İstatistiksel Süreç Kontrol KAZIM KARABOĞA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İstatistiksel Süreç Kontrol KAZIM KARABOĞA"

Transkript

1 İstatistiksel Süreç Kontrol KAZIM KARABOĞA

2 KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi

3 İSTATİSTİKSEL KALİTE KONTROL İstatistiksel kalite kontrol, örnekleme teorisine dayanan ve periyodik ölçmelerle kalitenin devamlı olarak izlenmesine yönelik bir yöntemdir. Toplam kalite yönetimi anlayışı, sürekli iyileşme ve problem çözümüne istatistiksel ve sistematik bir yaklaşım ifade eder. Toplam kalite yönetiminde, sezgilerle değil verilerle çalışma alışkanlığı vardır.

4 İSK metodolojisinde; İstatistik, bir bütünün tamamını kontrol etmek yerine bütünden örnekler alarak sonuçlara göre bütün hakkında tahminde bulunmak için kullanılan araçları ifade eder. Proses, bir ürün veya hizmetin önceden belirlenen nitelikte elde edilebilmesi için kullanılan makine, alet, metot, malzeme ve insan gücünün bütününü içerir. Kontrol, prosesteki verilerin ölçümünde ve analizinde istatistiksel tekniklerin uygulanması anlamını taşır.

5 İSK Süreci

6 İstatistiksel Süreç Kontrolü (İSK) ne için kullanılır? Kalite gelişimini arttırmak Üretim maliyetini azaltmak Müşteri memnuniyetini arttırmak Ürün taleplerini geliştirmek ve belirlenen limitleri arttırmak Verimi arttırmak

7 İSK İSK da kullanılan temel araç süreç kontrol grafikleridir. Bu grafikler genelde bir merkez çizgiden (MÇ), alt (AKL) ve üst (ÜKL) kontrol limitlerinden ve ardışık gözlem noktalarından oluşur.

8 İSK METODLARI İzleme amaçlı İSK metodu Çıktı incelenir eğer kalite tatmin edici değilse standardın altındaki parçalar tekrar üretime sokulur veya daha ucuza satılır ya da hurda olarak ayrılır. Bu genellikle örneklem incelemesi ile yapılır. Kalitenin izlenmesinin genelde maliyeti pahalıdır ve bu nedenle pek önerilmez Koruyucu amaçlı İSK metodu Süreç incelenir ve kusurlu ürünün üretilmesinden kaçınmak için süreç kontrolü uygulanır. Tipik koruyucu amaçlı İSK metotları; 1-) Süreç değişkenleri için Shewhart kontrol grafikleri 2-) Süreç değişkenleri için CuSum kontrol grafikleri, 3-) Girdi materyallerinin örnekleme incelemesi 4-) Ürünün sürekli üretim incelemesi

9 SÜREÇ KONTROL ŞEMASI

10 SÜREÇ YETERLİLİK ANALİZİ Süreç yetenek analizi kalite geliştirme programının en önemli kesimidir. Süreç yeterliliği belirli bir kalite özelliği için değişkenlik ölçüsüdür. Bu değişkenlik zaman boyutunda iki farklı şekilde ele alınabilir: Belirli bir anda var olan değişiklik Zaman içinde oluşan değişiklik

11 SÜREÇ YETERLİLİK ANALİZİ Süreç yeterliliği, istatistiksel bir ölçüt olup müşteri beklentilerine göre bir sürecin ne kadar değişkenlik gösterdiğini özetler (Montgomery,2001). Bu aşamada dikkate alınan parametreler Cp ve Cpk indisleridir. Cp indisi, şartname limitleri ile proses kontrol limitleri arasındaki ilişkiyi gösterir. USL üst spesifikasyon limitini, ASL alt spesifikasyon limitini ve σ standart sapmayı ifade eder.

12 SÜREÇ YETERLİLİK ANALİZİ Süreç yeteneğinin ölçüsü olarak genellikle 6σ açıklığı olarak tanımlanır ve bu doğal toleranslar olarak adlandırılır. Ortalaması μ, standart sapması σ olan normal dağılım eğrisi aşağıdaki gibidir. Böyle bir dağılıma sahip sürecin değişkenlik sınırları μ-3σ ve μ+3σ olarak belirlenebilir.

13 μ+3σ ve μ-3σ için normal dağılım eğrisi

14 SÜREÇ YETERLİLİK ANALİZİ İndislerin hesaplanışı

15 SÜREÇ YETERLİLİK ANALİZİ Süreç yetenek analizinin sağladıkları; Sürecin toleranslara uygunluğunun kestirimi Süreç seçimi veya yenilenmesinde tasarımcılara yol göstermesi Süreç kontrolü için örnek alınma sıklıklarının belirlenmesi Yeni tezgâh ve donanımlar için performans ölçülerini oluşturmak Rakip satıcılar arasında seçim yapmak

16 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER PARETO ANALİZİ :Pareto analizi, değişik sayıdaki önemli nedenleri daha az önemde olan nedenlerden ayırmak için kullanılan bir yöntemdir.

17 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER ÖRNEK: Bir işletme müşteri kaybı probleminde pareto analizi yöntemini uyguluyor. Bunun sebepleri konusunda çeşitli araştırmalar yapılıyor, veriler kategorilere ayrılıyor. Üzerinde çalışıldığında en etkili olacak sebepleri tespit etmeye çalışıyorlar.

18 Pareto analizinde görüldüğü gibi müşteri kaybının %80 i ilk 4 sebepten kaynaklanmaktadır.

19 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Sebep-Sonuç Diyagramı :Kalite karakteristikleriyle etmenler arasındaki ilişkiyi gösteren diyagramdır. Balık kılçığı diyagramı olarak da adlandırılır. Omurgasını ilgili kalite özelliğinin oluşturduğu, sebepleri ise önemine göre (ana sebep/tali sebep) kılçıkları oluşturduğu bir gösterim metodudur.

20 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER

21 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Saçılım Grafiği :Üretilen ürünün kalitesini etkileyen herhangi iki özellik arasında ilişki olup olmadığını belirlemek üzere kullanılan yöntemdir. Saçılım grafikleri genellikle iki cins veri arasındaki ilişkiyi ifade etmektedir. X ve Y gibi iki değişkenin artış ve azalışları birbirine bağlı olarak değişiyorsa aralarında korelasyon vardır demektir.

22 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Saçılım grafikleri, X bağımsız değişken Y bağımlı değişken olmak üzere aralarında sebep-sonuç ilişkisinin olup olmadığını da göstermektedir. X değerlerine bağlı olarak değişen Y değerlerinin kesiştiği yerlere nokta konulur. Bu noktalar demeti incelenerek aralarında ilişki olup olmadığı yorumlanabilecektir. Pozitif yönde doğrusal ilişki

23 SÜREÇ KONTROLÜNDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Negatif yönlü doğrusal ilişki İlişki yoktur

24 KONTROL ÇİZELGELERİ Kontrol çizelgesinin amacı, genel değişkenlik faktörlerini özel değişkenlik faktörlerinden ayırarak süreçteki anormal değişimin önüne geçmektir.

25 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ Kontrol çizelgelerinin kullanım amaçları; Mevcut bir sürecin kontrol edilebilirliğinin (yeterliliği) hangi sınırlar içinde olduğunu belirlemek Süreç değişikliklerinin analizini yapmak Bir sürecin istatistiksel olarak kontrol altına alınıp alınamayacağının kontrolü Süreç yeterliliğinin tespit edilmesi ve bu değişkenlerin müşteri gereksinimleri ile süreç performansı arasındaki farkın izlenmesi

26 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ X- R Çizelgeleri :Örneklem genişliği küçükse (n 10) ortalama ile birlikte değişim genişliği çifti şeklinde uygulanır. Bu uygulama ile hem ortalama hem de değişkenlik bakımından sürecin kontrol altında olup olmadığı araştırılabilir. x çizelgesinin parametreleri aşağıdaki şekilde hesaplanır:

27 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ Örnek: Bir rulman imalat sürecinden 20 saat süresince her saat 4 adet örnek alınıyor ve çap ölçümleri yapılıyor. Aşağıdaki tabloda verilen değerleri kullanarak X-R çizelgesini hazırlayalım ve süreci analiz edelim. ( Saraçoğlu, ipk eğitim notları,2000 ).

28 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ

29 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ X- R Çizelgeleri Alt ve Üst limit Hesaplamaları X- R Çizelgeleri Grafik Gösterimi

30 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN KONTROL ÇİZELGELERİ Grafikler incelendiğinde kontrol dışı bir durum olmadığı görülmektedir. Süreç kontrol altındadır.

31 ÖLÇÜLEBİLEN ÖZELLİKLER İÇİN x S Çizelgeler: KONTROL ÇİZELGELERİ Örneklem genişliğinin büyük olduğu durumlarda tercih edilir.

32 ÖLÇÜLEMEYEN ÖZELLİKLER İÇİN KONTROL GRAFİKLERİ Değişimleri sayısal olarak ölçülemeyen kalite seviyelerine geçer-geçmez, mat-parlak gibi yorumlar getirebilen yerlerde kullanılmaktadır. Buralarda ya kusurlu parça sayısı ya da bir parçadaki kusur sayılarının analizi yapılır. Örneğin sağlam-defolu ayrımı, boyada toz durumu gibi teslim edilen parçaların kaçının kusurlu olduğunun analizinde bu tip çizelgeler kullanılır. Burada herhangi bir ölçüm aletiyle kusurları ölçemeyiz, duyu organlarımızla ayırt edebileceğimiz niteliksel kusurlar vardır.

33 ÖLÇÜLEMEYEN ÖZELLİKLER İÇİN p Çizelgeleri KONTROL GRAFİKLERİ Bu çizelgenin amacı süreçteki kusurlu ürün yüzdesini kontrol etmektir.

34 ÖLÇÜLEMEYEN ÖZELLİKLER İÇİN KONTROL GRAFİKLERİ P- Kontrol Grafiği Grafik incelendiğinde kontrol dışına çıkmış bir gözlem bulunmamaktadır.

35 ÖLÇÜLEMEYEN ÖZELLİKLER İÇİN np - Çizelgeleri KONTROL GRAFİKLERİ p çizelgesine benzer, bu çizelgelerin amacı kusurlu ürün sayısını kontrol etmektir. Örnekleme ait alt gruptaki eleman sayılarının eşit olması durumunda kullanılır. Görüldüğü gibi kontrol dışında bir gözlem bulunmamaktadır.

36 İstatistiksel olarak veriler poisson dağılımına sahipse C ve U çizelgeleri kullanılır. C - Çizelgeleri Bu çizelgelerin amacı süreçteki toplam kusur sayısını kontrol etmektir. Örneklem genişliği sabitlendiğinde kullanılır. U- Çizelgeleri Örnek genişliğinin sabit olmadığı durumlarda bu çizelgenin amacı birim başına düşen kusur sayısını kontrol etmektir.

37 KÜMÜLÂTİF TOPLAM (CUSUM) KONTROL ÇİZELGELERİ Cusum kontrol çizelgeleri esas olarak kronolojik sırada düzenlenmiş verilerin analizi ile ilgilidir. Böylece bir sürecin sürekli kontrolünün sağlanması amaçlanır. Klasik çizelgelere göre başlıca üstünlükleri, özellikle değişimin fazla büyük olmadığı durumlarda, küçük maliyetle aynı etkinliği sağlamasıdır. Cusum kontrol çizelgesinde, süreç ortalamasındaki ani ve ısrarlı değişiklikler derhal fark edilmekte, değişimin zamanı daha belirgin olarak saptanmakta ve görüntülenebilmektedir.

38 KÜMÜLÂTİF TOPLAM (CUSUM) KONTROL ÇİZELGELERİ Süreç kontrol çizelgeleri incelendiği takdirde çoğunda geçmiş gözlemlerin dikkate alınmadığı görülür. Cusum çizelgeleri geçmiş gözlemleri dikkate alarak mevcut durum hakkında fikir verir.

39 KÜMÜLÂTİF TOPLAM (CUSUM) Örnek Uygulama KONTROL ÇİZELGELERİ Büyük bir şirkette 40 ay boyunca meydana gelen kazaların sayısı yandaki Tablo da verilmiştir. Bu veriler tek başlarına organizasyonun performansı hakkında açık ve güvenilir bir sonuç vermez.. (Oakland, John S. 2003).

40 KÜMÜLÂTİF TOPLAM (CUSUM) KONTROL ÇİZELGELERİ C- çizelgesi grafiği Cusum grafiği Bu veriler için oluşturulan c- çizelgesidir. Kontrol limitleri daha önce belirttiğimiz yöntemlerle hesaplanmıştır Çizelgeye göre 17. aya kadar küçük kazaların ortalama sayısı 3 ten büyüktür yani 17. aya kadar pozitif yönde artan bir eğilim görülür. 18. ve 35. aylar arasında ortalama kaza seviyesi düştüğü için eğim negatif yöndedir. Bunu çizelgede açıkça görebiliyoruz

41 KÜMÜLÂTİF TOPLAM (CUSUM) KONTROL ÇİZELGELERİ

42 V MASKESİ YÖNTEMİ Cusum kontrol çizelgelerinde kullanılan V maskesi, Shewhart kontrol çizelgelerindeki kontrol limitlerine karşılık gelmektedir. Bu yöntemin V maskesi olarak adlandırılmasının nedeni, kontrol limitlerinin yatay V(>) şeklinde olmasıdır. V maskesinin kolları sürecin kontrol altında olmasıdır. V maskesinin kolları sürecin kontrol altında kabul edileceği alt ve üst kontrol sınırlarını oluşturmaktadır.

43 EWMA (Üstel Ağırlıklı Hareketli Ortalama) Kontrol Çizelgeleri EWMA yöntemi ekonomide, stok kontrolünde ve tahmin yöntemlerinde sıkça kullanılmasına rağmen kalite kontrolde çok sık olarak kullanılmamaktadır. Bunun sebebi de CuSUM ve Shewhart kontrol çizelgelerinin arasında bir performansa sahip olmasıdır. Küçük değişimlerle ilgilendiğimiz zaman Shewhart kontrol çizelgelerine alternatif bir diğer yol EWMA kontrol çizelgeleridir.

44 KAYNAKÇA Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL; İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI PROF.DR. BESİM AKIN ;ÖĞR.GÖR. ERKAN ÖZTÜRK; İSTATİSTİK PROSES KONTROL TEKNİKLERİNİN BİLGİSAYAR ORTAMINDA UYGULANMASI Tuğba ÇOLAK; İSTATİSTİKSEL SÜREÇ KONTROLÜ VE UYGULAMALAR İrfan ERTUGRUL*, Nilsen KARAKASOGLU; KALTE KONTROLDE ÖRNEKLEM BÜYÜKLÜGÜNÜN DEGSKEN OLMASI DURUMUNDA p KONTROL SEMALARININ OLUSTURULMASI ; stanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 5 Sayı:10 Güz 2006/2 s Mustafa Yücel; TOPLAM KALİTE KONTROLU AÇISINDAN İSTATİSTİKSEL SÜREÇ KONTROL TEKNİKLERİNİN ÖNEMİ ; 8. Türkiye Ekonometri ve İstatistik Kongresi

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel

Detaylı

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İSTATİSTİKSEL SÜREÇ KONTROLÜNE GİRİŞ Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler

Detaylı

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler 911-00-TA 004 10.12.22 1/5 1.Amaç Bu talimatin amacı; ürün tedarikinden başlayarak müşteri şikayetlerine kadar olan tüm aşamalarda sağlıklı veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi,

Detaylı

TOPLAM KALİTE YÖNETİMİ

TOPLAM KALİTE YÖNETİMİ SAKARYA ÜNİVERSİTESİ TOPLAM KALİTE YÖNETİMİ Hafta 2 Yrd. Doç. Dr. Semra BORAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun olarak hazırlanan

Detaylı

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory Tuğba ÇOLAK İstatistik Anabilim Dalı Fikri AKDENİZ İstatistik Anabilim

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ Evren DİREN Serkan ATAK Çiğdem CİHANGİR Murat Caner TESTİK ÖZET Kusurları ve israfı önleyerek müşteri memnuniyetini ve karlılığı arttırmayı

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI PR17/KYB Sayfa No: 1/6 1. AMAÇ ve KAPSAM Bu prosedürün amacı, Daire Başkanlığında deney hizmetleri

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması 1. Deney Adı: ÇEKME TESTİ 2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması Mühendislik tasarımlarının en önemli özelliklerinin başında öngörülebilir olmaları gelmektedir. Öngörülebilirliğin

Detaylı

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application Ç.Ü. Fen Bilimleri Enstitüsü Yıl:21 Cilt:22-1 ALTI SİGMA VE BİR UYGULAMA Six Sigma And An Application Murat YİĞİT İstatistik Anabilim Dalı Sadullah SAKALLIOĞLU İstatistik Anabilim Dalı ÖZET Bu çalışmanın

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ KALİTE VE KALİTE KONTROLÜ Kalitenin Tanımı Kalite, kullanıma uygunluktur (Juran). Kalite, bir ürünün gerekliliklere uygunluk

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

TS EN ISO 9001:2008 Kalite Yönetim Sistemi Kurum İçi Bilgilendirme Eğitimi ISO 9001 NEDİR?

TS EN ISO 9001:2008 Kalite Yönetim Sistemi Kurum İçi Bilgilendirme Eğitimi ISO 9001 NEDİR? ISO 9001 NEDİR? ISO 9001, tüm imalat ve hizmet şirketleri için hazırlanmış olan ve Kalite Yönetim Sistemi nin gereklerini belirleyen uluslararası bir standarttır. Kurumun mal veya hizmet üretimindeki tüm

Detaylı

ISO 22000 UYGULAMA PROSEDÜRÜ

ISO 22000 UYGULAMA PROSEDÜRÜ SAYFA NO 1 / 6 1. AMAÇ Firma tarafından; üretilen ürünlerin güvenliğinin sağlanmasına yönelik hijyenik faaliyetlerin sistemli bir şekilde yürütülmesini ve buna bağlı olarak iso 22000 gıda güvenliği yönetim

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (DÜSBED) ISSN : 1308-6219

Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (DÜSBED) ISSN : 1308-6219 Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (DÜSBED) ISSN : 1308-6219 Kasım 2013 YIL-5 S.10 İSTATİKSEL PROSES KONTROLÜNDE KONTROL GRAFİKLERİNİN KULLANIMI VE TEKSTİL SANAYİNDE BİR UYGULAMA Orhan

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

MADDELERE SOLUNUM İLE MARUZİYETTE RİSK DERECESİ BELİRLENMESİ

MADDELERE SOLUNUM İLE MARUZİYETTE RİSK DERECESİ BELİRLENMESİ TEHLİKELİ KİMYASAL MADDELERE SOLUNUM İLE MARUZİYETTE RİSK DERECESİ BELİRLENMESİ BASİT RİSK DEĞERLENDİRMESİ METODU (HSE/COSHH-Control of substances hazardous to health ) 1 TEHLİKELİ KİMYASAL MADDELERE SOLUNUM

Detaylı

CELAL BAYAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ STAJ YÖNERGESİ

CELAL BAYAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ STAJ YÖNERGESİ Bu staj yönergesi Celal Bayar Üniversitesi Endüstri Mühendisliği öğrencilerinin Üretim ve Yönetim stajları sırasında yapmaları gereken çalışmaları içermektedir. Staj, öğrencinin öğrenim hayatı boyunca

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder. 2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;

Detaylı

TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. Saat Hata

TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. TKY nin 7 Basit Aracı. Saat Hata Frekans Yüzdelik Üretkenlik Doç. Dr. Kazım Sarı Beykent Üniversitesi 2008 Prentice Hall, Inc. 6 1 Fikir Geliştirme Araçları Kontrol (Çetele) Çizelgesi Yayılım Diyagramı Sebep-Sonuç Sonuç Diyagramı Veri

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

statistiksel Proses Kontrol -Uygulamalar -

statistiksel Proses Kontrol -Uygulamalar - statistiksel Proses Kontrol -Uygulamalar - Prof.Dr. Erhan Öner eoner@marmara.edu.tr Prof.Dr. Erhan Öner/PK Problemleri/2002-1/34 Kontrol Diyagramları Niceliksel (kantitatif) kalite özellikleri ile oluturulan

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ

ENDÜSTRİ MÜHENDİSLİĞİ 1. Bir işletmede mevcut sabit maliyetler kapsamında olmayan seçenek aşağıdakilerden hangisidir? a) Süreçte kullanılacak tezgah/tezgahların satın alma maliyeti b) Süreçte kullanılacak tezgah/tezgahların

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik Süreç Değişkenlik Kaynakları Hammadde

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

RGKLM-2015/02 BAL NUMUNESİ (HMF-NEM) LABORATUVARLAR ARASI KARŞILAŞTIRMA(LAK) TESTİ SONUÇ RAPORU

RGKLM-2015/02 BAL NUMUNESİ (HMF-NEM) LABORATUVARLAR ARASI KARŞILAŞTIRMA(LAK) TESTİ SONUÇ RAPORU RGKLM-2015/02 BAL NUMUNESİ (HMF-NEM) LABORATUVARLAR ARASI KARŞILAŞTIRMA(LAK) TESTİ SONUÇ RAPORU 1 Laboratuvarlar arası karşılaştırma test numunesinin hazırlanması ve çevrimin organizasyonunda görev alan

Detaylı

İŞ SAĞLIĞI VE GÜVENLİĞİNDE RİSK YÖNETİMİ VE DEĞERLENDİRMESİ DOÇ. DR. İBRAHİM OCAK DOÇ. DR. ALİ İSMET KANLI

İŞ SAĞLIĞI VE GÜVENLİĞİNDE RİSK YÖNETİMİ VE DEĞERLENDİRMESİ DOÇ. DR. İBRAHİM OCAK DOÇ. DR. ALİ İSMET KANLI İŞ SAĞLIĞI VE GÜVENLİĞİNDE RİSK YÖNETİMİ VE DEĞERLENDİRMESİ DOÇ. DR. İBRAHİM OCAK DOÇ. DR. ALİ İSMET KANLI Konu Başlıkları 1. Temel Kavramlar ve Tanımlar 2. İlgili Mevzuat 3. Risklerden Korunma Yöntemleri

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Basel II: Bankacılık sektöründe değişim rüzgarları. 4 Mayıs 2006

Basel II: Bankacılık sektöründe değişim rüzgarları. 4 Mayıs 2006 Basel II: Bankacılık sektöründe değişim rüzgarları 4 Mayıs 2006 Basel II: Bankacılık sektöründe değişim rüzgarları İçsel Derecelendirme Modeli Kurulumu KOBİKredileri Açısından Skorkart Uygulamaları Derecelendirme

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

Otomotiv Sertifika Programı

Otomotiv Sertifika Programı Otomotiv Sertifika Programı Otomotiv ana sanayi ve yan sanayinde kabul gören, geleneksel iş modelleri artık günümüzde uluslararası standartlar olarak zorunluluklar haline gelmiştir. Bu eğitimde birçok

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Alparslan Serhat DEMİR, Endüstri Mühendisliğine Giriş Ders Notları, Sakarya Üniversitesi Endüstri Mühendisliği Bölümü TESİS PLANLAMA

Alparslan Serhat DEMİR, Endüstri Mühendisliğine Giriş Ders Notları, Sakarya Üniversitesi Endüstri Mühendisliği Bölümü TESİS PLANLAMA 9.1.Giriş TESİS PLANLAMA Tesis planlama bir kurum veya kuruluşun fiziksel ini geliştirmek için gerçekleştirilen sistematik bir yaklaşımdır. Bir organizasyonun en önemli varlıklarından biri olan kapladığı

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

İÇ KALİTE KONTROL VE KONTROL DİYAGRAMLARI

İÇ KALİTE KONTROL VE KONTROL DİYAGRAMLARI Akreditasyon Danışmanlık Konusunda 25 yıllık bilgi ve deneyimini sizinle paylaşmak için! İÇ KALİTE KONTROL VE KONTROL DİYAGRAMLARI İbrahim AKDAĞ Kimya Mühendisi ATAKENT 3.ETAP B.32 Blok D.14 Atakent Mah.

Detaylı

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER. (Ağustos 2015)

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER. (Ağustos 2015) TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (Ağustos 2015) TEPAV Perakende Güven Endeksi-TEPE (02.09.2015) TEPE, Ağustos ayında bir önceki aya göre artarken, geçen yılın aynı dönemine göre azaldı. Önümüzdeki

Detaylı

ING PORTFÖY YÖNETİMİ A.Ş. BIST 30 ENDEKSİ HİSSE SENEDİ YATIRIM FONU NA (HİSSE SENEDİ YOĞUN FON) AİT PERFORMANS SUNUM RAPORU

ING PORTFÖY YÖNETİMİ A.Ş. BIST 30 ENDEKSİ HİSSE SENEDİ YATIRIM FONU NA (HİSSE SENEDİ YOĞUN FON) AİT PERFORMANS SUNUM RAPORU ING PORTFÖY YÖNETİMİ A.Ş. BIST 30 ENDEKSİ HİSSE SENEDİ YATIRIM FONU NA (HİSSE SENEDİ YOĞUN FON) AİT PERFORMANS SUNUM RAPORU A. TANITICI BİLGİLER PORTFÖYE BAKIŞ YATIRIM VE YÖNETİME İLİŞKİN BİLGİLER Halka

Detaylı

Laboratuvar Performansının Sürekliliği (Kalite Kontrol)

Laboratuvar Performansının Sürekliliği (Kalite Kontrol) Laboratuvar Akreditasyon Danışmanlık Ltd. Şti. Konusunda 25 yıllık bilgi ve deneyimini sizinle paylaşmak için! İÇ KALİTE KONTROL VE KONTROL DİYAGRAMLARI İbrahim AKDAĞ Kimya Mühendisi ATAKENT MAH. AKASYA

Detaylı

ALLIANZ HAYAT VE EMEKLİLİK A.Ş. GRUPLARA YÖNELİK GELİR AMAÇLI KAMU DIŞ BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU

ALLIANZ HAYAT VE EMEKLİLİK A.Ş. GRUPLARA YÖNELİK GELİR AMAÇLI KAMU DIŞ BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU GRUPLARA YÖNELİK GELİR AMAÇLI KAMU DIŞ BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU 1 OCAK - 30 HAZİRAN 2015 HESAP DÖNEMİNE AİT YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİŞKİN RAPOR 1 ALLİANZ

Detaylı

3SİSTEMLERİN YÖNETİMİ (1-14)

3SİSTEMLERİN YÖNETİMİ (1-14) ÜRETİM YÖNETİMİ: SİSTEMSEL BİR YAKLAŞIM İÇİNDEKİLER sayfa no 3SİSTEMLERİN YÖNETİMİ (1-14) 1. Sistem Teorisine Giriş 3 1.1 Sistemin Tanımı 4 1.2 Sistemlerin Temel Yapısı 6 1.3 Sistemlerin Önemli Özellikleri

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

TOPLAM KALİTE YÖNETİMİ - 3. Copyright: Prof.Dr. Ömer Saatçioğlu

TOPLAM KALİTE YÖNETİMİ - 3. Copyright: Prof.Dr. Ömer Saatçioğlu TOPLAM KALİTE YÖNETİMİ - 3 Copyright: Prof.Dr. Ömer Saatçioğlu Kalitenin Maliyeti Maliyet Öğeleri Kalite ne maliyette? Yüksek maliyette ürünü düşük maliyette indirgemek disiplinler arası bir problemdir.

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri)

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) R t : t dönemlik basit getiri P t : t dönemdeki fiyat P t-1 : t dönemden önceki fiyat Örneğin, THYAO hisse senedinin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır.

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır. ALTI SİGMA NEDİR? Altı Sigma Nedir? 1980 lerin ortasında Motorola tarafından, Japon kalite fikirleri ve kontrol sistemlerinin süreçlerde uygulanması için geliştirilmiştir. Mevcut problemleri çözmek, altı

Detaylı

THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor

THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor Amaç Aşamalar Örneklem Analizler PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları nın amacı, yeni örneklemler

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

KALİTE KAVRAMI VE KALİTENİN BOYUTLARI

KALİTE KAVRAMI VE KALİTENİN BOYUTLARI KALİTE YÖNETİMİ KALİTE KAVRAMI VE KALİTENİN BOYUTLARI Hizmet veya üründe kalite kavramı için farklı tanımlar kullanılmaktadır. En genel hâliyle ihtiyaçlara uygunluk (Crosby), ürün veya hizmetin değeri

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KALİTE KONTROL Dersin Orjinal Adı: KALİTE KONTROL Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 8 Dersin

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL Başkent Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 06530, Bağlıca, Ankara

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Daha çok değil, daha akıllı çalışmak

Daha çok değil, daha akıllı çalışmak Daha çok değil, daha akıllı çalışmak YALIN 6 SIGMA NIN ANAHTARI YALIN ALTI SİGMA Müşterileri Memnun Etmek Süreçleri İyileştirmek Kalite Hız EKİP ÇALIŞMASI Varyasyon ve Hatalar Süreç Akışı YALIN 6 SIGMA

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ SONUÇLARI DURUM TESPİT ANKETİ MESLEK KOMİTELERİ Eylül 15 Ekonomik Araştırmalar Şubesi 1 1 1 8 6 81.4 SANAYİ GELİŞİM ENDEKSİ 18. 15.2 83.8 91.2 SANAYİ GELİŞİM ENDEKSİ (SGE) (Üretim, İç Satışlar, İhracat,

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Genel Katılıma Açık Eğitimlerimiz Başlıyor!

Genel Katılıma Açık Eğitimlerimiz Başlıyor! Genel Katılıma Açık Eğitimlerimiz Başlıyor! Mavi Akademi, bünyesinde barındırdığı yetki belgeleri ve alanında uzman akademisyenler, sektör tecrübesine sahip baş denetçiler ve uzmanlardan oluşan kadrosuyla

Detaylı

6σ Temel bilgilendirme

6σ Temel bilgilendirme 6σ Temel bilgilendirme Müşteri odaklılık Süreç Yönetimi Veri 6σ Tanımlar Değişkenlik =Prosesin her zaman aynı sonucu (çıktıyı Y ) elde etmemesidir. Bazı değişkenlikler her proseste yer almaktadır. Değişkenlik

Detaylı

Yatırım Ve Yönetime İlişkin Bilgiler

Yatırım Ve Yönetime İlişkin Bilgiler Performans Sunum Raporu nun Hazırlanma Esasları Ziraat Hayat ve Emeklilik A.Ş. Alternatif Esnek Emeklilik Yatırım Fonu na ( Fon ) ait Performans Sunum Raporu, Sermaye Piyasası Kurulu nun ( SPK ) 1 Temmuz

Detaylı

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013.

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013. SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-240.2013.02 Koordinatör: Dr. Fatma AKÇADAĞ 6 Ocak 2014 Gebze/KOCAELİ Bu yeterlilik

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı