Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu"

Transkript

1 FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu Öğretim Yılı Güz Dönemi

2 İçerik Tanımlar Geometrik Temeller Fotoğraf Geometrisi Matematik Temeller Fotoğraf ile Nesne Uzayı Arasındaki İlişki Uçağın Hareketinden Kaynaklanan Dönüklükler İzdüşüm Denklemleri 2

3 Fotoğraf Hangi veriler fotoğraflardan elde edilebilir? Geometri verileri (açı, uzunluk): fotoğraf ve obje noktaları arasındaki konumsal ilişkileri sağlar. Radyometrik veri (gri düzeyi): objelerden yayılan veya yansıyan elektromanyetik enerjinin algılayıcı tarafından algılanan değeri. Objeleri tanımlamak ve niteliklerini belirlemek için kullanılır. Spektral veri (renk): objelerden yayılan veya yansıtılan elektromanyetik enerjinin dalga boyu. Objelerin niteliklerini belirlemek için kullanılır. 3

4 Fotoğraf Fotoğraf, objelerden yayılan ve/veya yansıtılan elektromanyetik enerjinin kaydedilmesidir Kayıt; Işığa duyarlı kimyasal maddeler içeren filmler ile Işığa duyarlı algılayıcı birimler (Örneğin CCD- Charge Coupled Device) ile yapılır 4

5 Çerçeve İşaretleri Kameradan işaretler filme geçer Ölçüm #1 5

6 Çerçeve İşaretleri: Fotoğrafın kenarlarında ve köşelerinde bulunan, iç yöneltmede kullanılan noktalardır. Orta nokta bulucuları da denir.

7 Fotoğraf orta noktası (Orta Nokta): Fotoğraf çerçeve işaretlerinin geometrik olarak ortası ve fotoğraf koordinat sisteminin (x,y) merkezidir. Örnek olarak çerçeve işaretlerinin orta noktaya göre konumu:

8 İzdüşüm merkezi(o): Kamera optik sisteminin merkezidir. İzdüşüm ışını: POP doğru parçasını oluşturan ışın. Asal uzaklık: Fotoğraf düzlemi ile izdüşüm merkezi arasında ki uzaklık (c).

9 Asal Eksen: Kamera optik sisteminin eksenine kamera ekseni yada asal eksen denir. Düşey Fotoğraf: Kamera ekseni düşey konumdayken çekilen fotoğraftır. Yatay Fotoğraf: Kamera ekseni yatay konumdayken çekilen fotoğraftır (Yersel Fotogrametri). Eğik Fotoğraf: Kamera ekseni herhangi bir konumdayken çekilen fotoğraftır.

10 Fotoğraf Çekimi Düşey yani araziye paralel çekilsin istenir Kamera ekseni < 3-5 düşey doğrultu=normal alım 10

11 Fotoğraf çekimi 11

12 Asal Nokta: İzdüşüm merkezinin fotoğraf düzlemine dik iz düşümüdür. Orta noktaya çok yakındır.

13 Asal Nokta: Bu nokta aynı zaman da kamera ekseninin fotoğraf düzlemini ve nesne yüzeyini deldiği H ve H noktasıdır.

14 Ayak ucu (Nadir) Noktası (NN ): İzdüşüm merkezinden geçen çekül doğrusu fotoğraf ve araziyi ayak ucu noktasında keser.

15 Yaşayan,2011

16 Geometrik Temeller / Fotoğraf Geometrisi Üç boyutlu uzaydaki noktalar iki boyutlu bir uzaya, yani bir düzleme geometrik bir yöntemle aktarılabilir. Üç boyutlu uzaydaki noktaların bir düzleme geometrik bir yöntemle aktarılmasında üç tür iz düşüm ele alınır: Paralel izdüşüm Merkezsel izdüşüm Dik izdüşüm

17 1. Paralel izdüşüm: Bir d doğrusuna paralel izdüşüm doğruları çizerek izdüşüm düzlemini deldiği noktalar bulunur

18 2. Dik (Ortogonal) izdüşüm: Noktalardan izdüşüm düzlemine dikler inilir. Bu noktalar nesnenin izdüşüm noktasıdır. Harita, dik bir izdüşümdür. İzdüşüm düzlemi olarak yeryüzünün belirli bir noktasına teğet olan bir düzlem alınır. Genellikle bu düzey deniz yüzeyine paralel bir düzlemdir ve dik izdüşüm küçültülerek kâğıda aktarılır.

19 3. Merkezsel izdüşüm: Uzay noktaları izdüşüm düzlemi dışındaki bir O noktası ile birleştirilir. Bu doğruların düzlemi deldiği noktalar ilgili noktaların merkezsel izdüşümüdür. O noktası izdüşüm merkezidir. Merkezsel izdüşüm Pozitif konum Merkezsel izdüşüm negatif konum

20 3. Merkezsel izdüşüm: O izdüşüm merkezi şekildeki gibi, nesne noktaları ile izdüşüm düzlemi arasında da olabilir. Fotoğraf, merkezsel bir izdüşümdür. O izdüşüm merkezi, kamera optik sisteminin merkezidir. Tüm izdüşüm ışınları bu noktadan geçer. Geometrik olarak bir harita ile düşey bir hava fotoğrafı arasında en önemli fark, farklı izdüşüm sonucu oluşmalarıdır. Merkezsel izdüşüm Pozitif konum Merkezsel izdüşüm negatif konum

21 Merkezsel izdüşümün Özellikleri Üç boyutlu uzayda bir A noktasına karşılık izdüşüm düzleminde tek bir A noktası vardır. İzdüşüm düzlemindeki A noktasına karşılık ise A O izdüşüm ışını üzerinde bulunan sonsuz sayıda nokta karşılık gelir. Ölçme noktalarının buşunduğu uzay, yani arazi üç boyutludur. Bu noktaların konumları A (X,Y,Z) koordinatları bir tek fotoğraftan elde edilemez. (ancak en az iki fotoğraftan elde edilebilir). Çifte oran özelliği: bir doğru üzerinde bulunan dört nokta için yazılacak bir çifte oran, merkezsel izdüşümde sabittir. Merkezsel İzdüşümün Özelliklerini Araştırın!

22 MATEMATİK TEMELLER Fotogrametride Kullanılan Koordinat Sistemleri Fotoğraf Koordinat sistemi Fotoğraf koordinat sistemi eksenleri cisim koordinat sistemiyle aynı yönde olan ve sağ el koordinat sistemine uyan xyz koordinat sistemidir. Başlangıç noktası O izdüşüm merkezidir. xy düzlemi fotoğraf düzlemine paralel, z ekseni de kamera ekseni ile çakışıktır. x ekseni komşu fotoğrafın izdüşüm merkezi doğrultusundadır. Bu yön hava fotogrametrisinde, yaklaşık olarak uçuş çizgisi doğrultusudur. Noktaların z koordinatı sabit ve asal uzaklığa eşittir.

23 Uzay Koordinat Sistemi Fotogrametride nesne uzayındaki noktalar uzay koordinatları ile tanımlanır. Uzay koordinat sistemi, X ekseni pozitif yönü uçuş yönü doğrultusunda (hava fotogrametrisi için), Z ekseni XY düzlemine dik ve sağ el koordinat sistemine uyan dik bir XYZ koordinat sistemidir. Başlangıç noktasının seçimi serbesttir. Ancak Z (H) ekseni her durumda düşey doğrultuda, XY düzlemi de her zaman yatay bir düzlemdir

24 Matematik temeller Koordinat Dönüşümü İki boyutlu koordinat dönüşümü (Benzerlik dönüşümü)

25

26 İki boyutlu koordinat dönüşümü (Benzerlik dönüşümü) Başlangıçları farklı, aralarında α kadar dönüklük ve ölçek

27 Benzerlik dönüşümünde 1 ölçek, 1 dönüklük ve 2 öteleme parametresi İki koordinat sistemi arasındaki dönüşüm parametrelerinin bulunması için, her iki sistemde de koordinatları bilinen, ortak noktaya ihtiyaç duyulur.

28 İki Boyutlu Affin Dönüşümü Jeodezide genellikle benzerlik dönüşümü kullanılmasına rağmen fotogrametri ve kartoğrafyada durum farklıdır. Film, kâğıt vb. maddeler deformasyona uğradıkları zaman her iki eksen boyunca bozulmalar aynı olmaz. Bu durumda Affin dönüşümü tercih edilir. Bu dönüşümde koordinat eksenleri yönündeki ölçekler aynı değildir. Uzunluklar yöne bağlı olarak değişir. Belirli bir yönde ölçek değişmez kalır. Açılar dönüşümden sonra değişir.

29 İki Boyutlu Affin Dönüşümü Açıların değişimi açı kollarının doğrultusuna bağlıdır. Açı koruyan bir dönüşüm değildir. Herhangi bir doğru dönüşümden sonra yine bir doğrudur. Paralel doğrular dönüşümden sonra da paraleldir Fotogrametride bazı problemlerin çözümünde dört parametreli benzerlik dönüşümü yerine altı parametreli bir dönüşüm uygulanır. Affin dönüşümü adı verilen bu dönüşümde altı parametre, x ve y eksenleri yönünde 2 ölçek faktörü, 2 dönüklük ve 2 ölçektir.

30 İki Boyutlu Affin Dönüşümü Bu altı parametrenin çözümü için her iki sistemde koordinatları bilinen en az üç noktaya ihtiyaç vardır. Ortak nokta sayısının üçten fazla olması durumunda dönüşüm parametreleri en küçük kareler yöntemine göre dengeleme ile hesaplanır. Affin dönüşümünün benzerlik dönüşümünden temel farkı her iki eksen yönündeki ölçek faktörlerinin farklı olmasıdır.

31 Kaynak: Yaşayan, 2011 İki Boyutlu Affin Dönüşümü İki boyutlu Affin dönüşümü

32 Üç boyutlu koordinat dönüşümü Başlangıçları aynı olan iki üç boyutlu dik koordinat sistemi (kartezyen koordinat sistemi) arasındaki dönüşüm Bu iki koordinat sistemi arasında bir ölçek katsayısı ve öteleme varsa, genel bir üç boyutlu benzerlik dönüşümü formülü

33 Dönüşüm Matrisi (Ortogonal Matris) Dönüşüm formüllerindeki λa dönüşüm matrisi uzunlukları, λ katsayısı oranında değiştirilir. Ancak bu durumda şeklin benzerliği değişmez, açılar aynı kalır. Bu nedenle bu dönüşüme benzerlik dönüşümü denir. λ = 1 durumunda dönüşüm özel bir dönüşümdür ki buna ortogonal dönüşüm denir. Fotogrametride sembolik olarak tanımlanan A dönüşüm matrisi ortogonal bir matristir. Ortogonal matrisin özellikleri nelerdir?

34 Dönüklük Açıları ve Dış Yöneltme Elemanları Uçağın hareketinden dolayı eksenler etrafında dönüklükler meydana gelmektedir.

35 O izdüşüm merkezine paralel XYZ uzay koordinat sistemi ele alınsın Elde edilen xyz koordinat sistemi ve bu eksenler etrafında dönüklük açıları X-ekseni çevresindeki dönüklük v (omega ) Y-ekseni çevresindeki dönüklük ϕ ( fi ) Z-ekseni çevresindeki dönüklük k ( kappa )

36

37

38 Üç öteleme ve üç dönüklükten oluşan altı elemana bir fotoğrafın dış yöneltme elemanları denir. Bir fotoğrafın altı dış yöneltme elemanı: izdüşüm merkezinin üç koordinatı (Xo,Yo,Zo) ve fotoğraf koordinat sisteminin üç dönüklüğü (v, ϕ, k) dür.

39 Fotoğraf koordinat sisteminin arazi koordinat sistemine göre dönüklüğünü ifade eden A matrisi, her biri ortogonal olan ve düzlem dönüklükten elde edilen üç matrisin arka arkaya çarpılmaları ile elde edilen bir matristir. Av, Aϕ, Ak ya kısmi dönüklük matrisleri denir.

40 A matrisi, her biri ortogonal olan ve düzlem dönüklükten elde edilen üç matrisin arka arkaya çarpılmaları ile elde edilen bir matristir. Matris çarpımlarında sıra önemlidir.

41 İzdüşüm Denklemleri Tam düşey hava fotoğrafı için elde edilen denklemlere izdüşüm denklemleri denir. X ve x eksenlerinin paralel olduğunu kabul edelim. Eğer orta ve asal nokta çakışıksa ve eksenler arası dönüklük yoksa: Birinci ve ikinci eşitlikler, üçüncü eşitliğe bölünürse

42 Bu özel durum yerine genel durum göz önünde bulundurulursa, yani bu iki koordinat sistemi arasındaki ölçek farkı, dönüklük ve öteleme dikkate alınırsa, genel bir üç boyutlu benzerlik dönüşümü denklemi yazılabilir

43 İzdüşüm Denklemleri

44 GEOMETRİK VE MATEMATİKSEL TEMELLER - Karşılıklı yöneltme durumu (Çift fotoğraf alımı) Fotogrametri I Ders Notları Yrd. Doç. Dr. Aycan M. MARANGOZ 44

45 GEOMETRİK VE MATEMATİKSEL TEMELLER - Düzlemdeşlik Koşulu Fotogrametri I Ders Notları Yrd. Doç. Dr. Aycan M. MARANGOZ 45

46 Dersin Kaynakları Ahmet Yaşayan, Murat Uysal, Abdullah Varlık, Uğur Avdan, Fotogrametri, ANADOLU ÜNİVERSİTESİ YAYINI NO: 2295, , Fotogrametri I ve II DersNotları, Prof.Dr.Ahmet Yaşayan,YTÜ Fotogrametri DersNotları, Prof.Dr. Fatmagül Kılıç,YTÜ Fotogrametri, O. Altan, S. Külür, G. Toz, H. Demirel, Z. Duran, M. Çelikoyan, Karl Krauss, 7. Baskıdan çeviri, İTÜ, Nobel Yayın Dağıtım, 2007 Digital Photogrammetry, Yves Egels and Michel Kasser, Taylor and Francis, CRC Press, 2007 Digital Photogrammetry A practical Course, Wilfried Linder, Springer, Verlag Berlin Heidelberg 2009 Kraus, K., (1993); Photogrammetry Volume I, Fundamentals and Standard Process, Ferd. Dümmlers Verlag, Bonn, Germany. Kraus, K., (1997); Photogrammetry Volume II, Advanced Methods and Applications, Ferd. Dümmlers Verlag, Bonn, Germany. İnternet Kaynakları Ulusal ve Uluslararası Kuruluşlar 46

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - TEK RESİM DEĞERLENDİRMESİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Fotogrametride Koordinat Sistemleri

Fotogrametride Koordinat Sistemleri Fotogrametride Koordinat Sistemleri Komparator koordinat sistemi, Resim koordinat sistemi / piksel koordinat sistemi, Model veya çekim koordinat sistemi, Jeodezik koordinat sistemi 08 Ocak 2014 Çarşamba

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I TANIM ve KAVRAMLAR Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ DERSİN

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II GİRİŞ ve HATIRLATMA Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ DERSİN

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Fotogrametriye Giriş

Fotogrametriye Giriş ye Giriş 2013-2014, BAHAR YY Fevzi Karslı (Doç. Dr.) Harita Mühendisliği Bölümü 23 Mart 2014 Pazar Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar, kaynaklar. 2. Hafta nin tanımı ve uygulama

Detaylı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Fotogrametriye Giriş

Fotogrametriye Giriş Fotogrametriye Giriş 2014-2015, Bahar YY Fevzi Karslı (Doç. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 7 Mart 2015 Cumartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ ZONGULDAK MYO MİMARLIK VE ŞEHİR PL. BÖL. HARİTA VE KADASTRO PROGRAMI ZHK 209/217/239 FOTOGRAMETRİ DERSİ NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ ZONGULDAK MYO MİMARLIK VE ŞEHİR PL. BÖL. HARİTA VE KADASTRO PROGRAMI ZHK 209/217/239 FOTOGRAMETRİ DERSİ NOTLARI FOTOGRAMETRİ TANIŞMA TANIM ve KAVRAMLAR Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ ZONGULDAK MYO MİMARLIK VE ŞEHİR PL. BÖL. HARİTA VE KADASTRO PROGRAMI ZHK 209/217/239 FOTOGRAMETRİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Fotogrametrik Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi Tanımlar Metrik Kameralar Mercek Kusurları

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Ders İçeriği Hava fotoğrafının tanımı Fotogrametrinin geometrik ilkeleri Fotogrametride fotoğrafik temel ilkeler Stereoskopik

Detaylı

Doç. Dr. Bahadır ERGÜN MİM 466

Doç. Dr. Bahadır ERGÜN MİM 466 MİMARİ FOTOGRAMETRİ Fotogrametri, fiziksel cisimler ve oluşturdukları çevreden yansıyan ışınların şekillendirdiği fotogrametrik görüntülerin ve yaydıkları elektromanyetik enerjilerin kayıt,ölçme ve yorumlama

Detaylı

YERSEL FOTOGRAMETRİ. Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI

YERSEL FOTOGRAMETRİ. Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI YERSEL FOTOGRAMETRİ Giriş, Tanım ve Kavramlar Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF346/466 YERSEL FOTOGRAMETRİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili FOTOGRAMETRİ Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (x) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (x) Uzaktan Öğretim( ) Diğer

Detaylı

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://geomatik.beun.edu.tr/marangoz/ Hava fotoğrafları ve fotoğraf ölçeği Fotoğraf

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK NİRENGİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK Giriş Yer Kontrol Noktaları

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOGRAMETRİDE ALGILAMA SİSTEMLERİ, ÖZELLİKLERİ ve SAĞLADIKLARI VERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

Fotogrametri Anabilim dalında hava fotogrametrisi ve yersel fotogrametri uygulamaları yapılmakta ve eğitimleri verilmektedir.

Fotogrametri Anabilim dalında hava fotogrametrisi ve yersel fotogrametri uygulamaları yapılmakta ve eğitimleri verilmektedir. FOTOGRAMETRİ ANABİLİM DALI Fotogrametri eski Yunancadaki Photos+Grama+Metron (Işık+Çizim+Ölçme) kelimelerinden Eski Yunancadan bati dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık)

Detaylı

Veri toplama- Yersel Yöntemler Donanım

Veri toplama- Yersel Yöntemler Donanım Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Dijital Fotogrametri ve 3B Modelleme

Dijital Fotogrametri ve 3B Modelleme Dijital Fotogrametri ve 3B Modelleme Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 07 Ekim 2013 Pazartesi 1 Ders Planı ve İçeriği Dijital Fotog. ve 3B Mod.

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA. (Photointerpretation and Remote Sensing)

FOTOYORUMLAMA UZAKTAN ALGILAMA. (Photointerpretation and Remote Sensing) FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 COĞRAFİ BİLGİ BİLGİSİSTEMİ İÇİN İÇİN ÖNEMLİ VERİ VERİTOPLAMA YÖNTEMLERİ YATAY YATAY ÖLÇMELER (X,Y) (X,Y) YATAY YATAY AÇILAR

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm İki Boyutlu Koordinat sistemleri Arası Dönüşüm Amaç, bir koordinat sistemine göre elde edilmiş olan koordinatların, diğer bir koordinat sistemindeki koordinat değerlerini elde etmektir. İki haritanın koordinat

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Giriş, Tanım, Tarihsel Gelişi, İşlevi, Uygulama Alanları, Sınıflandırılması Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I FOTOGRAMETRİDE KULLANILAN HAVA KAMERALARI Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI 2014-2015 Öğretim Yılı

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

3D INFORMATION EXTRACTION FROM DIGITAL AERIAL IMAGES WITH COMPUTER VISION AND PHOTOGRAMMETRIC SPACE INTERSECTION

3D INFORMATION EXTRACTION FROM DIGITAL AERIAL IMAGES WITH COMPUTER VISION AND PHOTOGRAMMETRIC SPACE INTERSECTION DİJİTAL HAVA FOTOĞRAFLARINDAN BİLGİSAYARLA GÖRME VE UZAY ÖNDEN KESTİRME İLE 3B BİLGİ ÇIKARIMI S. ÖZDEMİR 1, F. KARSLI 2, H. ACAR 2, M. DİHKAN 2 1 Gümüşhane Üniversitesi, Mühendislik Mimarlık Fakültesi,

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Gerçek Zamanlı kuzey Gerçek Zamanlı g

Gerçek Zamanlı kuzey Gerçek Zamanlı g Gerçek Zamanlı kuzey Gerçek Zamanlı g Özet Ahmet Yalçın - Ankara 007 XYZ : xyz : r(t) : Uzayda sabit referans koordinat sistemi, XYZ ye göre dönen koordinat sistemi xyz koordinat sistemi içindeki noktasal

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK ÜRÜNLER BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ GİRİŞ Giriş Ortofoto Ortofoto Ürün

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

ÖLÇME BİLGİSİ (SURVEYING) SDÜ, Orman Fakültesi, Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı

ÖLÇME BİLGİSİ (SURVEYING) SDÜ, Orman Fakültesi, Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı ÖLÇME BİLGİSİ (SURVEYING) 1 Yrd. Doç. Dr. H. Oğuz Çoban Süleyman Demirel Üniversitesi Orman Fakültesi Orman Mühendisliği Bölümü Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı Telefon : 2113944 E-posta

Detaylı

FOTOGRAMETRİK UYGULAMALAR

FOTOGRAMETRİK UYGULAMALAR FOTOGRAMETRİK UYGULAMALAR Giriş, Tanım ve Kavramlar Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF475 FOTOGRAMETRİK UYGULAMALAR DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Fotogrametride işlem adımları

Fotogrametride işlem adımları Fotogrametride işlem adımları Uçuş planının hazırlanması Arazide yer kontrol noktalarının tesisi Resim çekimi Değerlendirme Analitik değerlendirme Dijital değerlendirme Değerlendirme Analog değerlendirme

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT RESİM DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT RESİM DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT RESİM DEĞ. Analog ve Analitik Stereodeğerlendirme BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

Haritacılık Bilim Tarihi

Haritacılık Bilim Tarihi Haritacılık Bilim Tarihi Tanışma - Giriş, Tanım ve Kavramlar - 1 Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF901 Haritacılık Bilim Tarihi Sunu 1 http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

T. C. SELÇUK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRETİM PLANI (NORMAL ÖĞRETİM)

T. C. SELÇUK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRETİM PLANI (NORMAL ÖĞRETİM) 1.YARIYIL T. C. SELÇUK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ 2016 2017 ÖĞRETİM PLANI (NORMAL ÖĞRETİM) Adı T+U+L Kredi AKTS alınabilmesi için önşartlı 1205101 Ölçme Bilgisi 1 (A)

Detaylı

( m %n' m q >m q J > şekilde şematik olarak gösterilmiştir.

( m %n' m q >m q J > şekilde şematik olarak gösterilmiştir. Diğer Araştırmalar : Bir önceki bölümde açıklanan ilk araştırmaların teorik ve deneysel sonuçlarını sınamak amacı ile, seri halinde yeni teorik ve deneysel araştırmalar yapılmıştır. (Çizelge : IV) de belirtilen

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I FOTOGRAMETRİDE KULLANILAN HAVA KAMERALARI Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı