NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ"

Transkript

1 NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü Kaysei ÖZET Bu çalışmada eoik üklee fiziği opsiyo fiyalaıa uygulaması ve umeik aalizi bu aladaki icelemesi ye almakadı. Bu çalışma içi bilie koveksiyo-difüzyo ipi bi kısmi difeasiyel deklem kullaılmışı. Bu kısmi difeasiyel deklemi çözümüde geleeksel umeik meodlada solu fakla meodu fiie diffeece mehods solu elemala meodu fiie elemes vb dışıda meshde bağımsız mesh-fee bi meod ola RBF adial basis fucios meodu kullaılmışı. Kaşılaşımalı bi çalışma ile meshde bağımsız ve mesh değişkeli mesh-depede kaşılaşıması yapılaak RBF meoduu kullaıla zama ve çözüm adımlaı içi seçile aalıkla bakımıda geleeksel meodlaa göe çok daha başaılı olduğu göseilmişi. Bu çalışma bosadaki alım ve saımladaki mevcu isklede koumak içi oluşuula opsiyo seçeeklei içi koveksiyo-difüzyo ipi kısmi difeasiyel deklem kullaılması ve opsiyo fiyalaıı umeik aalizii yapılması ile bu alada eoik üklee fiziği uygulaabililiğii gösemişi.

2 - GİRİŞ Fizik kimya ve fe bilimleii diğe başlaıdaki biçok poblem adveksiyo-difüzyo deklem eşiliği ile modelleebili. Öeği yoğu bi akışkaı duağa halde su içideki dağılımı ve akışka aafıda aşıması çoklu kimyasal epkimelei icelemesi amosfeik zeeciklei yayılması veya çekidek bozuumuu gözeekli oamda geiş alaa yayılması adveksiyo-difüzyo eşiliğiyle alaılabili. Edüsiyel poblemle de adveksiyo-difüzyo eşiliğii çözümleii içemekedi; çelik levhaı eiilmesi galvaizaio ve meal alaşımı kaılaşıılması gibi akışkala diamiği poblemlei güümüz ileim kablolaıdaki ısı aışı ve sıcak çelik kablou şok su soğuması ile haekei gibi ısı asfei uygulamalaı ve bosadaki valık fiyalaıı değişimlei gibi fiasal uygulamala. 973 e bei Black ve choles ü Avupa ipi opsiyolaa değe biçmek içi hazıladığı fomül geişleileek kullaılmakadı. Bu eşiliği umeik çözümü kısmi difeasiyel deklem çözümüe bezeilebili. Çözümleie ulaşılmasıı ve souçlaı duağalığıı sağlamasıı zo olduğu eaksiyo-difüzyo eşiliği ile özdeşleşiilebili Bu çalışmada meshde bağımsız bi yöem ola RBF meodu kullaılmışı. Bu yöemi uygulaması ile aalıklaa ayılmış okaladaki souçla değil iseile okadi souçlaı çözümü elde edilmekedi. Bu da RBF meoduu poblemi boyulaıda bağımsız kılmakadı. Bi soaki bölümde opsiyo fiyalaı içi Black-choles modeli aıılmakadı. 3. bölümde Black-choles eşiliğii seçiğimiz umeik meodla çözümlemesi 4. bölümde elde edile kaşılaşımalı çözümle ve 5. bölümde de souç ye almakadı

3 . -BLACK-CHOLE EŞİTLİĞİ Opsiyo fiyalaıı değelediilmesi içi kullaıla Black-choles eşiliği aşağıdaki gibidi; d d d 0 d d d iske bağımsız faiz oaı değişkelik T opsiyou döem sou biiş zamaı ve aıda ve sok değeide opsiyo fiyaı [0 ve [0 T ]. ma E 0 mi E 0 fo pu samak fo call almak Black-choles modelii emelide opsiyoa kou eşkil ede valığı fiyaıı vade soua kada asıl bi gelişme göseeceği ve vade souda hagi olasılıkla hagi fiyaa sahip olacağıı belilemesi yamakadı. ade souda opsiyou değei valığı fiyaıa bağlı olacağıda valık fiyaıı ahmi edilmesi opsiyo değeii de belilemesie olaak veeceki. Black-coles u umeik çözümü içi kulladığımız RBF yöemi valık fiyaıı vade souda öce iseile hehagi bi aıda da ahmi edilmesie olaak sağladığı içi bu yöem ecih edilmiş ve elde edile souçlada haa payıı 0 a yakı olduğu göülmüşü. 3- BLACK-CHOLE UN NUMERİK ÇÖZÜMÜ Black-choles eşiliğii dö faklı yöem; hiplae umeik çözümü içi iki faklı splie muliquadic cubic ve meod kulladık. Bulaı gaussia kullaılaak kedi başaılaıa bakılmış ve souçla ileki bölümlede aışılmışı. Ayıca RBF meodua bağlı ola aalaıda suulmuşu. kaşılaşımalaı 3

4 4 3.- Radial Basis Fucio Meodu Bu çalışmada kullaıla RBF meodlaı aşağıda veilmişi: log : 4 TP : c MQ : 3 CUBIC 3 : c e GAUIAN umaalı eşilik Cak-Nicholso meodu kullaılaak düzelemişi. Bu zamaa bağlı gei döüşümlü bi deklemdi backwad. 4 0 θ θ u u olmak üzee 4 deklemide yeie yazılısa aşağıdaki eşilik elde edili. 5 α α α Buada ve θ θ α olaak alıı θ içi α olu. Eğe y 6 N λ 7... N i i N i λ olaak alıı ve H H α α α şeklide aımlaısa i i olmak üzee

5 N λ H i N λ H şeklide bi deklem elde edili. RBF meodu meshde bağımsız bi yöemdi. Bilie Black-choles eşiliğie uygulaaak çözümle elde edili. 3.- Fiie Diffeece Meodu olu Fakla Meodu i 8 Hem beligi eplici hem de dolaylı implici fiie diffeece meodlaı kullaılmışı;. He ikiside de ikici deecede difeasiyel ve geiye döüşümlü difeasiyel fomüllee Laplace ve Gadie opeaölei uygulamışı. Dolaylı implici fiie diffeece meodua çok beze ola beligi eplici fiie diffeece meoduu kaalılık ve covegece poblemlei vadı. Kaalılık poblemi α ı değeiyle değişe aalık boyuua bağlıdı. α 0 ile 0.5 aasıda değelee sahipse kaalı eğe 0.5 e büyük ise kaasız hale geçmekedi. Covegece poblemi ise zama aalığıda kayaklamakadı. Bu yöemi bi okada bileşeek doğu soucu vemesi içi zama aalığıı çok küçük uulması geekmekedi. Buda dolayıdı ki bu yöem çok yavaş çalışmakadı. Buu yaıda dolaylı fiie diffeece meoduu kaalılık poblemi hiçbi α değei içi bulumamakla bilike covege poblemi yie zama aalığıa bağlı ve hesaplamalaı çok yavaşlamakadı. FD uygulamalaı H ve H - opeaöleide yeie kouluusa sıı ve başlagıç koşullaı uygulaısa ve eşilik yeide düzeleise doğusal eşiliği simeik siseme döüşümüü elde edeiz. Bu da Gauss elemiasyo yöemi ile i hesaplaması sağlaı. 5

6 4-ONUÇLAR Yöemi umeik değelediilmesii amamlaması içi valık al biimleii de uygulaması geeklidi. Bu da acak e açık ifadeyle opsiyo fiyalaıı bi okada bileşeek geçek değeii buluması içi yaalı ek ilavelei aımamızla geçekleşi.. Bahsedildiği gibi yavaş covegece opsiyo fiyalaıı ödeme foksiyolaıı amamlaabilmeside öemlidi. Bilidiği gibi eğe zama aalığıı küçülüsek opsiyo fiyalaıı ya da deklemi covegece şaıı sağlamış oluuz. Buula kasedile umeik çözüm uygulamasıa kaıla ek ilaveledi udelyigs. ock TP MQ CUBIC GAUIAN

7 HATA Tablo : 00 içi Radial Basis Foksiyouu Kaşılaşıması Kullaıla RBF meodu sadece eşilik içi değil ayı zamada üevlei içi de çözüm oluşumakadı. RBF uygulamasıda çıka fomülasyo sayısal alada aımlaabili ve buu e öemli gösegesi de başka bi yöeme geek duymada bi bous olaak elde edebileceğimiz dela değeleidi. Opsiyo ya da opsiyo poföyü içi dela değei çok öemlidi ve opsiyou ya da poföyü hassasiyeii gösei. Dela valık değeideki değişim oaıı gösei sok fiyalaıı al uygulamalaıda ki küçük değişimlei opsiyo fiyalaıdaki haekeii deecesidi. O halde dela hedgig e isk faköleii azalma diyebiliiz. Buu e iyi yolu opsiyo ve ou al uygulamalaı aasıdaki uyumu sağlamakı. Biz bu çalışmada meshde bağımsız ola RBF meoduu kullaaak mesh-değişkeli FD meoduu souçlaı ile kaşılaşıdık. Bu souçlaı kaşılaşıabilmek içi Willmo u FD souçlaıı ele aldık ve kulladığımız RBF uygulamasıda da Avupa ipi pu saım opsiyouu E T0.5 yıl ve [030] değelei içi kulladık. 7

8 ock TP MQ CUBIC GAUIAN HATA Tablo : 00 ike Tablo ile ayı faka Dela içi 8

9 ock TP MQ CUBIC GAUIAN Tablo 3: Faklı ode değelei içi geçel haala 00 ock TP MQ CUBIC GAUIAN Tablo 4: 00 ike Tablo 3 ile ayı faka Dela içi. 9

10 5- TARTIŞMA Çözümleimizde RBF meoduu kullamayı ecih eik çükü öcelikli avaaı iki belileyici ieliğii olması; uygulaa yöemi foksiyolaı düzgü açık ve difeasiyelleebili. Meshde bağımsız bi yöem ola RBF meoduu da kedi içide umeiksel aaliz yöemleii faklılıkla gösediği al meodlaı ayı değele göz öüe alıaak çözümlei kaşılaşıılmışı. Elde edile souçlaa göe kullaıla ode sayısı aıkça TP hi plae splie diğeleie göe çok daha iyi souçla vemiş ve haa oaı 0 a yaklaşmışı. Ayı souç dela değelei içide gözlemişi. FD fiie diffeece meoduda gözlee ai sıçayışla gözlememiş ve RBF meoduu meshde bağımsız olması sebebiyle iseile adaki değei vade soua bağlı kalmada gözleebilmişi. Bu çalışmada göseilmek isee üklee fizike kullaıla adveksiyo-difüzyo ipi bi deklemi umeik çözümlei sayeside faklı alalada çözümleii sağlaabileceğidi. Bu çalışma ile bu ip bi deklemi opsiyo fiyalaı üzeide de çözümleii sağlaması göseilmişi. Opsiyo fiyalaı meshde bağımsız bi yöem ile modelleeek üklee fiziği bosaya uygulaabililiği göseilmişi. 0

11 Teşekkü: Bu poe EPRC aafıda deseklemişi Ga No: GR/N0968. Kayakça: [] Choi. ad Macozzi M.D. A Numeical Appoach o Ameica Cuey Opio aluaio Joual of Deivaives [] Bozosu I. ad Chaafi A. A Aalysis of he Liea Advecio-Diffusio Equaio usig Mesh-fee ad Mesh-depede Mehods Joual of Egieeig Aalysis wih Bouday Elemes ol: 6 Issue 0 pp: [3] Bozosu I. Bozosu D. ad Chaafi A. O he Numeical oluio of Liea Advecio-Diffusio Equaio usig Compacly uppoed Radial Basis Fucios Lecue Noes i Compuaioal ciece ad Egieeig ol: 6 edied by M. Giebel ad M. A. chweize pp:

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ RAPOR Ocak R epav Tükiye Ekoomi Poliikalaı Aaşıma Vakfı Faih ÖZATA Diekö, TEPAV Fias Esiüsü PARA POLİTİASINDA ENİ ARAIŞLAR ve TCMB GİRİŞ Tükiye Cumhuiye Mekez Bakası TCMB ı Nisa de öemli değişiklikle yapıla

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ 30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ

VOLTERRA-WİENER SERİSİ KULLANILARAK OPTİK GERİBESLEMELİ YARIİLETKEN LAZER DİYODUN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : 4 : -2 : 675-683

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

BÖLÜM 2 D YOT MODELLER

BÖLÜM 2 D YOT MODELLER BÖLÜM YOT MOELLER.1. Bi diyodu liee olmaya davaıı lei yöde kutulamı bi joksiyouu akım-geilim kaakteistii gei bi bölgede ekil-.1 deki gibi üstel bi deiim göstei. cak, geek küçük geekse büyük akımlaa dou

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 26, Sayı: 2, 2012 237

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 26, Sayı: 2, 2012 237 Atatük Üiesitesi İktisadi e İdai Bilile Degisi Cilt: 6 Sayı: 0 7 AR-GE PROJELERİNİN SEÇİİNDE GRUP ARARINA DAYALI BULANI ARAR VERE YALAŞII Tuba YAICI AYAN ) Selçuk PERÇİN ) Özet: Güüüzde A-Ge poeleii seçii

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei

Detaylı

Electronic Letters on Science & Engineering 5(2) (2009) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 5(2) (2009) Available online at www.e-lse.org Eleconic Lees on Science & Engineeing 5 9 Available online a www.e-lse.og adial Change Of oos Wih Acive Balancing ings Davu Edem ŞAHİN a*, İbahim UZAY b a Bozok Univesiy, Fen Bilimlei Ensiüsü, 66, Yozga,

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

IEEE802.11N MIMO-OFDM WLAN UZAYSAL ÇOĞULLAMA SİSTEMLERİNİN İLİNTİLİ KANALLAR ÜZERİNDE ORTAK GÖNDERİCİ/ALICI ANTEN SEÇİMİ İLE KAPASİTE ARTIMI

IEEE802.11N MIMO-OFDM WLAN UZAYSAL ÇOĞULLAMA SİSTEMLERİNİN İLİNTİLİ KANALLAR ÜZERİNDE ORTAK GÖNDERİCİ/ALICI ANTEN SEÇİMİ İLE KAPASİTE ARTIMI IEEE80.11 MIMO-OFDM WLA UZAYSAL ÇOĞULLAMA SİSTEMLEİİ İLİTİLİ KAALLA ÜZEİDE OTAK GÖDEİCİ/ALICI ATE SEÇİMİ İLE KAPASİTE ATIMI Asuman Yavanoğlu ve Özgü Euğ Telekomunikasyon ve Sinyal işleme Laboauvaı (TESLAB)

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries ÇÜ Fe ve Mühedislik Bilimleri Dergisi Yıl:0 Cil:6-3 TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Pricile Comoe Aalysis Use i Fisheries Leve SANGÜN Su Ürüleri Aabilim Dalı Musafa AKAR Su Ürüleri

Detaylı

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ üm aı alaı of. D. Büle Yeşilaa a aii. İisi çoğalılama.. İEİM İE ISI RANSFERİNE GİRİŞ. Isı ileimi deei e delemi Şeil. de göseile a üei allmış silidii bi çubua, falı A, Δ e Δ değelei ullaılaa apıla deele

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Naual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 5/4 ENERGY DECAY FOR KIRCHHOFF EQUATION Müge MEYVACI Mima Sinan Güzel Sanala Ünivesiesi, Fen-Edebiya Fakülesi, Maemaik Bölümü,Beşikaş-İSTANBUL

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Çözüm Kitapçığı Deneme-3

Çözüm Kitapçığı Deneme-3 KAMU PESONEL SEÇME SINAVI ÖĞETMENLİK ALAN İLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ - OCAK 7 Çözüm Kitapçığı Deeme- u testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı vea i kısmıı Mekezimizi

Detaylı

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi)

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi) YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oraı ve Ne Bugükü Değer Yöemlerii İcelemesi) Tarık GEDİK, Kadri Cemil AKYÜZ, İlker AKYÜZ KTÜ Orma Fakülesi 680 TRABZON ÖZET Ulusal kalkımaı

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI

POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI .. SAU Fen Bilimlei Enstitüsü Degisi 6.Cilt, 1.Saı (Mat 2002) Pozison Kontolüne Yönelik DC Moto Ugulaması A.İ.Doğman, A.F.Boz POZiSYON KONTROLÜNE YÖNELİK DC MOTOR UYGULAMASI 'oj Ali lhsan DOGMAN, Ali Fuat

Detaylı

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor.

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor. Üsel Dağılım Babam: - Şu ampulleri hagisii ömrüü daha kısa olduğu hiç belli olmuyor. Baze yei alıalar eskilerde daha öce yaıyor. Hele şuradaki bildim bileli var. Evde yedek ampul yokke, gerekirse ou söküp

Detaylı

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA Cemil ÖZ 1, Raşi KÖKER 2, Serap ÇAKAR 1 1 Sakara Üiversiesi Mühedislik Fakülesi Bilgisaar Mühedisliği Bölümü, Eseepe, Sakara 2 Sakara Üiversiesi Tekik

Detaylı

Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama

Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama SDU Joural of Sciece (E-Joural), 0, 6 (): 6-7 Olasılıksal Oyaklık Modellerii Bayesci Çözümlemesi ve Bir Uygulama Derya Ersel,*, Yasemi Kayha Aılga, Süleyma Güay Haceepe Üiversiesi, Fe Fakülesi, İsaisik

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

Kısa Vadeli Para Politikası Aracı Olarak Faiz Düzleştirme Kuralı: Teorik ve Metodolojik Yaklaşım

Kısa Vadeli Para Politikası Aracı Olarak Faiz Düzleştirme Kuralı: Teorik ve Metodolojik Yaklaşım Kısa Vadeli Paa Poliikası Aacı Olaak Faiz Düzleşime Kualı: Teoik ve Meodolojik Yaklaşım Buak DARICI Öze Bu çalışmanın amacı faiz düzleşime kualını eoik ve meodolojik açıdan oaya koyaak lieaüdeki yeini

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

2. TEMEL İSTATİSTİK KAVRAMLARI

2. TEMEL İSTATİSTİK KAVRAMLARI TEMEL İSTATİSTİK KAVRAMLARI İstatistik Kavamı İstatistik bi olaya (eve, aa kütle,toplu, kolektif ve yığı şeklideki) ait veilei (aket, deey ve gözlem vb) toplaaak sayısal olaak ifade edilmesii ve bu veilei

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI İstabul Tcaet Üvestes Sosyal Blmle Degs Yıl: Sayı: Baha 0 / s.455-468 AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI Üal H. ÖZDEN 6 ÖZET Çalışmada, AB ye

Detaylı

ARMAX Modelleri ve Porsuk Barajı Su Seviyesinin Öngörüsü. ARMAX Models and Forcasting Water Level of Porsuk Dam

ARMAX Modelleri ve Porsuk Barajı Su Seviyesinin Öngörüsü. ARMAX Models and Forcasting Water Level of Porsuk Dam ARMAX Modelleri ve Porsuk Barajı Su Seviyesii Ögörüsü Hülya Şe a ve Özer Özaydı a a Eskişehir Osmagazi Üiversiesi, Fe-Edebiya Fakülesi, İsaisik Böl., 26480, Eskişehir e-posa: hse@ogu.edu.r, oozaydi@ogu.edu.r

Detaylı

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi Teksil Tekolojileri Elekroik Dergisi Cil: 3, No: 1, 009 (31-37) Elecroic Joural o Texile Techologies Vol: 3, No: 1, 009 (31-37) TEK OLOJĐK ARAŞTIRMALAR www.ekolojikarasirmalar.com e-issn:- Makale (Paper)

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Tümevarım ve Özyineleme

Tümevarım ve Özyineleme Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme

Detaylı

465.HUTBE: ASR SURESİ. Aziz ve Asil Müminler!

465.HUTBE: ASR SURESİ. Aziz ve Asil Müminler! Sal, 04 Austos 2015 22:20 - So Gücelleme Sal, 04 Austos 2015 22:22 465.HUTBE: ASR SURES Aziz ve Asil Mümiler! Bu cumada itibare üç Cuma hutbemizde Asr suresii kou ediece- iz.bu sure sayesie kurtuluşu ilkelerii

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DURAĞAN OLMAYAN ZAMAN SERİLERİNDE KOİNTEGRASYON VEKTÖRÜNÜN TAHMİNİ ÜZERİNE BİR ÇALIŞMA Yudum BALKAYA İSTATİSTİK ANABİLİM DALI ANKARA 006 Her

Detaylı

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ

KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Uludağ Üivesitesi Mühedislik Fakültesi Degisi, Cilt 21, Saı 1 ARAŞTIRMA DOI: 10.17482/uujfe.90925 KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Tufa Güka

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur SIT MKINR Günlük yaşantımızda iş yapmamızı kolaylaştıan alet ve makineledi asit makinelele büyük bi yükü, küçük bi kuvvetle dengelemek ve kaldımak mümkündü asit makinalada yük, dengeleyici kuvvet ile gösteili

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ

Detaylı

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI The Turkish Olie Joural of Educatioal Techology TOJET July 2005 ISSN: 106521 volume Issue Article 16 BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI Yard. Doç. Dr. Bahadti RÜZGAR Marmara

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

Türkiye de Turizm ve İhracat Gelirlerinin Ekonomik Büyüme Üzerindeki Etkisinin Testi: Eşbütünleşme ve Nedensellik Analizi

Türkiye de Turizm ve İhracat Gelirlerinin Ekonomik Büyüme Üzerindeki Etkisinin Testi: Eşbütünleşme ve Nedensellik Analizi Süleyma Demirel Üiversiesi, Fe Bilimleri Esiüsü Dergisi, 6-2 ( 202), 20-2 Türkiye de Turizm ve İhraca Gelirlerii Ekoomik Büyüme Üzerideki Ekisii Tesi: Eşbüüleşme ve Nedesellik Aalizi Esra POLAT, Süleyma

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals Ç.Ü Fen e Mühendislik Bilimlei Deisi Yıl:0 Cilt:8-3 ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eienfequency Contous of ZnX (X=S, Se, Te) Photonic Cystals Utku ERDİVEN, Fizik Anabilim

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi Obje Tabalı Sııfladırma Yötemi ile Tokat İli Uydu Görütüleri Üzeride Yapısal Gelişimi İzlemesi İlker GÜNAY 1 Ahmet DELEN 2 Mahmut HEKİM 3 1 Gaziosmapaşa Üiversitesi, Mühedislik ve Doğa Bilimleri Fakültesi,

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY

ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY ZONGULDAK KARAELMAS ÜNİVERSİTESİ ZONGULDAK KARAELMAS UNIVERSITY ISSN: 1302-0056 ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY Cil/Volume 7 Yıl/Year 2005 Sayı/Number 7 hp://bof.karaelmas.edu.r/joural

Detaylı

Paralel Hesaplama Kullanılarak Doğrusal Olmayan Sistemlerin Analizi

Paralel Hesaplama Kullanılarak Doğrusal Olmayan Sistemlerin Analizi 6 th Iteratioal Advaed Tehologies Symposium (IATS 6-8 May 2 Elazığ Turkey Paralel Hesaplama Kullaılarak Doğrusal Olmaya Sistemleri Aazi S. Kaçar Ġ. Çakaya 2 Sakarya Üiversitesi Türkiye skaar@sakarya.edu.tr

Detaylı

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı

Detaylı

İ ğ Ü İ İ İ İ İ İ İ İğİ ö ö Ş İ Ş İ İ İ İ İ ÖÜ Ü ö Ü ğ ğ ö Ü ğ ğ ğ

İ ğ Ü İ İ İ İ İ İ İ İğİ ö ö Ş İ Ş İ İ İ İ İ ÖÜ Ü ö Ü ğ ğ ö Ü ğ ğ ğ İ İ İ İ İ ö Ç Ç İ ğ Ü İ İ İ İ İ İ İ İğİ ö ö Ş İ Ş İ İ İ İ İ ÖÜ Ü ö Ü ğ ğ ö Ü ğ ğ ğ ğ Ü İ İ İ İ İ İ İ ğ İ ö İ ö Ş ö ğ ö Ş İ Ş Ç ö Ç ö Ç ğ ö ğ ö ö ğ ö ğ ö ö ğ ö ö ö ğ ğ ö ğ ğ ğ İ İİ İ İ İ İ İ İİ İğ İ öi

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Temiz durum (I): Kirli durum (II): Tduman. Tsu. h duman. hsu. q II. T sii. T si. Lkt. L is. = 1 h = q 003.

Temiz durum (I): Kirli durum (II): Tduman. Tsu. h duman. hsu. q II. T sii. T si. Lkt. L is. = 1 h = q 003. MAK47 sı raseri 008-009 Güz Bütülee Sıavı Çözüler 0 Şubat 009 Pazartesi ) Bir buar azaıı ısıta üzeii oluştura 8 alılığıdai düzle duvar şelidei çeli levaı bir üzüü (dua taraı) alılığıda is (uru) diğer taraıı

Detaylı

EGM96 JEOPOTANSİYEL MODELİ,TG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ KARŞILAŞTIRILMASI

EGM96 JEOPOTANSİYEL MODELİ,TG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ KARŞILAŞTIRILMASI Selçuk Üivesitesi Jeodezi ve Fotogameti Müedisliği Öğetimide 30. Yõl Semozyumu16-18 Ekim 00 Koya SUNULMUŞ BİLDİRİ EGM96 JEOPOTANSİYEL MODELİTG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Eczacılık Fakültesi Öğrencilerinin Mesleğe Yaklaşımları Pharmacy Students' Approach to Their Profession

Eczacılık Fakültesi Öğrencilerinin Mesleğe Yaklaşımları Pharmacy Students' Approach to Their Profession Eczacılık Fakültesi Öğrecilerii Mesleğe Yaklaşımları Pharmacy Studets' Approach to Their Professio Işıl ŞİMŞEK* Yıldır ATAKURT** Bihter YAZICIOĞLU*** ÖZET Bu çalışmada, Eczacılık Fakültesi öğrecilerii

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Natual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 6 47-66, 8 Aaştıma Makalesi / eseach Aticle DESIGN OF GOUNDING GID WITH AND WITHOUT GOUNDING OD IN TWO-LAYE SOIL MODEL

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

Kırgızistan da İthalatın Belirleyicilerinin Modellenmesi

Kırgızistan da İthalatın Belirleyicilerinin Modellenmesi SESSION C: Uluslararası Ticare I 259 Kırgızisa da İhalaı Belirleyicilerii Modellemesi Assoc. Prof. Dr. Ebru Çağlaya (Kyrgyzsa-Turkey Maas Uiversiy, Kyrgyzsa) Ph.D. Cadidae Zamira Oskobaeva (Kyrgyzsa-Turkey

Detaylı

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL.

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL. TEMEL BANKACILIK HİZMEERİ TALEP ve BİLGİ FORMU ÜRÜNÜN /TANIMI : Katılım Fou (/Yabacı Para) Süresi (Vadesi) : Süresiz TAHSİL EDİLECEK ÜCRET, MASRAF VE KOMİSYON; Özel Cari Hesap İşletim Ücreti Hesap Özeti

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı