkenler, Sınıflandırmalar ve Tanımlamalar 1.GİRİŞ Genel olarak metal şekillendirme işlemlerini imalat işlemlerinin bir parçası olarak değerlendirmek mümkündür. İmalat işlemleri genel olarak şu şekilde sınıflandırılabilir: 1) Temel şekillendirme,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

MALZEME BİLGİSİ DERS 6 DR. FATİH AY. MALZEME BİLGİSİ DERS 6 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR BİRİM HÜCRE METALLERDE KRİSTAL YAPILAR YOĞUNLUK HESAPLAMA BÖLÜM III KATILARDA KRİSTAL YAPILAR KRİSTAL

Detaylı

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KRİSTAL YAPILAR Mühendislik açısından önemli olan katı malzemelerin fiziksel özelikleri; katı malzemeleri meydana getiren atom, iyon veya moleküllerin dizilişine

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği Yrd. Doç. Dr. Ersoy Erişir 2011-2012 Bahar Yarıyılı 3. Tokluk özelliklerinin belirlenmesi 3.1. Kırılma 3.2. Kırılmayla

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı

Kırılma nedir? Bir malzemenin yük altında iki veya daha fazla parçaya ayrılması demektir. Her malzemede kırılma karakteri aynı mıdır? Hayır.

Kırılma nedir? Bir malzemenin yük altında iki veya daha fazla parçaya ayrılması demektir. Her malzemede kırılma karakteri aynı mıdır? Hayır. KIRILMA İLE SON BULAN HASARLAR 1 Kırılma nedir? Bir malzemenin yük altında iki veya daha fazla parçaya ayrılması demektir. Her malzemede kırılma karakteri aynı mıdır? Hayır. Uygulanan gerilmeye, sıcaklığa

Detaylı

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI: 1. DENEYİN AMACI: Malzemede belirli bir şekil değiştirme meydana getirmek için uygulanması gereken kuvvetin hesaplanması ya da cisme belirli bir kuvvet uygulandığında meydana gelecek şekil değişiminin

Detaylı

METALİK MALZEMELERİN ÇEKME DENEYİ

METALİK MALZEMELERİN ÇEKME DENEYİ METALİK MALZEMELERİN ÇEKME DENEYİ Çekme deneyi, malzemelerin statik yük altında elastik ve plastik davranışını belirlemek amacıyla uygulanır. Çekme deneyi, asıl malzemeyi temsil etmesi için hazırlanan

Detaylı

Malzemeler yapılarının içerisinde, belli oranlarda farklı atomları çözebilirler. Bu durum katı çözeltiler olarak adlandırılır.

Malzemeler yapılarının içerisinde, belli oranlarda farklı atomları çözebilirler. Bu durum katı çözeltiler olarak adlandırılır. KATI ÇÖZELTİ Malzemeler yapılarının içerisinde, belli oranlarda farklı atomları çözebilirler. Bu durum katı çözeltiler olarak adlandırılır. Katı çözeltilerin diğer bir ismi katı eriyiktir. Bir çözelti

Detaylı

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Sürünme, eğme ve burma deneyleri

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Sürünme, eğme ve burma deneyleri MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Sürünme, eğme ve burma deneyleri Yrd. Doç. Dr. Ersoy Erişir 2011-2012 Bahar Yarıyılı 2. Mukavemet ve deformasyon

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur.

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Kristal ka8ların bazı özellikleri, malzemelerin kristal yapılarına, yani atomların, iyonların ya da moleküllerin üç boyutlu olarak meydana ge@rdikleri

Detaylı

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin BURMA DENEYİ Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin genel mekanik özelliklerinin saptanmasında

Detaylı

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir. ŞEKİL DEĞİŞTİRME 1 Mekanik Davranışın Temel Kavramları Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir. Sürekli artan kuvvet altında önce şekil değiştirme oluşur. Düşük

Detaylı

MalzemelerinMekanik Özellikleri II

MalzemelerinMekanik Özellikleri II MalzemelerinMekanik Özellikleri II Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr 2014 Sünek davranış Griffith, camlarileyaptığıbuçalışmada, tamamengevrekmalzemelerielealmıştır Sünekdavranışgösterenmalzemelerde,

Detaylı

BÖLÜM 3 DİFÜZYON (YAYINIM)

BÖLÜM 3 DİFÜZYON (YAYINIM) BÖLÜM 3 DİFÜZYON (YAYINIM) 1 Mürekkebin suda yayılması veya kolonyanın havada yayılması difüzyona örnektir. En hızlı difüzyon gazlarda görülür. Katılarda atom hareketleri daha yavaş olduğu için katılarda

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Çekme Testi

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Çekme Testi MMT31 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Çekme Testi Yrd. Doç. Dr. Ersoy Erişir 211-212 Bahar Yarıyılı 2. Mukavemet ve deformasyon özelliklerinin belirlenmesi

Detaylı

SÜRÜNME DENEYİ MÜHENDİSLİK MEKANİĞİ DENEYLERİ ALİ AYDIN CAN

SÜRÜNME DENEYİ MÜHENDİSLİK MEKANİĞİ DENEYLERİ ALİ AYDIN CAN SÜRÜNME DENEYİ MÜHENDİSLİK MEKANİĞİ DENEYLERİ ALİ AYDIN CAN Sürünme Nedir? Bazı malzemeler yüksek sıcaklıklarda ve statik mekanik gerilmelerin altında çalışır. Malzemeler ağır çalışma koşullarında belirli

Detaylı

Bölüm 4: Kusurlar. Kusurlar. Kusurlar. Kusurlar

Bölüm 4: Kusurlar. Kusurlar. Kusurlar. Kusurlar Bölüm 4: Kusurlar Malzemelerin bazı özellikleri kusurların varlığıyla önemli derecede etkilenir. Kusurların türleri ve malzeme davranışı üzerindeki etkileri hakkında bilgi sahibi olmak önemlidir. Saf metallerin

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi.

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi. DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi. TEORİK BİLGİ: Kritik soğuma hızı, TTT diyagramlarında burun noktasını kesmeden sağlanan en

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Bir cismin uygulanan kuvvetlere karşı göstermiş olduğu tepki, mekanik davranış olarak tanımlanır. Bu davranış biçimini mekanik özellikleri belirler. Mekanik özellikler,

Detaylı

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

ATOM HAREKETLERİ ve ATOMSAL YAYINIM ATOM HAREKETLERİ ve ATOMSAL YAYINIM 1. Giriş Malzemelerde üretim ve uygulama sırasında görülen katılaşma, çökelme, yeniden kristalleşme, tane büyümesi gibi olaylar ile kaynak, lehim, sementasyon gibi işlemler

Detaylı

Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan

Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan ISIL İŞLEMLER Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan ısıtma ve soğutma işlemleridir. İşlem

Detaylı

ATOMLAR ARASI BAĞLAR

ATOMLAR ARASI BAĞLAR MALZEME 2. HAFTA 1 ATOMSAL BAĞ ATOMLAR ARASI BAĞLAR Atomlar, atomlar arası bağ kuvvetleri ile bir araya gelirler. Malzemenin en küçük yapı taşı olan atomları bağ kuvvetleri bir arada tutar. Atomsal bağların

Detaylı

İNTERMETALİK MALZEMELER (DERS NOTLARI-2) DOÇ. DR. ÖZKAN ÖZDEMİR

İNTERMETALİK MALZEMELER (DERS NOTLARI-2) DOÇ. DR. ÖZKAN ÖZDEMİR İNTERMETALİK MALZEMELER (DERS NOTLARI-2) DOÇ. DR. ÖZKAN ÖZDEMİR KRİSTAL YAPILAR Ayrı ayrı birbirine benzemeyen veya birbirine güçlü afiniteleri olan 2 veya daha fazla elementin birleşmesiyle intermetalik

Detaylı

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. YORULMA 1 Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. Bulunan bu gerilme değerine malzemenin statik dayanımı adı verilir. 2 Ancak aynı

Detaylı

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe İmal Usulleri DÖKÜM Katılaşma Döküm yoluyla üretimde metal malzemelerin kullanım özellikleri, katılaşma aşamasında oluşan iç yap ile belirlenir. Dolaysıyla malzeme özelliklerinin kontrol edilebilmesi

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN TOKLUK VE KIRILMA Doç.Dr.Salim ŞAHĠN TOKLUK Tokluk bir malzemenin kırılmadan önce sönümlediği enerjinin bir ölçüsüdür. Bir malzemenin kırılmadan bir darbeye dayanması yeteneği söz konusu olduğunda önem

Detaylı

Kristalleşme ve Kusurlar

Kristalleşme ve Kusurlar Kristalleşme ve Kusurlar 1 Kristalleşme mekanizması Kristalleşme, sıvı halden katı hale geçiş olup, çekirdeklenme ve çekirdeklerin büyümesi aşamalarından meydana gelir. Sıvı içerisinde atomlar belirli

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde DİŞLİ ÇARKLAR Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde özel bir yeri bulunan mekanizmalardır. Mekanizmayı

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN . TEKNİK SEÇİMLİ DERS I TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN SİNTERLEME Sinterleme, partiküllerarası birleşmeyi oluşturan ısıl prosestir; aynı zamanda ham konumda gözlenen özellikler artırılır. . Sinterlemenin

Detaylı

Metallerde Özel Kırılganlıklar HASAR ANALİZİ

Metallerde Özel Kırılganlıklar HASAR ANALİZİ Metallerde Özel Kırılganlıklar HASAR ANALİZİ Prof. Dr. Akgün ALSARAN 11 Giriş Hidrojen gevrekliği Sıvı metal kırılganlığı Temper gevrekliği Ana Hatlar 22 Malzemelerin servis koşullarında performanslarını;

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

STATİK-MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATİK-MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK-MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ Çekme deneyi test numunesi Çekme deney cihazı Elastik Kısımda gerilme: σ=eε Çekme deneyinin amacı; malzemelerin statik yük altındaki elastik ve plastik davranışlarını

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

KRİSTAL KUSURLARI BÖLÜM 3. Bağlar + Kristal yapısı + Kusurlar. Özellikler. Kusurlar malzeme özelliğini önemli ölçüde etkiler.

KRİSTAL KUSURLARI BÖLÜM 3. Bağlar + Kristal yapısı + Kusurlar. Özellikler. Kusurlar malzeme özelliğini önemli ölçüde etkiler. KRİSTAL KUSURLARI Bağlar + Kristal yapısı + Kusurlar Özellikler Kusurlar malzeme özelliğini önemli ölçüde etkiler. 2 1 Yarıiletken alttaş üretiminde kullanılan silikon kristalleri neden belli ölçüde fosfor

Detaylı

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği Faz dönüşümleri 1. Basit ve yayınma esaslı dönüşümler: Faz sayısını ve fazların kimyasal bileşimini değiştirmeyen basit ve yayınma esaslı ölçümler.

Detaylı

Kayma Doğrultusu. Kayma Sistemi Sayısı YMK Cu, Al, Ni, Ag, Au (1 1 1) 12 Fe, W, Mo (1 1 0) HMK Fe, W (2 1 1) Fe, K (3 2 1)

Kayma Doğrultusu. Kayma Sistemi Sayısı YMK Cu, Al, Ni, Ag, Au (1 1 1) 12 Fe, W, Mo (1 1 0) HMK Fe, W (2 1 1) Fe, K (3 2 1) PLASTİK DEFORMASYON Mikr ölçekte plastik defrmasyn, uygulanan gerilme etkisiyle çk sayıdaki atmun kimyasal bağlarını kpararak hareket etmesi ve yeni bağlar kurmasıyla luşur. Kristal yapılı katı malzemelerde

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Infrared (IR) ve Raman Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY TİTREŞİM Molekülleri oluşturan atomlar sürekli bir hareket içindedir. Molekülde: Öteleme hareketleri, Bir eksen

Detaylı