SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya"

Transkript

1 TEKNOLOJİ, (00), Syı -, 9-5 TEKNOLOJİ SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI Sim KOÇAK S. Ü. Mühendislik - Mimrlık Fkültesi Mkin Mühendisliği Bölümü, Kmpüs Kony ÖZET Sntrifüj kompresörü çrkınd ön tsrımın ypılbilmesi için özgül enerji, devir syısı ve kütlesel debi prmetrelerinin bilinmesi gerekmektedir. Bu prmetreler kullnılrk ypıln tsrımd ikincil kışlrın etkisi gibi deneysel çlışmlr ile bulunn sonuçlr dikkte lınır. Sınırlmlr ile birlikte güç zlığı fktörü ve iş girdi ktsyısın göre düzenlenen hesplm metodund boyutsuz prmetreler geliştirilmiş ve bsınç kenrı çpı bulunmuştur. Emme kenrı üst çpı ile bsınç kenrı çp ornını kullnrk emme kenrı üst ynk ve lt ynk çplrı hesplnmıştır. Anhtr kelimeler:sntrifüj kompresör, çrk, ön tsrım, emme kenrı, bsınç kenrı ABSTRACT PRELIMINARY DESIGN OF IMPELLER OF CENTRIFUGAL COMPRESSOR It is essentil to know tht of specific energy, speed of rottion nd mss flow rte in order to do preliminry design of the impeller of centrifugl compressor. A design, in which these prmeters re to be used, some experimentl studies such s secondry flow should be tken in considertion. In these study, vrious nondimensionl prmeters re determined nd impeller dischrge dimeter re proposed by using work reduction nd work input coefficient in the opertion rnge. Inducer tip nd hub dimeters re lso clculted in reltion with the rtio between inducer tip dimeter nd dischrge dimeter. Key Words: Centrifugl compressor, impeller, preliminry design, inducer, dischrge.giriş Deneysel çlışmd sntrifüj kompresör ve pomp çrkındn difüzöre boşln kışın simetrik olduğunu görülmüştür. Geliştirilen jet-wke modeli çrk çıkışındki bölgede çışın teorik ve deneysel çlışm sonuçlrının krşılştırılbilmesine imkn sğlmıştır []. Sntrifüj kompresör ve pomplrd kullnıln kntsız difüzördeki kyıplrı nliz edilmiş, deneysel sonuçlrl krşılştırılmış ve bu sonuçlrı dikkte lrk tsrım için bzı kriterler geliştirilmiştir []. Kntlrı geriye yönlendirilmiş çrklr için mksimum verimin özgül hızın ile.08 değerleri rsınd olbileceğini teorik olrk gösterilmiştir [3]. Sntrifüj kompresör ve rdyl türbindeki kış için genel bir tsrım prosedürü geliştirilmiştir. Çrkt idel kıştn gerçek kış geçmek için entlpi kyıplrını dikkte ln bir kyıp ktsyısı tnımlnmıştır. Bu kyıp ktsyısını boyutsuz kütle kış prmetresinin sğ trfın bir çrpn olrk getirilmiştir [4].

2 0 Sntrifüj Kompresör Çrkının Ön Tsrımı Sntrifüj kompresör ve rdyl türbinin kullnıldığı turboşrj gibi uygulmlrı için tsrım noktsı hesplrındn sonr, tsrım dışı çlışm şrtlrı için entropi kyıbı thmini üzerine kuruln bir tsrım prosedürü sunulmuştur. Türbin performns eğrileri üzerinde motor hızlrını göstererek uygun çlışm şrtlrını tespit edilmiştir [5]. Çrk kndının geriye ytıklştırılmsının rtırılmsı ile optimum özgül hızın rtırıldığı ve herhngi bir bsınç kenrı knt çısınd Mch syısının rtırılmsıyl optimum özgül hızın zldığı gösterilmiştir [6]. Yüksek bsınç ornlı sntrifüj kompresör çrkını tsrım hızının %70 hızı ile test edilmiştir. Emme kenrındki kış shsını lzer hız ölçeri (LFV) ölçülmüş, düşük kütlesel debinde üst ynktki sttik bsınçt dlglnmlrı, ve emme kenrınd dönen yrılmlrı gösterilmiştir. Boğz ve üst bsınç bölgesinde gövdeye çok ykın bölgeler hriç kntlr yüzeyinde krrlı bir kış gözlenilmiştir [7]. Sntrifüj kompresör çrkınd emme kenrınd geliş, yrılış ve spm çılrının, bğıl dolnımın, dönen yrılmnın ve Mch syılrının tsrım etkilerini rştırılmış, minimum Mch syısının kış çısının ile 5 0 değerleri rsınd olduğunu tespit edilmiştir [8]. Bu çlışmd, sntrifüj kompresör çrkı emme kenrının ve bsınç kenrının tsrımını ypbilmek için önceki çlışmlrd bulunn kriterlerde dikkte lınrk boyutsuz syılr bğlı bir tsrım prosedürü geliştirildi..çark TASARIM KRİTERLERİ. Emme Kenrı Knt Ucu Açısı -5 ile -68 rsınd olmlıdır [8].. Birim net kış giriş lnı bşın mksimum kütle debisi ve küçük sürtünme kyıplrı için rotor girişinde en uygun eksenel hız, 50 m/s civrınddır. Knt klınlığın bğlı olrk drlmnın önlenmesi için emme kenrı üst ynk yrıçpınd (r s ), β s <70 olmlıdır [9]. 3. b ornı sızıntı ve sürtünme kyıplrı dikkte lındığınd 0.05 değerinden büyük olmlıdır. Burd b bsınç r kenrı knt genişliği, r bsınç kenrı yrıçpıdır. rh rs ornının çok küçük olmsı çrkın lt ynktki knt klınlığın bğlı olrk sınır tbksının büyük olmsın yol çr. Çok küçük olmsı ise giriş kesitini küçülteceğinden yüksek giriş hızlrın neden olcğındn optimum değer 0.3 ile 0.7 rsınddır. Çrk çıkış çısı ( α ) 65 ile 80 derece rsınd olmlıdır. Yüksek değerler kntlı difüzörlerde yüksek bsınç sğlr. Kntsız difüzörlerde ise yüksek sürtünme kyıplrı oluşturur. W W çrkt yvşlm ornı 0.6 civrınd olmsı istenir. Dh küçük değerlerinde çrk kntlrı yüzeyinde kıştn yrılmlr gerçekleşir. Burd W bğıl hızı, lt indisi emme kenrını, lt indisi bsınç kenrını gösterir. [0]. 4. Emme kenrı bğıl Mch syısı birden küçük olmlıdır []. 5. rs r ornı küçüldükçe kış lnı uzr ve sürtünme kyıplrı rtr. Büyüdükçe meridyenel doğrultu sğlnmz, yni kışın eksenel yönden rdyl yöne geçişi yeterli olmz. Optimum çp ornı 0.6 ile 0.65 rsınddır []. Burd r s, emme kenrı üst ynk yrıçpıdır. 3. ÇARKIN BOYUTLANDIRILMASI Sntrifüj kompresör çrkı kışknın çrk girdiği emme kenrındn ve kışın çrktn difüzöre vey direkt slyngoz boşltıldığı bsınç kenrındn meydn gelir. 3. Bsınç kenrı prmetrelerinin hesbı Şekil () den bsm kenrı teğetsel hız bileşeni

3 TEKNOLOJİ, Yıl 4, Syı -, 00 Cθ µ U (U Cθ ) () olrk yzılbilir. Denklem () deki güç zlığı fktörü olrk tnımlnn µ, Whitfield [] trfındn, Cs C Cθ µ () U U olrk tnımlndı. Burd, C mutlk hız, α mutlk kış çısı, β bğıl kış çısı, U çevresel hız, θ lt indisi teğetsel bileşen, lt indisi sonsuz knt hlini gösterir. Sntrifüj kompresörde verim, C s β Β α C β C m W C θ C θ U Şekil Geriye ytıklştırılmış kntt bsınç kenrı hız üçgeni χ χ CpT0P R h 0s h 0 η s (3) h 0 h 0 UCθ UCθ şeklinde yzılır. Emme kenrınd ön yönlendirme yoks, yni C θ 0 ise, denklem (3) χ χ U P R 0 ηsλ( χ ) (4) hline gelir. İş girdi ktsyısı vey iş fktörü olrk tnımlnn bu denklem Rodgers [6] trfındn Cθ λ U µ tnβb tn α (5) şeklinde tnımlndı. Burd ses hızını, p bsıncı, η verimi, o lt indisi durgun hli, χ izentropik üssü, T sıcklık, h entlpi, R lt indisi durgun bsınç ornını göstermektedir. Denklem (5)

4 Sntrifüj Kompresör Çrkının Ön Tsrımı Cθ 0 U λ 0 (6) şeklinde yzılır ve denklem (4) yeniden düzenlenirse, χ T 0 χ PR ηs + T (7) 0 olrk çrk durm bsınç ornı elde edilir. Şekil den C C θ 0 0 sin α (8) yzılbilir ve durm sıcklık ornın göre, C C T0 0 0 T (9) 0 şeklinde düzenlenebilir. Bsınç kenrı dibtik enerji denklemi, 0 ye göre düzenlenirse, M C T0 0 T (0) elde edilir. Bsınç kenrı çevresel hızı U U T0 0 T () olrk boyutsuz formd elde edilir. Mutlk hızın teğetsel bileşeni, Cθ Cθ 0 Cθ T0 0 0 T () olrk edilir. Denklem (9) C θ C T0 θ 0 T T0 T0 (3) şeklinde düzenlenebilir. Şekil deki teğetsel hız bileşenleri boyutsuz formd W θ C U θ (4)

5 TEKNOLOJİ, Yıl 4, Syı -, 00 3 şeklinde yzılbilir. Meridyenel doğrultudki hız bileşeni Cm MCosα (5) vey Cm 0 C θ 0 tn α (6) şeklinde boyutsuz formd yzılırs, bsınç kenrı bğıl Mch syısı W Cm M b θ + (7) ve bğıl Mch syısı W 0 T0 T Mb T0 T (8) 0 olrk yzılbilir. Burd, m lt indisi meridyenel doğrultuyu, b lt indisi bğıl hli gösterir. Böylece bsınç kenrı bğıl hızın teğetsel doğrultu ile yptığı çı, W θ / β Arc tn (9) Cm / şeklinde hesplnbilir. 3. Emme kenrı prmetrelerinin hesbı Emme kenrı çevresel hızı boyutsuz formd U U r s (0) 0 0 r ve Şekil den Wθ U 0 0 C Wθ 0 0 tnβs () () şeklinde yzılbilir. Emme kenrı mutlk Mch syısı

6 4 Sntrifüj Kompresör Çrkının Ön Tsrımı C C ( ) M χ 0 (3) 0 ve emme kenrı bğıl Mch syısı şekil den, β Βs r s r h M β Βs M bs U s/ Şekil Emme kenrı hız üçgeni M M b (4) Cosβs Ws 0 W C θ (5) şeklinde hesplnır. 3.3 Boyutsuz prmetreler ve çrk boyutunun bulunmsı Düşü ktsyısı; ψ λη s (6) Akış ktsyısı; ( ν ) ρ rs C 0 φ 0 r (7) ρ 0 U Boyutsuz kütle kış prmetresi; U θ φ (8) 0 b θ (9) r ρ Cm ρ0 0 Özgül hız;

7 TEKNOLOJİ, Yıl 4, Syı -, 00 5 / ( πφ) 3 / 4 ( ψ / ) Ns (30) Bsınç kenrı lnı; m& A θρ0 0 (3) Bsınç kenrı yrıçpı; r / A (3) π 4. SONUÇ Sntrifüj kompresörde çrkı tsrımı ypılırken kütle debisi ( m& ), devir syısı (N) ve özgül enerjinin bilinmesi ön tsrım hesplrı için zorunludur. Geriye ytıklştırılmış knt tipinde güç zlığı fktörü dikkte lınrk bsınç kenrı teorisine göre ypıln hesplmlr teğetsel hız bileşeninden gerçek teğetsel hız bileşeni bulunur. İş girdi ktsyısı, bsınç ornı ve dolyısıyl izentropik verim bulunur. Adiybtik enerji denklemine bğlı olrk bsınç kenrı bğıl ve mutlk Mch syılrı bulunbilir ve bsınç kenrını boyutlndırmk için bğıl Mch syısı ve knt çısı hesplnır. Verilen tsrım çp ornın göre emme kenrının boyutlndırılmsı ypılrk ön tsrım hesplrı bitirilir. Boyutsuzlştırılmış kış ve tsrım prmetreleri üzerine kurulu bir ön tsrım prosedürü geliştirilmiştir. Bu metot sntrifüj kompresörlerde kritik ve çlkntı çlışm şrtlrı rsınd yni tsrım dışı çlışm şrtlrı için hzırlnck bir bilgisyr destekli hesplmlr ess teşkil edebilir. KAYNAKLAR. Den, R. C., Senoo, Y., Rotting Wkes in Vneless Diffusers, Trns. of ASME, Jour. of Bsic Eng., ,960.. Johnston, J.P., Den, R.C., Losses in Vneless Diffusers of Centrifugl Compressor nd Pumps Trns of ASME, Jour. of Eng. for Power, 49-6, Glvs M. R., Anlyticl correltion of centrifugl compressor design geometry for mximum efficiency with specific speed.,nasa TN D 679, (97). 4. Whitfield A., ve N.C. Bines, A Generl Computer Solution for Rdil nd Mixed Flow Turbomchines Performnce Prediction, Int. J. Mech., Sci. Vol.8, pp 79-84, Pergmon Press 976, London. 5. Bines N.C., ve F.J. Wllce Computer Aided Design of Mixed Flow Turbines for Turbochrges J. Eng. for Power, ASME, Vol 0, July Rodgers C., A diffusion fctor correltion for centrifugl impeller stlling. ASME pper 78-GT-6, Hymi, H., Senoo, Y., ve Ueki, H., Flow in the Inducer of Centrifugl Compressor Mesured With Lser Velocimeter. Trns.ASME Jour. Of Eng. For Gs Turbines nd Power. pp , Koçk S., Sntrifüj kompresöründe emme kenrı tsrım kriterleri, Pmukkle Üniversitesi Müh. Fk. Dergisi, Cilt 4, Syı 3, syf , Brembussche, R.A. VnDen, Design nd Optimistion of Centrifugl Compressors, von Krmn Institute, CN 4/tu, Öztürk, E. Türbin Motorlrının Aerotermodinmiği ve Mekniği,Birsen Yyınevi, İstnbul, Whitfield A.,N.C. Bines, Design of rdil turbomchines Longmn Scientific Technicl, Newyork, Wilson D.G. The design of High-Efficency Turbomchines nd Gs Turbines,The MIT Press, Cmbridge, 984.

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

SANTRİFÜJ KOMPRESÖR ÇARKININ TASARIM DIŞI ÇALIŞMASI

SANTRİFÜJ KOMPRESÖR ÇARKININ TASARIM DIŞI ÇALIŞMASI PAUKKALE ÜNİ VERSİ ESİ ÜHENDİ SLİ K FAKÜLESİ PAUKKALE UNIVERSIY ENGINEERING COLLEGE ÜHENDİ SLİ K BİLİLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİL SAYI SAYFA : 004 : 0 : : 59-65 SANRİFÜJ KOPRESÖR

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Santrifüj Pompa Nedir?

Santrifüj Pompa Nedir? Pomp Hidroliği Sntrifüj Pomp Nedir? Pomp Hidroliği, Çrk Bsm trfı Emme trfı Pompnın An Prçlrı Bir sntrifüj pomp 4 n prçdn oluşur. 1 Çrk:Kinetik enerjiyi kışkn trnsfer eder. 2 Pomp gövdesi: Akışknı tutr

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT Süleymn Demirel Üniversitesi Ormn Fkültesi Dergisi Seri: A, Syı:, Yıl: 004, ISSN: 130-7085, Syf:160-169 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1 Süleymn KORKUT

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2003 : 9 : 1 : 23-30 SÜREKLİ

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ M. Akif ȘENOL 1 Ercüment ÖZDEMİRCİ 2 M. Cengiz TAPLAMACIOĞLU 3 1 Enerji ve Tbii Kynklr Bknlığı, Ankr, 2

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi Süleymn Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 19, Syı 3, 92-97, 2015 Süleymn Demirel University Journl of Nturl nd Applied Sciences Volume 19, Issue 3, 92-97, 2015 DOI: 10.19113/sdufed.04496

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner.

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner. Bir Elektrik Motorunun Kısımlrı Bir elektrik motorunun prçlrı: Rotor, sttor içinde döner. İki kutuplu bir DA motoru -kutuplu mkinnın kısımlrı ve elemnlrı Dört kutuplu bir DA motoru-endüktör Kutup nüvesi

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2002 : 8 : 1 : 42-51 BSD

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

MERKEZKAÇ KOMPRESÖRDE EMME KENARI TASARIM KRİTERLERİ

MERKEZKAÇ KOMPRESÖRDE EMME KENARI TASARIM KRİTERLERİ PAMUKKALE ÜNİVERSİTESİ MÜHENDİ SLİK FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİSLİK B İ L İ MLERİ DERGİSİ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : 4 : 3 : 709-76 MERKEZKAÇ

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de ÖRNEK 8.8: Aşğıdki şekilde ir su deposunun ltınd ğlnmış oln oru httı temsil edilmiştir. Sistem 80F'de su içermektedir. Boru httındn 00 l/dk kım sğlmk için tnktki su seviyesi ne olmlıdır? Suyun yoğunluğu

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

YÜKSEK BYPASSLI TURBOFAN MOTORLARININ PERFORMANS ANALĐZLERĐ ĐLE ĐLGĐLĐ BĐLGĐSAYAR YAZILIMI

YÜKSEK BYPASSLI TURBOFAN MOTORLARININ PERFORMANS ANALĐZLERĐ ĐLE ĐLGĐLĐ BĐLGĐSAYAR YAZILIMI Niğde Üniversiesi Mühendislik Bilimleri Dergisi, Cil Syı, (), -4 YÜKSEK BYASSLI UBOFAN MOOLAININ EFOMANS ANALĐZLEĐ ĐLE ĐLGĐLĐ BĐLGĐSAYA YAZILIMI GELĐŞĐME Önder UAN, Đlky OHAN,.Hikme KAAKOÇ Andolu Üniversiesi,

Detaylı

2.Hafta: Kristal Yapı

2.Hafta: Kristal Yapı MALZEME BİLİMİ MAL0.Hft: Kristl Ypı Mlzemeler tmlrın bir ry gelmesi ile luşur. Bu ypı içerisinde tmlrı bir rd tutn kuvvete tmlr rsı bğ denir. Ypı içerisinde birrd bulunn tmlr frklı düzenlerde bulunbilir.

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR TMMOB İNŞAAT MÜHENDİLERİ ODAI İTANBUL ŞUBEİ YAPI TAARIM KURLARI YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR Prof. Dr. Zeki Cele İstnbul Teknik Üniversitesi, İnşt Fkültesi Betonrme Yılr ve Derem

Detaylı

TIKIZ ŞEKİL BETİMLEYİCİLERİ

TIKIZ ŞEKİL BETİMLEYİCİLERİ TIIZ ŞEİL BETİMLEYİCİLERİ Nfiz ARICA ve Ftoş YARMAN-VURAL Bildiri onusu : İMGE İŞLEME Sorumlu Yzr : Ftoş T. YARMAN-VURAL Adres : Bilgisyr Mühendisliği Bölümü Ort Doğu Teknik Üniversitesi 653 Eskişehir

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06 İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜH. BÖL. 35 ELEKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 3506. AMAÇ: Bğımsız uyrılmış DC motorun moment/hız ve verim

Detaylı

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat. Nim Çğmn, ncgmn@gop.edu.tr BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren,

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELĐ, DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇAPRAZ PERDELĐ ÇELĐK ENDÜSTRĐ BĐNASININ TASARIMI

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

Şekil 13.1 Genel Sistem Görünüşü 13/1

Şekil 13.1 Genel Sistem Görünüşü 13/1 ÖRNEK 13: BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELERDEN DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇELĐK ÇAPRAZLI PERDELERDEN OLUŞAN TEK KATLI ÇELĐK ENDÜSTRĐ BĐNASI 13.1 Sistem Üç boyutlu genel

Detaylı

2.1- Mısır kurutulmasının önemi

2.1- Mısır kurutulmasının önemi 1 1.GİRİŞ Türkiye de thıllr içinde uğdy ve rpdn sonr en geniş ekim lnın ship itki mısırdır. Thıllr içinde ilk sıryı uğdy lmkl irlikte, özellikle zı ölgelerimizde (Krdeniz Bölgesi) mısır ekmeği de yygın

Detaylı

Kelime (Text) İşleme Algoritmaları

Kelime (Text) İşleme Algoritmaları Kelime (Text) İşleme Algoritmlrı Doç.Dr.Bnu Diri Trie Ağcı Sonek Ağcı (Suffix Tree) Longest Common String (LCS) Minimum Edit Distnce 1 Ağçlrın Bğlı Ypısı Düğüm (node), çeşitli ilgiler ile ifde edilen ir

Detaylı

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr Selçuk Üniversitesi ISSN 130/6178 Journl of Technicl-Online Volume 10, Number:1-011 Cilt 10, Syı:1-011 ÇAPRAZ İLİŞKİ METODUYLA İRİS TANIMA Ferruh YILDIZ,*, Nurdn Akhn BAYKAN b Selçuk Üniversitesi, Hrit

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKNİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız e İme - Newton Knunlrı 2. MDDESEL NOKTLRIN KİNEMTİĞİ - Doğrusl Hreket - Düzlemde Eğrisel

Detaylı

ORİFİS TÜP KULLANAN BİR OTOMOBİL KLİMASININ SABİT VE DEĞİŞKEN KAPASİTELİ KOMPRESÖRLER İÇİN DENEYSEL PERFORMANSI

ORİFİS TÜP KULLANAN BİR OTOMOBİL KLİMASININ SABİT VE DEĞİŞKEN KAPASİTELİ KOMPRESÖRLER İÇİN DENEYSEL PERFORMANSI Gzi Üniv. Mü. Mim. Fk. Der. J. Fc. Eng. Arc. Gzi Univ. Cilt 25, No 2, 415-421, 2010 Vol 25, No 2, 415-421, 2010 ORİFİS TÜP KULLANAN BİR OTOMOBİL KLİMASININ SABİT VE DEĞİŞKEN KAPASİTELİ KOMPRESÖRLER İÇİN

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

Radyal Basınçlı Hava Yataklarında Yatak Geometrisinin Hava Filmi Sürtünme Katsayısına Etkisi

Radyal Basınçlı Hava Yataklarında Yatak Geometrisinin Hava Filmi Sürtünme Katsayısına Etkisi Rdyl Bsınçlı Hv Ytklrınd Ytk Geometrisinin Hv Filmi Sürtünme Ktsyısın Etkisi A. Dl * T. Krçy Gzi Üniversitesi Gzi Üniversitesi Ankr Ankr Özet Bu çlışmd bsınçlı hv ytklrı ile desteklenmiş bir ytk-şft sisteminde,

Detaylı

SLOGAN TİPOGRAFİSİ O PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ PAL. www.opalon.com.tr

SLOGAN TİPOGRAFİSİ O PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ PAL. www.opalon.com.tr SLOGAN TİPOGRAFİSİ www.oplon.com.tr PAL O ON PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ www.oplon.com.tr OPAL ON PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ www.oplon.com.tr

Detaylı

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A BÖÜ TI BSINCI IŞTIRR ÇÖZÜER TI BSINCI Cis min ğır lı ğı ise, r( r) 40 & 60rr 4rr zemin r r Şekil-I de: I p ters çev ril di ğin de ze mi ne y pı ln b sınç, ı rr 60rr rr 60 N/ m r zemin r + sis + + 4 4 tı

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p).

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p). Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R Ġ T E Ġ M Ü H E N D Ġ L Ġ K F A K Ü L T E Ġ M A K Ġ N A M Ü H E N D Ġ L Ġ Ğ Ġ B Ö L Ü M Ü I. öğrtim II. öğrtim MAK-43 MT-Trnsport Tkniği ÖĞRENCĠ ADI OYADI NUMARA

Detaylı

Ş ş ş ğ Ö ç Ç ş ö ş ğ ğ ğ ç ğ ğ ş ğ ş ö ğ Ş ş ş ş ş Ş ş ğ ç ç ş ş ğ Ş ş ş Ş Ş Ş ö ö ş ğ Ü ş ö ş ç ğ Ş ö ğ ç ç ş ç ö ğ ş ö ğ ğ ç ş ş ş ğ ö ş ö ğ ö Ş ç ç ş Ç ğ ş ş ö ş ğ ğ ö ş ç ö ç ğ ş Ç ş ş ş ğ ç ğ ö Ö

Detaylı

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri .0.013 1 JEODEZI.0.013 Referns Yüeyi Dönel Elipsidin Genel Öellikleri Dönel Elipsidin Gemetrik Prmetreleri Elips: iki nkty uklıklrı tplmı sbit ln nktlr kümesine denir. Bir elipsin küçük ekseni çevresinde

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

TEKRARLI YÜK ETKİSİNDE KİL ZEMİNLERİN LİNEER OLMAYAN ELASTİK DAVRANIŞI

TEKRARLI YÜK ETKİSİNDE KİL ZEMİNLERİN LİNEER OLMAYAN ELASTİK DAVRANIŞI Eskişehir Osmngzi Üniversitesi Mühendislik Mimrlık Fkültesi Dergisi Cilt:XXII, Syı:1, 009 Journl of Engineering nd Architecture Fculty of Eskişehir Osmngzi University, Vol: XXII, No:1, 009 Mklenin Geliş

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI X. UUSA TESİSAT ÜENDİSİĞİ KONGRESİ 3/6 NİSAN 0/İZİR _ 37 KAPAI ISI DEĞİŞTİRİCİİ TERS VE DİK AKIŞI SOĞUTA KUEERİNİN ISI DEĞİŞİİ ODEENESİ VE DİZAYNI ustf Turhn ÇOBAN ÖZET Soğutm kuleleri soğutm sistemlerinin

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl I / 7 Ksım 011 Mtemtik Sorulrının Çözümleri 1 1 1 1. 1. + + 1 1. + 3 6 1 3 1 + 3 6 3 1. + + 1 1 1 6+ + 3 1. 1 13 1. 1 13. 5.10 +

Detaylı

PALPLANŞLAR DOÇ.DR. MEHMET BERİLGEN YTÜ İNŞ. FAK. GEOTEKNİK ANABİLİM DALI

PALPLANŞLAR DOÇ.DR. MEHMET BERİLGEN YTÜ İNŞ. FAK. GEOTEKNİK ANABİLİM DALI AANŞAR DOÇ.DR. MEHMET BERİGEN YTÜ İNŞ. FA. GEOTENİ ANABİİM DAI llnşlrın ullnım Amçlrı Rıhtım yılrı zılr Temel kzılrı Su içinde ~örüler Destekli kzılr YAS S lln ş llnş Mlzemeleri Ahş llnş rekst beton llnş

Detaylı

HELİKOPTER DENETİMİ UYGULAMALARI

HELİKOPTER DENETİMİ UYGULAMALARI BŞKEN ÜNİVERSİESİ FEN BİLİLERİ ENSİÜSÜ HELİKOPER DENEİİ UYGULLRI VNİ SELİ ÖZÇUKURLU YÜKSEK LİSNS EZİ NKR HELİKOPER DENEİİ UYGULLRI PPLICIONS FOR HELICOPER CONROL VNİ SELİ ÖZÇUKURLU Bşkent Üniversitesi

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Journl of Engineering nd Nturl Sciences Mühendislik ve Fen Bilimleri Dergisi Sigm 28, 24-37, 200 Review Pper / Derleme Mklesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Dery ÖZTÜRK*, Ftmgül

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

Bahar. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1.

Bahar. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1. 2015-2016 Br Su Ypılrı II Yrd. Doç. Dr. Burn ÜNAL Bozok Üniversiesi Müendislik Mimrlık Fkülesi İnş Müendisliği Bölümü Yozg Yrd. Doç. Dr. Burn ÜNAL Bozok Üniversiesi n Müendislii Bölümü 1 2015-2016 Br İnce

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

a) Newton un 2. yasasının direkt uygulanması (Hareket Denklemi) b) İş-Enerji ilkesi c) İmpuls-Momentum yöntemleri

a) Newton un 2. yasasının direkt uygulanması (Hareket Denklemi) b) İş-Enerji ilkesi c) İmpuls-Momentum yöntemleri GİRİŞ Kinetik dengelenmemiş kuvvetler ile onlrın hrekette yrttıklrı değişiklikler rsındki bğıntıyı inceleyen dinmiğin bir koludur. Dengelenmemiş kuvvetler sistemine mruz bir cismin hreketi temelde üç genel

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar Kristl Ypılr Kristl ypı Kristl ypı, tomlrın üç boyutt belirli bir geometrik düzene göre yerleştiği ypılrdır. Kristl Ypılr Amorf ypılı Kristl ypılı Amorf ypı, düzensiz ktılşmış mikroypılrdır, bütün doğl

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

Drying of the Seedless Grape in An Industrial Type Heat Pump Dryer

Drying of the Seedless Grape in An Industrial Type Heat Pump Dryer Politeknik Dergisi Cilt:13 Syı: 4 s. 271279, 21 Journl of Polytechnic Vol: 13 No: 4 pp. 271279, 21 Endüstriyel Tip Isı Pomplı Kurutucud Çekirdeksiz Üzümün Kurutulmsı Mesut ABUŞKA, Hikmet DOĞAN ÖZET Bu

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

DC ŞÖNT JENERATÖR DENEY

DC ŞÖNT JENERATÖR DENEY İNÖNÜ ÜNİVRSİTSİ MÜHNDİSLİK FKÜLTSİ LKTRİKLKTRONİK MÜH. BÖL. 35 LKTRİK MKİNLR LBORTUVR DC ŞÖNT JNRTÖR DNY 3504. MÇ: Şönt bğlnmış DC jenertörün çlışmsını incelemek.. UYGULMLR:. ln kımının şönt bğlı DC jenertörün

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446

T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446 T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446 Ankr, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlrınd uygulnn Çerçeve Öğretim Progrmlrınd yer ln yeterlikleri

Detaylı

SU ÜRÜNLERİ YETİŞTİRİCİLİĞİNDE JEOTERMAL ENERJİDEN YARARLANMA

SU ÜRÜNLERİ YETİŞTİRİCİLİĞİNDE JEOTERMAL ENERJİDEN YARARLANMA 129 SU ÜRÜNLERİ YETİŞTİRİCİLİĞİNDE JEOTERMAL ENERJİDEN YARARLANMA Hüseyin GÜNERHAN ÖZET Denizlerde ve göllerde ğ kfeslerde vey krlrd hvuzlrd insn kontrolünde blık üretmeye "Su Ürünleri Yetiştiriciliği"

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı