PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI"

Transkript

1 PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI Proje Yüklenicisi: Yeditepe Üniversitesi Mühendislik ve Mimarlık Fakültesi 2009-İstanbul. Bu araştırma projesi Projem İstanbul kapsamında İstanbul Büyükşehir Belediyesi tarafından hazırlatılmıştır. İstanbul Büyükşehir Belediyesi ve araştırmacının yazılı izni olmadan çoğaltılamaz ve kopyalanamaz.

2 Bilgisayarlı Görü ve Sınıflandırma Teknikleriyle Arazi Kullanımının Otomatik Olarak Bulunması ÖZETÇE Kentsel gelişimi gözlemlemek uzaktan algılamanın temel problemlerinden biridir. Yüksek çözünürlüklü uydu imgeleri bu problemi çözmek için önemli bilgi taşımaktadır. Buna rağmen iki temel problemden ötürü uydu imgeleri tek başına yeterli değildir. Öncelikle, bir uzman çok büyük ebatlardaki uydu imgelerini incelemek zorundadır. Bu inceleme çok zaman alıcıdır ve hatalara açıktır. İkincisi ise kentsel yerleşimler sürekli değişim halindedir. Bu sebeple, kentsel gelişimin izlenmesinin periyodik olarak yapılması ve otomatik bir sistemden yararlanılması kaçınılmazdır. Bu çalışmada yüksek çözünürlüklü uydu imgelerinden kentsel yerleşim bölgelerinin otomatik olarak bulunması ve sınıflandırılması için yeni bir yöntem geliştirilmesi amaçlanmaktadır. Önerdiğimiz yöntem Gabor filtrelerinden yararlanılarak elde edilen yerel özniteliklere dayanmaktadır. Bu öznitelikler bir oy uzayında gösterilip; bu oylardan faydalanarak otomatik olarak yerleşim bölgelerinin bulunması amaçlanmaktadır. 1. GİRİŞ Yerleşim bölgelerini gözlemlemek bir çok kamu ve özel kuruluşlara yardımcı olur. Yeni nesil uydu imgelelerinin (Ikonos ve Quickbird) yüksek çözünürlükleri bu amaç için önemli bilgi vermektedir. Ancak bahsedilen imgeler çok büyük ebatlardadır. Aynı zamanda kentsel bölgeler sürekli değişmekte ve yenilenmektedir. Bu sebeple periyodik olarak bu bölgelerin gözlenmesi gerekmektedir. Bahsedilen zorluklardan dolayı bir kullanıcı tarafından bu gözlemleri analiz etmek hem çok zaman gerektirmektedir, hem de hataya açıktır. Bu nedenle kentsel yerleşim bölgelerinin bulunması için otomatik bir sisteme ihtiyaç duyulmaktadır. Konu ile ilgili bir çok araştırmacı uydu imgelerinden yerleşim bölgelerinin bulunmasını otomatikleştirmek üzerine uğraş vermiştir. Karathanassi [1] yerleşim bölgelerini uydu imgesi üzerinde sınıflandırmak için yoğunluk bilgisini kullandı. Benediktsson [2] uydu imgelerinden yerleşim birimlerini çıkarabilmek için morfolojik operasyonlar yardımı ile yapısal bilgileri çıkarttı. Ünsalan ve Boyer [3, 4] gri seviyeli uydu imgesinde yerleşim bölgelerini bulabilmek için yapısal öznitelikleri çıkarttılar. Takip eden diğer bir çalışmada, Ünsalan ve Boyer [5] yapısal öznitelikleri graf teorisinden yararlandırarak ilişkilendirip yerleşim bölgelerini buldular. Fonte [6] uydu imgesi üzerinde bina niteliklerini bulabilmek için köşe çıkarıcı algoritmalardan yararlandı. Yaptıkları çalışma sonucunda köşe çıkarıcı algoritmaların uydu imgesi üzerindeki nesneleri ayırt etmede faydalı olduğunu ortaya koydular. Bhagavathy ve Manjunath [7] doku analizinden yararlanarak uydu imgelerinde liman, park gibi alanları ayırt etti. Bruzzone ve Carlin [8] yüksek çözünürlüklü uydu imgelerini sınıflandırmak için piksel tabanlı bir yöntem önerdi. Geliştirdikleri yöntem ile imgeden öznitelikler çıkartıp bunları destek vektör makineleri ile sınıflandırdı. Fauvel [9] farklı öznitelikleri farklı sınıflandırıcılar ile sınıflandırdıktan sonra çıkan sonuçları birleştirdi ve gri seviyeli uydu imgelerinde yerleşim bölgelerini tespit etti. Sırmaçek ve Ünsalan [10] gri seviyeli uydu imgelerinden çıkarttıkları SIFT (Scale Invariant Feature Transform) özniteliklerini graf teorisi ile ilişkilendirerek yerleşim birimlerini ve tek tek binaları tespit etti. Bu amaç için bir model bina veritabanından yararlandılar.

3 Bu projede, gri seviyeli uydu imgelerinde yerleşim bölgelerini tespit edebilmek ve sınıflandırmak için yeni bir yöntem önermekteyiz. Öncelikle Gabor filtrelerinden yararlanarak farklı yönlerde uzanan kenar, köşe gibi bina özelliklerini elde edeceğiz. Sonrasında bu öznitelikleri bina olması muhtemel bölgelere oy vermesi amacı ile kullanacağız ve verilen oylardan bir oy uzayı elde edeceğiz. Son olarak en uygun karar yönteminden yararlanarak yerleşim bölgesini tespit edeceğiz. Geliştireceğimiz bu yöntem herhangi bir önsel bilgiye ihtiyaç duymadan adaptif olarak çalışacaktır. Geldiğimiz aşamada örnek görüntüler üzerinde yaptığımız deneyler sistemin başarılı sonuçlar vereceğini göstermektedir. 2. YEREL ÖZNİTELİK ÇIKARIMI Verilen gri seviyeli uydu imgelerinde yerleşim bölgelerini tespit etmek için ilk olarak yerel öznitelikleri çıkardık. Çıkartılan öznitelikleri yerleşim birimlerinde sıkça rastlanan bina öbeklerinin özelliklerini temsil edecek şekilde seçtik. Buna rağmen bina öbeklerine benzer karakteristikler taşıyan bazı çalılıkların ya da ağaçlık bölgelerin öznitelik çıkartmasının önüne geçebilmek için test imgelerine bir ön işlem uyguladık. Tüm test imgelerimizi öncelikle 5x5 genişlikli bir medyan filtre ile filtreledik. 2.1 GABOR FİLTRELEME Yerel öznitelikleri çıkarabilmek için Gabor filtrelerinden yararlandık. Gabor filtreleri doku sınıflandırmada ve nesne tanımada sıkça kullanılmaktadır [11]. Bu filtreler uzamsal konum ile birlikte yönsel bilgi anlamında seçicilik sağladığı için önemli özellikler taşır [12]. İki boyutlu bir Gabor filtre, G(x,y), bir Gauss fonksiyonu ile bir karmaşık üstel fonksiyonun çarpımı olarak tanımlanabilir: Bu denklemdeki U ve V aşağıdaki gibidir. V = (-xsin ) Formüllerde geçen f karmaşık üstel sinyalin frekansı, ölçek parametresidir. Gabor filtrenin yönü ve Gabor filtre yardımıyla uydu imgelerindeki kenar ve köşe bazlı yerleşim bölgesi özellikleri elde edilebilir. Bu özelliklerin çıkarılabilmesi için uygun ve değerlerinin seçilmesi gerekmektedir. Bu sebeple, uydu imgelerindeki bina kenarlarına benzer bir dürtü yanıtı olan Gabor filtre seti tasarladık ( = 1.5, ve f=0.65 seçildi). Farklı yönlere bakan kenarları tespit edebilmek için de = {0, pi/6, 2.pi/6, 3.pi/6, 4.pi/6, 5.pi/6} radyan olarak seçtik. 2.2 YEREL ÖZNİTELİKLER

4 Gabor filtrenin tepkisi filtreye en çok benzeyen bölgelerde ençok değere sahip olacağı için, 6 adet filtre tepkisinde ayrı ayrı yerel en yüksek noktalarını tespit ettik. Bu bölgenin bina ya da yol kenarı özellikleri taşıyacağını varsaydık. Oylamada kullanılmak üzere her bir yerel öznitelik için bir ağırlık atadık. Bunun için öncelikle yerel özniteliğin bulunduğu filtre tepkisine Otsu'nun eşikleme yöntemi ve bağlı bileşenler analizinden yararlandık [13]. Bu sayede, öznitelik noktasının üzerinde bulunduğu kenarın büyüklüğünü bulduk. Herbir özniteliğe, üzerinde bulunduğu birleşik grubun piksel sayısı kadar ağırlık verdik. Bu adımda, çok düşük ağırlığa sahip olan öznitelikleri eledik. Bu yöntem ile örnek imge üzerinden elde edilen yerel öznitelikleri aşağıda Şekil 1. de verdik. Şekil 1. Örnek yerleşim yeri. Buradan elde edilen yerel öznitelikler. 3. KENTSEL YERLEŞİM BİRİMLERİNİN BULUNMASI Yerel öznitelikleri ve ağırlıklarını belirledikten sonra yerleşim bölgelerini bulabilmek için bir oy uzayı oluşturulacaktır. En iyi karar verme yönteminden de faydalanarak yerleşim bölgeleri tespit edilecektir. 3.1 UZAMSAL OYLAMA Kentsel bir yerleşim bölgesinde binalara ait bir çok yerel öznitelik bulunmaktadır. Bu öznitelikler aynı zamanda çok yoğun şekilde görülür. Bu nedenle ötürü, bir oylama uzayı oluşturarak her bir yerel öznitelik noktasının bulunduğu konuma ağırlığı ile orantılı miktarda oy verilecektir. Örnek olarak K adet yerel özniteliğin (, ), k=1,...,k koordinatlarında bulunduğunu farzedelim. Bu durumda oylama matrisi aşağıdaki gibi olacaktır. Burada herbir özniteliğin oy etki alanıdır. (, ) konumundaki bir yerel öznitelik kendi çevresinde bina olma olasılığını bildiren bir oy verecektir. Şekil 1 de verilen örnek için elde edilen oy uzayı aşağıda Şekil 2. de verilmiştir.

5 Şekil 2. Elde edilen oy uzayı. Renk skalası (maviden kırmızıya) oy çokluğunu belirtir. 3.2 EN İYİ KARAR VERME Oylama uzayını oluşturduktan sonra Otsu'nun yönteminden [14] faydalanarak yerleşim bölgelerini tespit ederiz. Otsu'nun yöntemi Bayes karar kriterine göre (Gauss olasılık yoğunluk fonksiyonlarından yararlanarak) kentsel yerleşim alanlarını ve kırsal alanları temsil eden oy uzayları arasındaki eşik değerini bulmak için kullanılabilir. Yöntem adaptif olduğu için herhangi bir parametre ayarlanmasına gerek duymamaktadır. Ayrıca, herbir test imgesi için eşik değeri otomatik olarak ayarlanmış olur. Şekil 2. deki oy uzayı üzerinden elde edilen yerleşim alanı Şekil 3. de verilmiştir. Şekil 3. Örnek imge üzerinden otomatik olarak elde edilen yerleşim birimi. 4. SONUÇLAR Yukarıdaki yöntemi diğer imgelere de uygulayarak aşağıdaki sonuçları elde ettik. Bu sonuçlardan da görülebilmektedir ki önerdiğimiz yöntem otomatik olarak başarılı bir şekilde çalışmaktadır.

6 Şekil 4. Örnek imgeler üzerinden otomatik olarak elde edilen yerleşim birimi. Bu projede prototip bir sistemin gerçeklenmesi yapılmıştır. Bundan sonraki çalışmalarda da istanbul Büyükşehir Belediyesi nin ilgili birimleri ile koordineli olarak çalışıp yerleşim birimlerini bulma sistemimizi geliştirmeyi amaçlamaktayız. Bunun ilk adımını da yerleşim birimlerindeki binaların otomatik tespiti çalışmamız ile atmış bulunuyoruz. Aşağıda uydu görüntülerini kullanarak otomatik bina tespiti yapabilen sistemimizin ilk sonuçlarını vermekteyiz. Şekil 5. Örnek imge üzerinden otomatik olarak elde edilen binalar. REFERANSLAR: [1] Karathanassi, V., Iossifidis, C., Rokos, D., A Texture-Based Classification Method for Classifying Built Areas According to Their Density, International Journal of Remote Sensing, 2000, vol. 21, no. 9, pp [2] Benediktsson, J. A., Pesaresi, M., Arnason, K., Classification and Feature Extraction for Remote Sensing Images from Urban Areas Based on Morphological Transformations, IEEE Transactions on Geoscience and Remote Sensing, 2003, vol. 41, no. 9, pp [3] Ünsalan, C., Boyer, K. L., Classifying land development in high resolution panchromatic satellite images using straight line statistics, IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 4, pp [4] Ünsalan, C., Boyer, K. L., Classifying Land Development in High Resolution Satellite Imagery Using Hybrid Structural - Multispectral Features, IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 12, pp

7 [5] Ünsalan, C., Boyer, K. L., A Theoretical and Experimental Investigation of Graph Theoretical Measures for Land Development in Satellite Imagery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, vol. 27, no.4, pp [6] Fonte, L. M., Gautama, S., Philips, W., Goeman, W., Evaluating corner detectors for the extraction of man made structures in urban areas, IEEE International Geoscience and Remote Sensing Symposium, 2005, pp [7] Bhagavathy, S., Manjunath, B. S., Modeling and detection of geospatial objects using texture motifs, IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 12, pp [8] Bruzzone, L., Carlin, L., A multilevel context-based system for classification of very high spatial resolution images, IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol. 44, no. 9, pp [9] Fauvel, M., Chanussot, J., Benediktsson, J. A., Decision Fusion for the Classification of Urban Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 10, pp [10] Sırmaçek, B., Ünsalan, C., Urban area and building detection using SIFT keypoints and graph theory, IEEE Transactions on Geoscience and Remote Sensing, In Press. [11] Kyrki, V. and Kamarainen, J. K. and Kalviainen, H., Simple Gabor Feature Space for Invariant Object Recognition, Pattern Recognition Letters, 2004, vol. 25, no. 3, pp [12] Vetterli, M., Kovacevic, J., Wavelets and Subband Coding, Prentice Hall, [13] Sonka, M. and Hlavac, V. and Boyle, R., Image Processing, Analysis and Machine Vision, CL Engineering, 2007, Third Edition. [14] Otsu, N., A Threshold Selection Method from Gray-level Histograms, IEEE Transactions on System, Man, and Cybernetics, 1979, vol. 9, no. 1, pp

8

2016 YILI AKADEMİK TEŞVİK BAŞVURUSU FAALİYET TÜRÜ HAM PUAN NET PUAN PROJE ARAŞTIRMA 0 0 YAYIN

2016 YILI AKADEMİK TEŞVİK BAŞVURUSU FAALİYET TÜRÜ HAM PUAN NET PUAN PROJE ARAŞTIRMA 0 0 YAYIN ALİ ÖZGÜN OK DOÇENT YILI AKADEMİK TEŞVİK BAŞVURUSU NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ/MÜHENDİSLİK-MİMARLIK FAKÜLTESİ/JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ BÖLÜMÜ/JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ

Detaylı

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Yılmaz KAYA 1, Lokman KAYCİ 2 1 Bilgisayar Mühendisliği Bölümü, Siirt Üniversitesi, 56100 Siirt 2 Biyoloji Bölümü, Siirt Üniversitesi,

Detaylı

Araştırma Görevlisi İSMAİL ÇÖLKESEN

Araştırma Görevlisi İSMAİL ÇÖLKESEN Araştırma Görevlisi İSMAİL ÇÖLKESEN ÖZGEÇMİŞ Adı Soyadı : İSMAİL ÇÖLKESEN Doğum Tarihi : 1981 Ünvanı : Dr. Öğrenim Durumu : Derece Alan Üniversite Lisans Yüksek Lisans Doktora Jeodezi ve Fotogrametri Müh.

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Sunan: Dr. Ufuk SAKARYA TÜBİTAK UZAY Katkıda Bulunanlar: Mustafa Teke, Can Demirkesen, Ramazan Küpçü, Hüsne Seda Deveci,

Detaylı

YÜKSEK VE DÜŞÜK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN YOLLARIN TAYİNİ

YÜKSEK VE DÜŞÜK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN YOLLARIN TAYİNİ TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon YÜKSEK VE DÜŞÜK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN YOLLARIN TAYİNİ R. Geçen 1, G.

Detaylı

Muhammet Baykara Accepted: February 2011. ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

Muhammet Baykara Accepted: February 2011. ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 2011, Volume: 6, Number: 2, Article Number: 1A0182 ENGINEERING SCIENCES Received: November 2010 Muhammet Baykara Accepted: February 2011 Burhan Ergen

Detaylı

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2004 CİLT 1 SAYI 4 (55-60) YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA Okyay KAYNAK Boğaziçi Üniversitesi Mühendislik Fakültesi

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ VE HAVA FOTOĞRAFLARINDAN OTOMATİK BİNA YAKALAMA

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ VE HAVA FOTOĞRAFLARINDAN OTOMATİK BİNA YAKALAMA ÖZET TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı 18 22 Nisan 2011, Ankara YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ VE HAVA FOTOĞRAFLARINDAN OTOMATİK BİNA YAKALAMA

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN GENETİK ALGORİTMA YAKLAŞIMI KULLANILARAK KENTSEL BİNALARIN TESPİTİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN GENETİK ALGORİTMA YAKLAŞIMI KULLANILARAK KENTSEL BİNALARIN TESPİTİ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN GENETİK ALGORİTMA YAKLAŞIMI KULLANILARAK KENTSEL BİNALARIN TESPİTİ E Sümer a, M Türker b a Başkent Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

BİNA VE YOL ALANLARININ ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN ÇİZGE-TABANLI YENİ BİR YÖNTEM İLE OTOMATİK TESPİTİ

BİNA VE YOL ALANLARININ ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN ÇİZGE-TABANLI YENİ BİR YÖNTEM İLE OTOMATİK TESPİTİ BİNA VE YOL ALANLARININ ÇOK YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN ÇİZGE-TABANLI YENİ BİR YÖNTEM İLE OTOMATİK TESPİTİ ÖZET Ali Özgün OK Yrd. Doç. Dr., Nevşehir H.B.V. Üniversitesi, Jeodezi ve Fotogrametri

Detaylı

SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA. Elif AYBAR. Anadolu Üniversitesi, Porsuk Meslek Yüksekokulu, 26430, Eskişehir/Türkiye

SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA. Elif AYBAR. Anadolu Üniversitesi, Porsuk Meslek Yüksekokulu, 26430, Eskişehir/Türkiye Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA ÖZET Elif AYBAR Anadolu Üniversitesi, Porsuk

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI SEGMENTATION OF IMAGES WITH COLOR SPACE

GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI SEGMENTATION OF IMAGES WITH COLOR SPACE İleri Teknoloji Bilimleri Dergisi Cilt 3, Sayı 1, 1-8, 2014 Journal of Advanced Technology Sciences Vol 3, No 1, 1-8, 2014 GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI Recep DEMİRCİ 1 Uğur GÜVENÇ

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Galatasaray Üniversitesi 2004 Y. Lisans Bilgisayar Mühendisliği

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Galatasaray Üniversitesi 2004 Y. Lisans Bilgisayar Mühendisliği ÖZGEÇMİŞ 1. Adı Soyadı: Erchan Aptoula 2. Doğum Tarihi: 25/03/1982 3. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Galatasaray Üniversitesi 2004 Y. Lisans Bilgisayar Mühendisliği

Detaylı

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ 1. Giriş Tolga Kurt, Emin Anarım Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği 80815,Bebek, İstanbul-Türkiye e-posta:

Detaylı

ENDÜSTRİYEL ALANLARDAKİ DAİRESEL PETROL VE YAĞ ÜRÜNLERİ (POL) DEPOLARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN OTOMATİK TESPİTİ

ENDÜSTRİYEL ALANLARDAKİ DAİRESEL PETROL VE YAĞ ÜRÜNLERİ (POL) DEPOLARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN OTOMATİK TESPİTİ ENDÜSTRİYEL ALANLARDAKİ DAİRESEL PETROL VE YAĞ ÜRÜNLERİ (POL) DEPOLARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN OTOMATİK TESPİTİ Ali Özgün Ok Nevşehir H.B.V. Üniversitesi, Jeodezi ve Fotogrametri Mühendisliği

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma

Detaylı

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Bölümü oner@isikun.edu.tr 1. Adı Soyadı : Mustafa Mengüç ÖNER 2. Doğum Tarihi : 01.02.1977 3. Unvanı : Doçent Dr. 4. Öğrenim Durumu : ÖĞRENİM

Detaylı

N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel. Antalya, 22/04/2011

N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel. Antalya, 22/04/2011 N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel Antalya, 22/04/2011 IEEE 19. Sinyal İşleme ve İletişim Uygulamaları Kurultayı http://www.cmpe.boun.edu.tr/pilab Giriş İlgili Çalışmalar Yöntem

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu :

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : ÖZGEÇMİŞ 1. Adı Soyadı : Olcay Taner Yıldız 2. Doğum Tarihi : 15.05.1976 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Boğaziçi Üniversitesi 1997 Y.

Detaylı

Bu makalede, rulman üretim hattının son

Bu makalede, rulman üretim hattının son BİLGİSAYARLI GÖRÜNTÜ YARDIMIYLA RULMAN HATALARININ DENETİMİ Arda MOLLAKÖY 0814046@student.cankaya.edu.tr Sibel ÇİMEN c0814016@student.cankaya.edu.tr Emre YENGEL Mekatronik Mühendisliği e.yengel@cankaya.edu.tr

Detaylı

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Yönbağımsız Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Deniz Yıldırım 1, Bekir Dizdaroğlu 2 1 Harita Mühendisliği Bölümü, 2 Bilgisayar Mühendisliği Bölümü Karadeniz Teknik

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜSÜ KULLANILARAK BİNA ALANLARININ GÜNCELLENMESİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜSÜ KULLANILARAK BİNA ALANLARININ GÜNCELLENMESİ TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı 11 15 Mayıs 2009, Ankara YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜSÜ KULLANILARAK BİNA ALANLARININ GÜNCELLENMESİ G. Sarp,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005 PROSTAT HÜCRE ÇEKİRDEKLERİNİN SINIFLANDIRILMASINDA İSTATİSTİKSEL YÖNTEMLERİN VE YAPAY SİNİR AĞLARININ BAŞARIMI (PERFORMANCE

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

Arş.Gör.Hüseyin TOPAN - http://jeodezi.karaelmas.edu.tr 1

Arş.Gör.Hüseyin TOPAN - http://jeodezi.karaelmas.edu.tr 1 Mikrodalga radyometre UZAKTAN ALGILAMADA GÖRÜNTÜLEME SİSTEMLERİ Hüseyin TOPAN Algılayıcı Pasif amaçlı olmayan amaçlı Manyetik algılayıcı Gravimetre Fourier spektrometresi Diğerleri Optik Film tabanlı Dijital

Detaylı

Bir Tek Nöron Kullanılarak Resimler Đçerisinde Göz Kısmının Bulunması

Bir Tek Nöron Kullanılarak Resimler Đçerisinde Göz Kısmının Bulunması KSÜ Fen ve Mühendislik Dergisi, 11(1), 008 59 KSU Journal of Science and Engineering, 11(1), 008 Bir Tek Nöron Kullanılarak Resimler Đçerisinde Göz Kısmının Bulunması Yavuz Selim ĐŞLER, Metin ARTIKLAR

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3

Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3 430 [1315] YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİSİ İLE NESNE TABANLI SINIFLANDIRMA UYGULAMASINDA MEVSİMSEL KOŞULLARIN ETKİSİ Aslı SABUNCU 1, Zehra Damla UÇA AVCI 2, Filiz SUNAR 3 1 Araş.Gör., Boğaziçi Üniversitesi,

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN BELİRLENEBİLME POTANSİYELİ

BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN BELİRLENEBİLME POTANSİYELİ TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN BELİRLENEBİLME POTANSİYELİ D.

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

DEĞİŞİK BAKIŞ AÇILARINDAN ELDE EDİLEN GÖRÜNTÜ GRUPLARININ SINIFLANDIRILMASI

DEĞİŞİK BAKIŞ AÇILARINDAN ELDE EDİLEN GÖRÜNTÜ GRUPLARININ SINIFLANDIRILMASI HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 2013 CİLT 6 SAYI 1 (87-94) DEĞİŞİK BAKIŞ AÇILARINDAN ELDE EDİLEN GÖRÜNTÜ GRUPLARININ SINIFLANDIRILMASI Mustafa ÖZENDİ * Bülent Ecevit Üniversitesi, Jeodezi

Detaylı

Curriculum Vitae. Degree Profession University Year. MSc Remote Sensing Gebze Institute of Technology 2009

Curriculum Vitae. Degree Profession University Year. MSc Remote Sensing Gebze Institute of Technology 2009 Curriculum Vitae Name, Surname: ISMAIL COLKESEN Date of birth: 1981 Title: Ph.D., Assistant Professor Education : Degree Profession University Year BSc Geodesy and Photogrammetry Karadeniz Technical University

Detaylı

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI Hüseyin GÜNEŞ 1, Alper BURMABIYIK 2, Semih KELEŞ 3, Davut AKDAŞ 4 1 hgunes@balikesir.edu.tr Balıkesir

Detaylı

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR Görüntü İşlemeye Giriş Introduction to Image Processing Doç. Dr. Aybars UĞUR 2013 1 İçerik Görüntü ve Piksel Görüntü Türleri Görüntü İşleme Görüntü İşlemenin Amaçları Görüntü İyileştirme Görüntü Analizi

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Göksel Günlü Doğum Tarihi: 04 12 1979 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Elektrik-Elektr. Muh. Gazi Üniversitesi 2001 Y. Lisans

Detaylı

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ)

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ) 2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları (Doç.Dr. M. Kemal GÜLLÜ) 1. Ses temelli malzeme tanıma Malzemelerin çarpma etkisi ile çıkarttıkları seslerin mikrofon ile bir PC ye alınması ve işaretten

Detaylı

MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ

MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ T. Kavzoğlu *, İ. Çölkesen, E.K. Şahin Gebze Yüksek Teknoloji Enstitüsü, Jeodezi ve Fotogrametri

Detaylı

Kızıltepe Tarımsal Alan İmgelerinin Ekinin Ürün Gelişimine Göre Sınıflandırılması

Kızıltepe Tarımsal Alan İmgelerinin Ekinin Ürün Gelişimine Göre Sınıflandırılması Kızıltepe Tarımsal Alan İmgelerinin Ekinin Ürün Gelişimine Göre landırılması Classification of Kızıltepe Agricultural Land Images Based on Development in Different Period of Crops Emrullah ACAR 1 ve Mehmet

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi ISITES 2016 4 TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE TECHNOLOGIES IN ENGINEERING AND SCIENCE Dr. G. Çiğdem Çavdaroğlu ISITES,

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI ÖZET

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI ÖZET III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010 Cilt: II Sayfa: 471-476 YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU VERİLERİ KULLANILARAK ORMAN ÖRTÜSÜNÜN SEGMENT-TABANLI SINIFLANDIRILMASI Muhittin İNAN 1, Hakan

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Nazlı Deniz ERGÜÇ 1, Hamza EROL 2, Bekir Yiğit YILDIZ 3, Vedat PEŞTEMALCI 4

Nazlı Deniz ERGÜÇ 1, Hamza EROL 2, Bekir Yiğit YILDIZ 3, Vedat PEŞTEMALCI 4 454 [1280] LANDSAT ÇOK-BANTLI UYDU GÖRÜNTÜ VERİSİNİN VERİ MADENCİLİĞİ YÖNTEMLERİ KULLANILARAK SINIFLANDIRILMASI Nazlı Deniz ERGÜÇ 1, Hamza EROL 2, Bekir Yiğit YILDIZ 3, Vedat PEŞTEMALCI 4 1 Özel Öğrenci,

Detaylı

SIFT Metodu ile Hedef Takibi

SIFT Metodu ile Hedef Takibi SIFT Metodu ile Hedef Takibi Nazım ÖZGEN 1,.Müzeyyen SARITAŞ 1 Hava Kuvvetleri Komutanlığı, Çankaya, ANKARA nzmzgn@gmail.com Gazi Üniversitesi, Elektrik-Elektronik Mühendisliği Böl., Maltepe-ANKARA muzeyyen@gazi.edu.tr

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

Bulanık C-Kümeleme Algoritması ile Retinal Kan Damarı Bölütleme Retinal Vessel Segmentation with Fuzzy C-Means Clustering Algorithms

Bulanık C-Kümeleme Algoritması ile Retinal Kan Damarı Bölütleme Retinal Vessel Segmentation with Fuzzy C-Means Clustering Algorithms Bulanık C-Kümeleme Algoritması ile Retinal Kan Damarı Bölütleme Retinal Vessel Segmentation with Fuzzy C-Means Clustering Algorithms Zafer Yavuz 1, Cemal Köse 1 1 Bilgisayar Mühendisliği Bölümü Karadeniz

Detaylı

Mean Shift Ve Gaussian Filtre İle Gölge Tespiti Shadow Detection With Mean Shift And Gaussian Filter

Mean Shift Ve Gaussian Filtre İle Gölge Tespiti Shadow Detection With Mean Shift And Gaussian Filter Mean Shift Ve Gaussian Filtre İle Gölge Tespiti Shadow Detection With Mean Shift And Gaussian Filter Yunus SANTUR 1, Haluk DİLMEN 1, Semiha MAKİNİST 2, M. Fatih TALU 1 1 Bilgisayar Bölümü Mühendislik Fakültesi

Detaylı

91-03-01-517 YAPAY ZEKA (Artificial Intelligence)

91-03-01-517 YAPAY ZEKA (Artificial Intelligence) 91-03-01-517 YAPAY ZEKA (Artificial Intelligence) Dersi Veren Öğretim Üyesi Y. Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 27.09.2009 Y. Doç. Dr. Aybars UĞUR (517 Yapay Zeka)

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ

UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ T. Kurban 1, E. Beşdok 2, A.E. Karkınlı 3 Erciyes Üniversitesi, Harita Mühendisliği Bölümü, 38039, Melikgazi, Kayseri. 1 tubac@erciyes.edu.tr,

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI

İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI 319 [1054] İNSANSIZ HAVA ARACI VERİLERİNDEN NESNE TABANLI BİNA ÇIKARIMI Resul Çömert 1, Uğur Avdan 2, Z. Damla Uça Avcı 3 1 Araş. Gör., Anadolu Üniversitesi, Yer ve Uzay Bilimleri Enstitüsü, 26555,Eskişehir,

Detaylı

Ö. Kayman *, F. Sunar *

Ö. Kayman *, F. Sunar * SPEKTRAL İNDEKSLERİN LANDSAT TM UYDU VERİLERİ KULLANILARAK ARAZİ ÖRTÜSÜ/KULLANIMI SINIFLANDIRMASINA ETKİSİ: İSTANBUL, BEYLİKDÜZÜ İLÇESİ, ARAZİ KULLANIMI DEĞİŞİMİ Ö. Kayman *, F. Sunar * * İstanbul Teknik

Detaylı

Sentetik Açıklıklı Radar (SAR) Görüntülerinde Eş Zamanlı Gemi Bölütlemesi ve Tespiti

Sentetik Açıklıklı Radar (SAR) Görüntülerinde Eş Zamanlı Gemi Bölütlemesi ve Tespiti Sentetik Açıklıklı Radar (SAR) Görüntülerinde Eş Zamanlı Gemi Bölütlemesi ve Tespiti Çağdaş Bak, Emre Akyılmaz, Gizem Aktaş, Mustafa Ergül, Fatih Nar, Nigar Şen,Murat Başaran SDT Uzay ve Savunma Teknolojileri,

Detaylı

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması 1 Giriş Binnur Kurt, H. Tahsin Demiral, Muhittin Gökmen İstanbul Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Maslak, 80626 İstanbul {kurt,demiral,gokmen}@cs.itu.edu.tr

Detaylı

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar KSÜ Mühendislik Bilimleri Dergisi, 12(1), 2009 6 KSU Journal of Engineering Sciences, 12 (1), 2009 İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

Detaylı

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013),

Detaylı

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number:, Article Number: 1A0173 ENGINEERING SCIENCES Burhan Ergen Received: November 010 Muhammet Baykara Accepted: February 011 Firat

Detaylı

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ Emre DANDIL, K.İBRAHİM KAPLAN Akademik Bilişim 2013 İnternet ve bilgisayar teknolojilerinin etkin kullanılmaya başlanması ile birlikte, bazı kişisel bilgilere veya

Detaylı

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Journal of Naval Science and Engineering 2009, Vol 5, No2, pp 89-97 RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Öğr Kd Bnb Mustafa Yağımlı Elektrik/Elektronik Mühendisliği Bölümü,

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 011, Elazığ, Turkey Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Detaylı

DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY SİNİR AĞI SİSTEMİ

DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY SİNİR AĞI SİSTEMİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 22, No 1, 27-32, 2007 Vol 22, No 1, 27-32, 2007 DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY

Detaylı

PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ

PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ Received:March 24, 2017 Accepted:March 27, 2017 PAMUK EKİLİ ALANLARIN NESNE TABANLI SINIFLANDIRMA YÖNTEMİ İLE BELİRLENMESİ: MENEMEN ÖRNEĞİ 1 *Ahmet Delen, 2 Füsun Balık Şanlı 1 Gaziosmanpasa University,

Detaylı

DAĞITIK SİSTEMLERDE UYDU GÖRÜNTÜSÜ TRANSFERİ: RASTER VE VEKTÖR TEMSİL KARŞILAŞTIRMASI

DAĞITIK SİSTEMLERDE UYDU GÖRÜNTÜSÜ TRANSFERİ: RASTER VE VEKTÖR TEMSİL KARŞILAŞTIRMASI HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 2013 CİLT 6 SAYI 1 (63-69) DAĞITIK SİSTEMLERDE UYDU GÖRÜNTÜSÜ TRANSFERİ: RASTER VE VEKTÖR TEMSİL KARŞILAŞTIRMASI Süleyman EKEN * Recep BOSTANCI Ahmet SAYAR

Detaylı

Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma

Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 3(2):457-462 (2015) Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma Ahmet

Detaylı

Bilişsel Radyo Ağlarında Dalgacık Dönüşümü Temelli Gürültüden Arındırma Kullanarak Otsu Eşikleme Algoritması ile Spektrum Algılama

Bilişsel Radyo Ağlarında Dalgacık Dönüşümü Temelli Gürültüden Arındırma Kullanarak Otsu Eşikleme Algoritması ile Spektrum Algılama Bilişsel Radyo Ağlarında Dalgacık Dönüşümü Temelli Gürültüden Arındırma Kullanarak Otsu Eşikleme Algoritması ile Spektrum Algılama Mustafa NAMDAR 1, Arif BAŞGÜMÜŞ 2, Fatih KOÇAK 3 Elektrik-Elektronik Mühendisliği

Detaylı

Tuğba Palabaş, Istanbul Arel Üniversitesi, tugbapalabas@arel.edu.tr. Ceren Gülra Melek, Istanbul Arel Üniversitesi, cerenmelek@arel.edu.

Tuğba Palabaş, Istanbul Arel Üniversitesi, tugbapalabas@arel.edu.tr. Ceren Gülra Melek, Istanbul Arel Üniversitesi, cerenmelek@arel.edu. Uydu Görüntülerinden Elde Edilen Bilgilerle Yeryüzü Şekillerinin Tanımlanması ve Değişimlerinin Gözlenmesinde Coğrafi Bilgi Sistemlerinden Yararlanılması Üzerine Bir Ön Çalışma Sabri Serkan Güllüoğlu,

Detaylı

Topoğrafik Kartoğrafik Bilgi Sistemlerinin Yaşatılmasında Yüksek Çözünürlüklü Uydu Görüntü Verilerinden Yararlanma Yüksek çözünürlüklü uydu görüntüler

Topoğrafik Kartoğrafik Bilgi Sistemlerinin Yaşatılmasında Yüksek Çözünürlüklü Uydu Görüntü Verilerinden Yararlanma Yüksek çözünürlüklü uydu görüntüler TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TOPOĞRAFİK KARTOĞRAFİK BİLGİ SİSTEMLERİNİN YAŞATILMASINDA YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU

Detaylı

PRODUCTION of 1:25000 SCALE LAND COVER/USE MAPS by MEANS OF VERY HIGH RESOLUTION SPOT 6/7 SATELLITE IMAGES

PRODUCTION of 1:25000 SCALE LAND COVER/USE MAPS by MEANS OF VERY HIGH RESOLUTION SPOT 6/7 SATELLITE IMAGES Y PRODUCTION of 1:25000 SCALE LAND COVER/USE MAPS by MEANS OF VERY HIGH RESOLUTION SPOT 6/7 SATELLITE IMAGES E Sertel a, b *, I Yay Algan b, G Alp b, a, a,b a, h stanbul, T - (sertele, musaoglu, kayasina)@ituedutr

Detaylı

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM Melih KUNCAN Siirt Üniversitesi, Mühendislik-Mimarlık Fakültesi, Mekatronik Mühendisliği Bölümü, Siirt, TÜRKIYE melihkuncan@siirt.edu.tr

Detaylı

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Scicene 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Trafik Yoğunluk Harita Görüntülerinin Görüntü

Detaylı

MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI

MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı 11 15 Mayıs 2009, Ankara MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI U.Acar

Detaylı

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Ömer Faruk ERTUĞRUL 2, Ramazan TEKİN 3 1 Siirt Üniversitesi, Bilgisayar Mühendisliği Bölümü 2 Batman Üniversitesi, Elektrik-Elektronik

Detaylı

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing)

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) 91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) Dersi Veren Öğretim Üyesi Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 1 Amaçlar Öğrencileri Matlab gibi teknik

Detaylı

Uzaktan Algılamada Kontrolsüz Değişim Belirleme

Uzaktan Algılamada Kontrolsüz Değişim Belirleme TMMOB Harita ve Kadastro Mühendisleri Odası, 14. Türkiye Harita Bilimsel ve Teknik Kurultayı, 14-17 Mayıs 2013, Ankara. Uzaktan Algılamada Kontrolsüz Değişim Belirleme Mustafa Hayri Kesikoğlu 1*, Ümit

Detaylı

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM )

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) Şekil 1 İşaret dili tanıma örnek ekran görüntüsü Türk İşaret Dili Tanıma projesi 2005 2006 yılının 2. döneminde Yıldız Teknik

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

STEREOFOTOGRAMETRİK SÜRÜŞ DESTEK SİSTEMİ

STEREOFOTOGRAMETRİK SÜRÜŞ DESTEK SİSTEMİ STEREOFOTOGRAMETRİK SÜRÜŞ DESTEK SİSTEMİ E. ÖZDEMİR, Ö. ÇORUMLUOĞLU, İ. ASRİ İzmir Kâtip Çelebi Üniversitesi, Mühendislik ve Mimarlık Fakültesi, Harita Mühendisliği Bölümü, İzmir, emre.ozdemir@ikc.edu.tr,

Detaylı

Örüntü Tanıma (EE 448) Ders Detayları

Örüntü Tanıma (EE 448) Ders Detayları Örüntü Tanıma (EE 448) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma EE 448 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

UYDU GÖRÜNTÜLERİ KULLANILARAK ORMAN YANGINLARININ HARİTALANMASI

UYDU GÖRÜNTÜLERİ KULLANILARAK ORMAN YANGINLARININ HARİTALANMASI UYDU GÖRÜNTÜLERİ KULLANILARAK ORMAN YANGINLARININ HARİTALANMASI Resul Çömert a, Dilek Küçük Matcı a,*, Hakan Emir b, Uğur Avdan a Anadolu Üniversitesi Yer ve Uzay Bilimleri Enstitüsü İki Eylül Kampüsü

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Kumaş hata tespiti ve sınıflandırmada dalgacık dönüşümü ve temel bileşen analizi Wavelet transform

Detaylı

FARKLI UYDU VERİLERİNİN BANT BİRLEŞTİRİLMESİNDEN SONRA SPEKTRAL SINIFLANDIRMALARDA KULLANILMASI

FARKLI UYDU VERİLERİNİN BANT BİRLEŞTİRİLMESİNDEN SONRA SPEKTRAL SINIFLANDIRMALARDA KULLANILMASI FARKLI UYDU VERİLERİNİN BANT BİRLEŞTİRİLMESİNDEN SONRA SPEKTRAL SINIFLANDIRMALARDA KULLANILMASI Önder GÜRSOY 1, Anıl Can BİRDAL 2 1 Yrd. Doç. Dr., Cumhuriyet Üniversitesi, Mühendislik Fakültesi, Geomatik

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: ÖRÜNTÜ TANIMAYA GİRİŞ Dersin Orjinal Adı: INTRODUCTION TO PATTERN RECOGNITION Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı