SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ"

Transkript

1 SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ 2.1. Sinyal Üretimi Bu laboratuarda analog sinyaller ve sistemlerin sayısal bir ortamda benzetimini yapacağımız için örneklenmiş sinyaller üzerinde işlem yapacağız. Sürekli zamanlı bir sinyal olan X c ( t ) yi N boyutlu bir vektör ile örneklenmiş ve kuantalanmış (bölütlenmiş) olarak [X c(t 0) X c(t 1)... X c(t N-1)] şeklinde ifade edilebilir. Burada sinyalin zaman aralığı t o ile tn 1 arasındadır. Örnekleme aralığı T s=ti+1-t i ifadesiyle belirtilmektedir. Örnekleme aralığı yeteri kadar büyük seçilmelidir ki MATLAB de sinyal sürekli zaman gibi görülebilsin. Sinyalin en büyük frekansının yaklaşık 10 katı bir değer (örnekleme frekansı) işlemler için yeterli olacaktır. Ancak sinyalin fazının çizdirilmesi işleminde alınacak değer 100 katı olması yapılacak işlemin doğruluğunu artıracaktır. Örnekleme frekansı ile örnekleme zaman aralığı arasındaki bağıntı f = 1/ T dir. s s fs = 10 Hz lik bir sinüzoidal sinyal aşağıdaki gibi üretilir: %program ch2_1.m close all % Ekranda daha önce çizilmiş şekil varsa bu şekilleri kapatır. clear all % Daha önceden yapılmış bir işlem varsa hafızayı temizler. clc % Komut penceresi ekranını temizler. fm=10; % İşaretin frekansı 10 Hz fs=100*fm; %Sinyalin örnekleme frekansı Hz; ts=1/fs; n=[0:(1/fs):1]; % Sinyal 0'dan 1 saniyeye kadar faz=0; %30 tsy=cos(2*pi*n*fm+faz); % İşaretimiz plot(n,tsy, 'k' ); %işaretin zaman izgesinde çizimi title('cosinus dalgasi') xlabel('saniye'); ylabel('genlik'); 12

2 Şekil 2.1: Kosinüs Dalgası Şekilden görüleceği üzere 1 saniyede 10 adet kosinüs dalgası vardır Fourier Dönüşümü Fourier dönüşüm yöntemi sinyalin içindeki bilgilerin elde edilebilmesi için, sinyallerin işlenmesinde kullanılan çok önemli bir yöntemdir. Bu bilgiler, Fourier dönüşümü ile MATLAB tarafından yeniden kullanılmaya uygun bir veri formatına çevrilir. Fourier dönüşümüyle bir sinyal, farklı genlik, frekans ve fazlarda kosinüs ve sinüs temel bileşenlerinin toplamı olarak ifade edilir. Her bileşenin frekans ve genliği ile birlikte tablolaşması, bilgisayarla verilerin işlenmesi sırasında kolaylık sağlar. + jw jwt X ( e ) = Xc ( t) e dt jw X( e ) = x( n) e jwn (2.1) (2.2) Denklem (2.1) Sürekli Zamanlı Fourier Dönüşümü, Denklem (2.2) ise Ayrıklı Zamanlı Fourier Dönüşümü nü göstermektedir. MATLAB de kullandığımız dönüşüm ise hem zamanda hem de frekansta ayrık olduğu için DFT ve IDFT kullanırız. N 1 jw 2 kn π X ( k) = x( n) e wk = k n= 0 N N 1 1 jwk n xn ( ) = X( ke ) N n= 0 (2.3) (2.4) Denklem (2.3) Ayrık Fourier Dönüşümü (DFT), Denklem (2.4) ise Ters Ayrık Fourier Dönüşümü (IDFT) dür. 13

3 Bu dönüşüm hesaplamaları maalesef çok masraflı hesaplamalardır. Hızlı Fourier dönüşümü tekniği, bir yandan hesaplamalar sürerken, bir yaklaşım olarak ilk elde edilen değerlerin kullanıma sunulduğu bir alternatif yazılım tekniğidir. %program ch2_2.m fm=10; % Isaretin frekansi fs=1000*fm; %Sinyalin ornekleme frekansi ts=1/fs; n=[0:(1/fs):1]; % Sinyal 0'dan 1 saniyeye kadar faz=0 %-60;%30 tsy=sin(2*pi*n*fm+faz); % isaretimiz % cos((pi/2)-a)=cos(a-(pi/2)) tsyf=fft(tsy)/length(tsy); % Sinyalin frekans izgesinde gösterilimi tsyfm=abs(tsyf); % Sinyalin fourier dönüşümü yapılınca karmaşık %faz temizle% for i=1:(fs+1); if abs(tsyf(i))<0.01; tsyf(i)=0; tsyfa=angle(tsyf); SUBPLOT(2,1,1) plot(tsyfm); AXIS([ ]) title('sekil 2a'); %text(3000,0.3,'-pi +pi araligi için ') SUBPLOT(2,1,2) plot(tsyfa); AXIS([ ]) title('sekil 2b'); xlabel('hertz'); % Sinyalin frekansının bulunması [A,B]=max(tsyfm(1:(fs/2))); disp('sinyalin frekansi') disp(b-1) tsyfa(b) Şekil 2.2.a. da sinyalin frekans cevabının mutlak değeri çizilmişken Şekil 2.2.b. de faz cevabı çizilmiştir. Burada dikkat edilmesi gereken husus faz cevabı bulunurken örnekleme frekansının yeterince büyük seçilmesinin gerekliliğidir. 14

4 Şekil 2.2 a) Sinyalin Frekans Cevabının Mutlak Değeri b) Sinyalin Faz Cevabı Sinyalin Fourier dönüşümünden sonra sıfıra yakın sayılar oluşmaktadır. Bu sayıların oluşumundan dolayı faz cevabı anlaşılır şekilde çıkmamıştır. Bu problemin çözülebilmesi için DFT işleminden sonra sıfıra yakın sayılar sıfırlanır. Bu işlem verilen örnekte faz temizleme ile kısmında gerçekleştirilmiştir Süzgeç Yapıları Süzgeçler yapılarına göre Sonlu Dürtü Yanıtlı (FIR, Finite Impluse Response) ve Sonsuz Dürtü Yanıtlı (IIR, Infinite Impluse Response) süzgeçler olmak üzere ikiye ayrılır. Ayrıca süzgeçler verdikleri frekans cevabına göre Alt Geçiren (LP, Low Pass), Üst Geçiren (HP, High Pass), Band Geçiren (BP, Band Pass), Band Bastıran Geçirmeyen (BR, Band eject), Tüm Geçiren (AP, All Pass) şeklinde ayrılmaktadır Sonsuz Dürtü Yanıtlı Süzgeç Yapıları Bu bölümde Butterworth süzgeç tasarımı verilecektir. Örnekte verilen tasarım alt geçiren süzgeç tasarımıdır ancak % li kısımlar kaldırılarak diğer tasarımların da nasıl yapılabileceği görülebilir. 15

5 %program ch2_5.m close all wg=[0.25]; wd=[0.5]; %wg=[0.5] %wd=[0.1] %wg=[ ]; %wd=[ ]; %wg=[ ]; %wd=[ ]; gddb=1; sddb=40; % Alt geçiren % Üst geçiren % Band geçiren % Band Durduran [N,Wn]=buttord(wg,wd,gddb,sddb); [B,A] = BUTTER(N,Wn); fs=1000; [H,W] = FREQZ(B,A,1000); Hg=20*log10(abs(H)); plot(w/pi,hg) grid on AXIS([ ]) xlabel('w/pi'); ylabel('kazanç,db'); title('iir,buttordworth Alt Geçiren Süzgeç') plot(abs(h)); grid on xlabel('hz'); ylabel('kazanç'); AXIS([ ]) for i=1:(length(h)); if abs(h(i))<0.01; H(i)=0; Ha=angle(H); plot((ha/pi)*180); xlabel('hz'); ylabel('faz'); grid on 16

6 Şekil 2.3: Butterworth Alt Geçiren Süzgecin Kazanç Eğrisi (db) Şekil 2.4: Butterworth Alt Geçiren Süzgecin Kazanç Eğrisi 17

7 Şekil 2.5: Butterworth Alt Geçiren Süzgecin Faz Cevabı Ayrıca Chebyshev, Elliptic süzgeçleri de verilen MATLAB fonksiyonları ile gerçekleştirilebilir. buttord: Geçiş bandında R p (db) değerinden fazla olmayan ve durdurma bandında en az R s (db) değeri kadar güç yetirimini veren en düşük dereceli sayısal Butterworth süzgecin derecesini verir. W g ve W d geçiş ve durdurma bandının 0 ile 1 arasında normalize edilmiş köşe frekanslarını göstermektedir. Fonksiyonun çıkışı olan W n ise istenen özellikte süzgeç için gerekli olan doğal frekansı vermektedir. Alt Geçiren: W p =0.1 W s =0.2; Üst Geçiren: W p =0.2 W s =0.1; Band Geçiren: W p =[ ], W s =[0.1,0.8]; Band Durduran: W p =[ ], W s =[ ]; Butter: Butterworth sayısal ve analog süzgeç tasarımı N. dereceden alt geçiren süzgeç tasarlar ve N+1 uzunluğunda B (pay) ve A (payda) süzgeç katsayılarını verir. Katsayılar kaydırmalı yapı düşünülerek z in sıfırın kuvvetinden N+1. kuvvetine kadar gider. Ayrıca kesim frekansı W n 0.0 < W n < 1.0 arasındadır. Burada 1.0 örnekleme hızının yarısını göstermektedir. Eğer W n iki bileşen oluşuyorsa W n = [W 1 W 2 ] 2N dereceli geçiş bandı W 1 < W < W 2 şeklinde olan süzgeç olur. Ayrıca üst geçiren süzgeç [B,A] = butter(n,wn,'high') ile bant durduran süzgeç ise [B,A] = butter(n,wn,'stop') ile tasarlanabilir. cheb1ord: Birinci çeşit Chebyshev süzgeç derecesi bulma cheby: Chebyshev birinci çeşit sayısal ve analog süzgeç tasarımı cheb2ord: İkinci çeşit Chebyshev süzgeç derecesi bulma cheby2: Chebyshev ikinci çeşit sayısal ve analog süzgeç tasarımı ellipord: Elliptic süzgeç derecesi bulma ellip: Elliptic veya Cauer sayısal ve analog süzgeç tasarımı 18

8 Sonlu Dürtü Yanıtlı Süzgeç Tasarımı FIR süzgeçlerin getirisi doğrusal faz cevabına sahip olmalarıdır. Ancak bu süzgeç yapılarında istenen frekans cevabını elde etmek için gerekli olan süzgeç uzunluğu oldukça fazladır. Dahası FIR tasarımında geçiş bandı ile durdurma bandı arası olan dönüşüm bandı IIR süzgeçler kadar keskin olmamasıdır. FIR süzgeçlerde çeşitli tasarım metotları vardır. Bunlar pencereleme, remez algoritması, en küçük kareler yöntemi gibi çeşitli yöntemlerdir. Bu bölümde bir pencereleme yöntemi ile yapılan süzgeç tasarımını vereceğiz. Bu tasarım varsayılan olarak hamming pencereleme yöntemini kullanmaktadır. %program ch2_6.m close all Wn=[0.2]; % Alt geçiren N=150; B = FIR1(N,Wn,'low') fs=1000; [H,W] = FREQZ(B,1,1000); Hg=20*log10(abs(H)); plot(w/pi,hg) grid on AXIS([ ]) xlabel('w/pi'); ylabel('kazanç,db'); title('sdc,hamming Pencereleme Yöntemiyle Alt Geçiren Süzgeç Tasarimi') plot(abs(h)); grid on xlabel('hz'); ylabel('kazanç'); AXIS([ ]) for i=1:(length(h)); if abs(h(i))<0.01; H(i)=0; Ha=angle(H); plot((ha/pi*180)); xlabel('hz'); ylabel('faz'); grid on 19

9 Şekil 2.6: FIR Alt Geçiren Süzgecin Kazanç eğrisi (db) Şekil 2.7: FIR Alt Geçiren Süzgecin Kazanç Eğrisi 20

10 Şekil 2.8: FIR Alt Geçiren Süzgecin faz cevabı Unwrap: Daha önce FIR süzgeç yapısı doğrusal bir faz cevabı verirken IIR yapılar bu cevabı veremez demiştik. Bu ifade çizdirilen faz grafiklerinde tam olarak görülememektedir. Bu yüzden unwrap denilen π den büyük atlama fazlarını 2π nin katlarına dolayan işlev kullanılır ve sürekli hali görüntülenebilir. Ha=angle(H); komutundan sonra Ha=unwrap(Ha); komutu kullanılarak yapılırsa sonlu ve sonsuz darbe cevaplı süzgeçler için aşağıdaki şekiller elde edilebilir. Buradan görülebileceği üzere sonsuz darbe cevaplı süzgecin faz eğrisi doğrusal iken bu eğri sonlu dürtü cevaplı süzgeç için doğrusala yakın ancak doğrusal değildir. Şekil 2.9: Sonlu Dürtü Cevaplı Süzgeç İçin Faz Cevabı Düzenlenmiş Eğri 21

11 Şekil 2.10: Sonsuz Dürtü cevaplı Süzgeç İçin Faz Cevabı Düzenlenmiş Eğri 2.4. Sinyallerim Süzgeçlenmesi yt ( ) = A.cos(2 π f t+ θ ) + A.sin(2 π f t+ θ ) şeklinde verilen y() t 1 1c 1 2 2c sinyalini A = 3, A = 5, f = 10 Hz, f = 300 Hz, θ = 30, θ = 0 değerleri için benzetimini yaparak daha sonradan yk() t = A1.cos(2 π f1 ct) sinyalini elde etmek için alt geçiren sonlu cevaplı süzgeçten geçirelim. Dikkat edilmesi gereken husus süzgeç tasarımı yaparken süzgeç tasarım kriterini 0 ile π arasında göz önüne alınmasıdır. Örneğin örnekleme frekansımız olsun ve kullanacağımız süzgeç bant geçiren olsun ve geçirme frekansları da 180 ile 220 Hz arasında olsun, bu durumda durdurma frekanslarını da 100 ile 300 seçelim. Süzgecimizin en büyük frekansı f s /2 olacak şekilde almamız gereken değerler basit bir oran orantı w = olarak bulunur. Burada önemli bir nokta bu ile w [ ] =, g d [ ] tasarımda bile seçtiğimiz değerlere karşılık gelen B değerinin çok küçük olmasıdır. Bu açıdan dar bantlı bir süzgeç tasarımının ve gerçekleştirilmesinin zor olduğu görülmektedir. Örneğin tasarımda B nin değeri direkt sıfır olarak alınırsa süzgeç çalışmaz. % Sinyal uretimi ve filtreleme islemi close all clear all hold on fs=10000; % pi=5000 %Sinyalin ornekleme frekansi ts=1/fs; n=[0:(1/fs):1]; % Sinyal 0'dan 1 saniyeye kadar fm1=10; %150 fm2=200; faz1=(pi/6); faz2=0; A1=4; A2=3; % Isaretin frekansi 22

12 tsy=a1*cos(2*pi*n*fm1+faz1)+a2*sin(2*pi*n*fm2+faz2); % isaretimiz %gy2=a2*sin(2*pi*n*fm2+faz2); süzgeçleme isleminden sonra istenen sinyal %...Sekil 1: sinyalin zaman izgesinde çizimi plot(tsy); AXIS([ ]); xlabel('örnek sayisi, Toplam 0.2 saniye'); ylabel('genlik Degeri,Volt'); %... tsyf=fft(tsy)/length(tsy); tsyfm=abs(tsyf); %faz temizle% for i=1:(fs+1); if abs(tsyf(i))<0.1; tsyf(i)=0; tsyfa=angle(tsyf); %... % 0-2 pi araliginda olan izgeyi -pi +pi araligina goturme islemi tsyfm=fftshift(tsyfm); tsyfa=fftshift(tsyfa); eks=[-fs/2:1:fs/2]; %...Süzgeç Tasarimi...(Burada süzgeçin frekans çiziminin %gösterimi için gerekli islemler yapilmaktadir.) wg=[ ]; % Band geçiren wd=[ ]; gddb=1; sddb=40; [N,Wn]=buttord(wg,wd,gddb,sddb); [B,A] = BUTTER(N,Wn); %B=0; [H,W] = FREQZ(B,A,fs/2+1); eh=flipud(h); H=[eH(1:fs/2);H]; %... %... subplot(2,1,1); plot(eks,abs(h));grid on AXIS([ ]) %...faz temizle 23

13 for i=1:(fs+1); if abs(h(i))<0.1; H(i)=0; subplot(2,1,2) plot(eks,angle(h)),grid on AXIS([ ]); xlabel('hertz'); %... %...y(t) sinyali'nin cizimi... SUBPLOT(2,1,1) plot(eks,tsyfm); hold on plot(eks,abs(h));grid on AXIS([ ]) hold on SUBPLOT(2,1,2) plot(eks,(tsyfa/pi)*180); AXIS([ ]); hold on %... plot(eks,angle(h));grid on %AXIS([ ]); xlabel('hertz'); %...Süzgeçleme islemi... suz_tsy=filter(b,a,tsy); %... suz_tsyf=fft(suz_tsy)/length(tsy); for i=1:(fs+1); if abs(suz_tsyf(i))<0.1; suz_tsyf(i)=0; suz_tsyfa=angle(suz_tsyf); suz_tsyfm=abs(suz_tsyf); suz_tsyfm=fftshift(suz_tsyfm); suz_tsyfa=fftshift(suz_tsyfa); %...Sekillerin çizdirimi... SUBPLOT(2,1,1) plot(eks,suz_tsyfm);grid on AXIS([ ]); 24

14 SUBPLOT(2,1,2) plot(eks,(suz_tsyfa/pi)*180); AXIS([ ]);grid on xlabel('hertz') plot(suz_tsy); gy2=a2*sin(2*pi*n*fm2+faz2); hold on plot(gy2,'r'); AXIS([ ]); xlabel('örnek Sayisi, Toplam 0.1 saniye') Şekil 2.11: y(t) işareti Şekil 2.12: Kullanılan Bant Geçiren Süzgecin Kazanç ve Faz Cevabı 25

15 Şekil 2.13: Y(F) İn Genlik Ve Faz Cevabı Üzerine Kullanılan Süzgecin Genlik Ve Faz Cevabının Gösterimi Şekil 2.14: Süzgeçleme İşleminden Sonra İşaretin Frekans Cevabı 26

16 Şekil 2.15: Süzgeçlenmiş Ve Gerçek İşaretin Gösterimi 27

DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları

DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları AMAÇ: MATLAB programının temel özelliklerinin öğrenilmesi, analog işaretler ve sistemlerin sayısal bir ortamda benzetiminin yapılması ve incelenmesi.

Detaylı

DENEY 4: Sayısal Filtreler

DENEY 4: Sayısal Filtreler DENEY 4: Sayısal Filtreler I. AMAÇ Bu deneyin amacı sonlu dürtü yanıtlı (FIR) ve sonsuz dürtü yanıtlı (IIR) sayısal filtrelerin tanıtılması ve incelenmesidir. II. ÖN HAZIRLIK 1) FIR ve IIR filtreleri kısaca

Detaylı

EEM 451 Dijital Sinyal İşleme LAB 3

EEM 451 Dijital Sinyal İşleme LAB 3 EEM 451 Dijital Sinyal İşleme LAB 3 1. AMAÇ Ayrık zamanlı filtrelerin implementasyonu, çeşitleri FIR filtrelerinin incelenmesi FIR filtresi dizayn edilmesi 2. TEMEL BİLGİLER 2.1 FIR(Finite impulse response)

Detaylı

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar.

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar. ANALOG İLETİŞİM Modülasyon: Çeşitli kaynaklar tarafından üretilen temel bant sinyalleri kanalda doğrudan iletim için uygun değildir. Bu nedenle, gönderileek bilgi işareti, iletim kanalına uygun bir biçime

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Analog Haberleşme Uygulamaları Doç. Dr. Cüneyt BAYILMIŞ

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Sayısal Haberleşme Uygulamaları Deney No:1 Konu: Örnekleme

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Sayısal Sinyal İşleme (EE 306 ) Ders Detayları

Sayısal Sinyal İşleme (EE 306 ) Ders Detayları Sayısal Sinyal İşleme (EE 306 ) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Sinyal İşleme EE 306 Bahar 3 0 0 3 8 Ön Koşul Ders(ler)i EE 303 (FD)

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuvarı Deney Föyü Deney#10 Analog Aktif Filtre Tasarımı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 10 Analog

Detaylı

İşaretler ve Süzgeçleme

İşaretler ve Süzgeçleme İşaretler ve Süzgeçleme Zaman Domeni Süzgeç Genlik V in C R V out Zaman Frekans Domeni Yok edilen : f f 2 Genlik Genlik Geçen : f 3 f 4 f 5 f f 2 f 3 f 4 f 5 Frekans f f 2 f 3 f 4 f 5 Faz A A Zaman 9 Faz

Detaylı

Contents. Fourier dönüşümü örnekleri 1

Contents. Fourier dönüşümü örnekleri 1 Contents Fourier dönüşümü örnekleri 1 Fourier dönüşümü alma ve yorumlama Fourier dönüşümü örnekleri 2 Filtre tasarımı örnekleri Alçak geçirgen filtre tasarımı Tasarlanan filtrenin özellikleri ve ilgili

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI

İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 3 : Frekans Analizi Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 3 : Frekans Analizi 1. Ayrık Zamanlı

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ History in Pictures - On January 5th, 1940, Edwin H. Armstrong transmitted thefirstfmradiosignalfromyonkers, NY to Alpine, NJ to Meriden, CT to Paxton, MA to Mount Washington. 5 January is National FM

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SAYISAL SÜZGEÇ TASARIMI VE UYGULAMALARI E. ANIL AĞOĞLU

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SAYISAL SÜZGEÇ TASARIMI VE UYGULAMALARI E. ANIL AĞOĞLU BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SAYISAL SÜZGEÇ TASARIMI VE UYGULAMALARI E. ANIL AĞOĞLU YÜKSEK LİSANS TEZİ 2008 SAYISAL FİLTRE TASARIMI VE UYGULAMALARI DIGITAL FILTER DESIGN AND APPLICATIONS

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. z- dönüşümü FIR filtrelerin tasarımı ve gerçekleştirilmesi C ve TMS320C6x kodları

Detaylı

ÜÇÜNCÜ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER

ÜÇÜNCÜ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER ÜÇÜNCÜ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER PROGRAMIN ADI: 1samp2.pro ;program 1samp2 ;bu program sinuzoidallerin toplamının ;orneklenmesini ve aradeger bulmayi gosterir LOADCT, 2, /silent USERSYM, [-.5,.5],[0,0]

Detaylı

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI:

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: ELN35 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: Control System Toolbox içinde dinamik sistemlerin transfer fonksiyonlarını tanımlamak için tf,

Detaylı

MATLAB Semineri. EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü. 30 Nisan / 1 Mayıs 2007

MATLAB Semineri. EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü. 30 Nisan / 1 Mayıs 2007 MATLAB Semineri EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü 30 Nisan / 1 Mayıs 2007 İçerik MATLAB Ekranı Değişkenler Operatörler Akış Kontrolü.m Dosyaları Çizim Komutları Yardım Kontrol

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ FREKANS MODÜLASYONU İçerik 3 Açı modülasyonu Frekans Modülasyonu Faz Modülasyonu Frekans Modülasyonu Açı Modülasyonu 4 Açı modülasyonu Frekans Modülasyonu

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sistemleri Tasarımı Giriş ve Temel Kavramlar Prof. Dr. Bülent E. Platin Giriş Çalıştay İçeriği: Giriş ve Temel Kavramlar Açık Çevrim Kontrol Kapalı Çevrim Kontrol Kök Yer Eğrileri ve Yöntemleri

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Dijital Sinyal İşleme (COMPE 463) Ders Detayları

Dijital Sinyal İşleme (COMPE 463) Ders Detayları Dijital Sinyal İşleme (COMPE 463) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Dijital Sinyal İşleme COMPE 463 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.) 7. Diferensiyel Denklemlerin Çözümünde Matlab Uygulamaları MATLAB, Matrislere dayanan ve problemlerin çözümlerinde kullanılan Matematik metotların bilgisayar ortamında kullanılmasını sağlayan yazılım paketidir.

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

AYRIK-ZAMANLI DOĞRUSAL

AYRIK-ZAMANLI DOĞRUSAL Bölüm 2 AYRIK-ZAMANLI DOĞRUSAL ZAMANLA-DEĞİŞMEYEN SİSTEMLER 4 Bölüm 2. Ayrık-Zamanlı Doğrusal Zamanla-Değişmeyen Sistemler Pek çok fiziksel sistem doğrusal zamanla-değişmeyen (Linear Time Invariant - DZD)

Detaylı

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ 9.1. DENEYİN AMAÇLARI DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ RC devresinde kondansatörün şarj ve deşarj eğrilerini elde etmek Zaman sabiti kavramını öğrenmek Seri RC devresinin geçici cevaplarını incelemek

Detaylı

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır.

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. 6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. A =[ 7 2 5 ]; B =[ 5 4 8 ]; plot(a,b); İstenildigi takdirde

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 3. Veri ve Sinyaller

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 3. Veri ve Sinyaller Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 3. Veri ve Sinyaller Analog ve sayısal sinyal Fiziksel katmanın önemli işlevlerinden ş birisi iletim ortamında

Detaylı

Sinyaller ve Sistemler (EE 303) Ders Detayları

Sinyaller ve Sistemler (EE 303) Ders Detayları Sinyaller ve Sistemler (EE 303) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sinyaller ve Sistemler EE 303 Güz 3 0 2 4 7 Ön Koşul Ders(ler)i EE 206 (FD),

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ . Amaçlar: EEM DENEY ALERNAİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKRİSİK ÖZELLİKLERİ Fonksiyon (işaret) jeneratörü kullanılarak sinüsoidal dalganın oluşturulması. Frekans (f), eriyot () ve açısal frekans

Detaylı

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi Wavelet Transform and Applications A. Enis Çetin Bilkent Üniversitesi Multiresolution Signal Processing Lincoln idea by Salvador Dali Dali Museum, Figueres, Spain M. Mattera Multi-resolution signal and

Detaylı

MATLAB. Grafikler DOÇ. DR. ERSAN KABALCI

MATLAB. Grafikler DOÇ. DR. ERSAN KABALCI MATLAB Grafikler DOÇ. DR. ERSAN KABALCI Matlab yüksek seviyede grafik oluşturulabilir. Matlab ile çizilebilecek grafikler; Dikdörtgen (x-y) ve 3 boyutlu çizgi grafikleri Ağ (mesh) ve yüzey grafikleri Çubuk

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB ler Prof. Dr. İrfan KAYMAZ What is a computer??? MATLAB de GRAFİK İŞLEMLERİ MATLAB diğer programlama dillerine nazaran oldukça güçlü bir grafik araçkutusuna

Detaylı

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI DENEY 1 OSİLOSKOP KULLANIMI Deneyin Amaçları Osiloskop kullanımını öğrenmek, Osiloskop grafiklerini

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB Bilgisayar Programlama MATLAB Grafik İşlemleri Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları MATLAB de GRAFİK İŞLEMLERİ MATLAB diğer programlama dillerine nazaran oldukça güçlü bir grafik araçkutusuna (toolbox)

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Cobra3 lü Akuple Sarkaçlar

Cobra3 lü Akuple Sarkaçlar Dinamik Mekanik Öğrenebilecekleriniz... Spiral yay Yer çekimi sarkacı Yay sabiti Burulma titreşimi Tork Vuruş Açısal sürat Açısal ivme Karakteristik frekans Kural: Belirli bir karakteristik frekansa sahip

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME / DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik

Detaylı

AST415 Astronomide Sayısal Çözümleme - I. 7. Grafik Çizimi

AST415 Astronomide Sayısal Çözümleme - I. 7. Grafik Çizimi AST415 Astronomide Sayısal Çözümleme - I 7. Grafik Çizimi Bu derste neler öğreneceksiniz? Python'la şekildekine benzer grafikler çizmeyi öğreneceksiniz! MATPLOTLIB.PYPLOT Modülü Python da grafik çizmek

Detaylı

Ders 5 : MATLAB ile Grafik Uygulamaları

Ders 5 : MATLAB ile Grafik Uygulamaları Ders 5 : MATLAB ile Grafik Uygulamaları Kapsam Polinomlar Enterpolasyon Grafikler 5.1. Polinomlar 5.1.1. Polinom Girişi Matlab de polinomlar katsayılarının vektörü ile tanımlanır. Örnek: P(x) = -6x 5 +4x

Detaylı

DY-45 OSĐLOSKOP KĐTĐ. Kullanma Kılavuzu

DY-45 OSĐLOSKOP KĐTĐ. Kullanma Kılavuzu DY-45 OSĐLOSKOP KĐTĐ Kullanma Kılavuzu 01 Kasım 2010 Amatör elektronikle uğraşanlar için osiloskop pahalı bir test cihazıdır. Bu kitte amatör elektronikçilere hitap edecek basit ama kullanışlı bir yazılım

Detaylı

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N DENEY 7: ÖRNEKLEME, AYRIK SİNYALLERİN SPEKTRUMLARI VE ÖRTÜŞME OLAYI. Deneyin Amacı Bu deneyde, ürekli inyallerin zaman ve rekan uzaylarında örneklenmei, ayrık inyallerin ektrumlarının elde edilmei ve örtüşme

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

Bu soruda eğik şekilde belli bir hızda ve değişik açılarda atılan ve sonrasında yerden seken bir topun hareketini ifade eden kod yazılacaktır.

Bu soruda eğik şekilde belli bir hızda ve değişik açılarda atılan ve sonrasında yerden seken bir topun hareketini ifade eden kod yazılacaktır. ÖDEV 1 Aşağıdaki soruları çözerek en geç 23 Şubat 2014 Pazar günü saat 23:59'a kadar bana ve dersin asistanına ilgili dosyaları eposta ile gönderin. Aşağıda hem soruların açıklaması, hem de sizlere yol

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

DY-45 OSİLOSKOP V2.0 KİTİ

DY-45 OSİLOSKOP V2.0 KİTİ DY-45 OSİLOSKOP V2.0 KİTİ Kullanma Kılavuzu 12 Ocak 2012 Amatör elektronikle uğraşanlar için osiloskop pahalı bir test cihazıdır. Bu kitte amatör elektronikçilere hitap edecek basit ama kullanışlı bir

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

AYRIK-ZAMANLI KONTROL (~ DİJİTAL KONTROL)

AYRIK-ZAMANLI KONTROL (~ DİJİTAL KONTROL) AYRIK-ZAMANLI KONTROL (~ DİJİTAL KONTROL) Ayrık-zamanda çalışırken sinyaller bütün zamanlar için değil, sadece belli zaman anları için tanımlıdır. Bu zaman anları arasındaki aralığa Ts diyelim. Örneğin

Detaylı

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu, İzmir, 1-17 Haziran 15 Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Grafik Komutları. Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri

Grafik Komutları. Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri Matlab Grafikler Grafik Türleri Grafik Komutları Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri Yardımcı Komutlar hold

Detaylı

24 KANALLI DOREMİ SİSMİK CİHAZI

24 KANALLI DOREMİ SİSMİK CİHAZI Kırılma-Yansıma-MASW-Remi uygulamaları için 24 KANALLI DOREMİ SİSMİK CİHAZI DoReMi, Sismik Kırılma,Sismik Yansıma MASW,REMI ve Kuyu Sismiği çalışmaları için geliştirilmiş modüler sayısal jeofon dizilim

Detaylı

Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi

Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 41 Bu bölümde aşağıdaki konular incelenecektir: Nümerik

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

TECO N3 SERİSİ HIZ KONTROL CİHAZLARI

TECO N3 SERİSİ HIZ KONTROL CİHAZLARI 1/55 TECO N3 SERİSİ HIZ 230V 1FAZ 230V 3FAZ 460V 3FAZ 0.4 2.2 KW 0.4 30 KW 0.75 55 KW 2/55 PARÇA NUMARASI TANIMLAMALARI 3/55 TEMEL ÖZELLİKLER 1 FAZ 200-240V MODEL N3-2xx-SC/SCF P5 01 03 Güç (HP) 0.5 1

Detaylı

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar MatLab Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Sunum Planı MatLab Hakkında Ekran Yapısı Programlama Yapısı Matlab da Programlamaya Giriş Sorular MatLab Hakkında MatLab;

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-2 Arş. Gör. Osman

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015 Musa DEMİRCİ KTO Karatay Üniversitesi Konya - 2015 1/46 ANA HATLAR Temel Kavramlar Titreşim Çalışmalarının Önemi Otomatik Taşıma Sistemi Model İyileştirme Süreci Modal Analiz Deneysel Modal Analiz Sayısal

Detaylı

Biyomedical Enstrümantasyon. Bütün biyomedikal cihazlar, hastadan belli bir fiziksel büyüklüğün miktarını ölçer. Nicel sonuçlar verir.

Biyomedical Enstrümantasyon. Bütün biyomedikal cihazlar, hastadan belli bir fiziksel büyüklüğün miktarını ölçer. Nicel sonuçlar verir. ENSTRÜMANTASYON Enstrümantasyon Nicel (veya bazı zamanlar nitel) miktar ölçmek için kullanılan cihazlara Enstrümanlar (Instruments), işleme de Enstrümantasyon adı verilir. Biyomedical Enstrümantasyon Bütün

Detaylı

ÇEYREK AYNA SÜZGEÇ BANKASI TASARIMI İÇİN YENİ BİR YÖNTEM

ÇEYREK AYNA SÜZGEÇ BANKASI TASARIMI İÇİN YENİ BİR YÖNTEM Gazi Üniv. Müh. Mim. Fak. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 3, No, 97-37, 5 Vol 3, No, 97-37, 5 ÇEYREK AYNA SÜZGEÇ BANKASI TASARIMI İÇİN YENİ BİR YÖNTEM

Detaylı

Eksen Mühendislik, 2010 SONLU ELEMANLAR İLE SHOCK RESPONSE SPECTRUM ANALİZİ YAPILMASI

Eksen Mühendislik, 2010 SONLU ELEMANLAR İLE SHOCK RESPONSE SPECTRUM ANALİZİ YAPILMASI TARİH: 03-12-2010 YAZAN: AYDIN KUNTAY, EKSEN MÜHENDİSLİK SONLU ELEMANLAR İLE SHOCK RESPONSE SPECTRUM ANALİZİ YAPILMASI 1. Giriş Bu doküman yapılarda SRS olarak bilinen Shock Response Spectrum hesaplarının

Detaylı

Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm

Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm 1 Yigit Cagatay Kuyu, 1 Nedim Aktan Yalcin, * 1 Fahri Vatansever * 1 Faculty of Engineering,

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

5. (10 Puan) Op-Amp devresine aşağıda gösterildiği gibi bir SİNÜS dalga formu uygulanmıştır. Op-Amp devresinin çıkış sinyal formunu çiziniz.

5. (10 Puan) Op-Amp devresine aşağıda gösterildiği gibi bir SİNÜS dalga formu uygulanmıştır. Op-Amp devresinin çıkış sinyal formunu çiziniz. MAK442 MT3-MEKATRONİK S Ü L E Y M A N D E MİREL ÜNİVERSİTES E Sİ M Ü H E N DİSLİK-MİMM A R L I K F A K Ü L T E Sİ M A KİNA M Ü H E N DİSLİĞİ BÖLÜMÜ Ü ÖĞRENCİ ADI NO İMZA SORU/PUAN 1/15 2/15 3/10 4/10 5/10

Detaylı

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3)

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3) Doktora Programı Ders İçerikleri: SHA 600 Seminer (0 2 0) Öğrencilerin ders aşamasında; tez danışmanı ve seminer dersi sorumlusu öğretim elemanının ortak görüşü ile tespit edilen bir konuyu hazırlayarak

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

Yüksek Mobiliteli OFDM Sistemleri için Ortak Veri Sezimleme ve Kanal Kestirimi

Yüksek Mobiliteli OFDM Sistemleri için Ortak Veri Sezimleme ve Kanal Kestirimi Yüksek Mobiliteli OFDM Sistemleri için Ortak Veri Sezimleme ve Kanal Kestirimi Erdal Panayırcı, Habib Şenol ve H. Vincent Poor Elektronik Mühendisliği Kadir Has Üniversitesi, İstanbul, Türkiye Elektrik

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 3. DERS NOTU Konu: MATLAB de Temel İşlemler Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU 1 MATLAB (Matrix Laboratory) sayısal hesaplama dilidir. MathWorks firması tarafından geliştirilmiş

Detaylı

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları Uluslararası Katılımlı 7. Makina Teorisi Sempozyumu, Izmir, -7 Haziran 5 Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları E.

Detaylı

S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I

S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I OTM309 MEKATRONİK S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I ÖĞRENCİ ADI NO İMZA TARİH 26.11.2013

Detaylı

TRT GENEL MÜDÜRLÜĞÜ VERĐCĐ ĐŞLETMELERĐ DAĐRESĐ BAŞKANLIĞI SPEKTRUM ANALĐZÖR TEKNĐK ŞARTNAMESĐ

TRT GENEL MÜDÜRLÜĞÜ VERĐCĐ ĐŞLETMELERĐ DAĐRESĐ BAŞKANLIĞI SPEKTRUM ANALĐZÖR TEKNĐK ŞARTNAMESĐ TRT GENEL MÜDÜRLÜĞÜ VERĐCĐ ĐŞLETMELERĐ DAĐRESĐ BAŞKANLIĞI SPEKTRUM ANALĐZÖR TEKNĐK ŞARTNAMESĐ Sipariş No: VĐD 2010/12 1 SPEKTRUM ANALĐZÖR TEKNĐK ŞARTNAMESĐ 1. GENEL Bu şartnamenin amacı; Đdari Şartname

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

BÖLÜM 1.A Bir sisteme belli frekanslar arasında rastgele bir gürültü karıştığını varsayalım. Örneğin

BÖLÜM 1.A Bir sisteme belli frekanslar arasında rastgele bir gürültü karıştığını varsayalım. Örneğin ÖDEV 2 Aşağıdaki soruları çözerek en geç 8 Mart 2016 Salı günü saat 23:59'a kadar bana ve dersin asistanına ilgili dosyaları eposta ile gönderin. Ödevleri gönderirken sıkıntı yaşanmaması için lütfen aşağıdaki

Detaylı

DENEY 4. Rezonans Devreleri

DENEY 4. Rezonans Devreleri ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2104 Elektrik Devreleri Laboratuarı II 2012-2013 Bahar DENEY 4 Rezonans Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı

Detaylı

İKİNCİ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER

İKİNCİ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER İKİNCİ HAFTA UYGULAMA YAZILIMLARI VE ÖRNEKLER PROGRAM ADI: 0sin0.pro ;bu program sinusoidallerin toplamlarını zaman ve frekans bölgesinde gösterir LOADCT, 2, /silent USERSYM, [-.5,.5],[0,0] A=FINDGEN(16)*(!pi*2/16.)

Detaylı

Sabit Mıknatıslı Senkron Motorlarda Titreşim Sinyaline Dayalı Eksenden Kaçıklık Arızasının Tespiti. Mühendisliği Bölümü 60250, TOKAT

Sabit Mıknatıslı Senkron Motorlarda Titreşim Sinyaline Dayalı Eksenden Kaçıklık Arızasının Tespiti. Mühendisliği Bölümü 60250, TOKAT EEB 26 Elektrik-Elektronik ve Bilgisayar Sempozyumu, -3 Mayıs 26, Tokat TÜRKİYE Sabit Mıknatıslı Senkron Motorlarda Titreşim Sinyaline Dayalı Eksenden Kaçıklık Arızasının Tespiti Mustafa ER Mehmet AKAR

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı