f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2"

Transkript

1 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki gibidir. = log a < a < için f() = a üstel fonksionunun grafi i andaki gibidir. = a < a < için f() = log a fonksionunun grafi i andaki gibidir. = log a ÖRNEK A a daki üstel fonksionlar n grafiklerini çiziniz. a. f : [, ] R, f() = ÖRNEK 5 A a daki fonksionlar n grafiklerini çiziniz. a. f : ;, m R, f() = log b. f : [, ] R, f() = c m a. = b. f : R R, f() = log a. = log f( ) = =, f() = =, a = > oldu- undan f nin grafi i ukar daki gibidir. fc m = log =, f() = log = log = ve a = > oldu undan grafik ukar daki gibidir. b. = b. Taban (, ) aral nda olup f() azaland r. = için = log = c m = dir. Yani grafik eksenini (, ) da keser. Ar ca > olaca ndan grafik a a daki gibi olur. = log = f( ) = c m =, f() = c m, a = < oldu undan f nin grafi i ukar daki gibidir. 5

2 Fonksionlar ÖRNEK ÖRNEK = f() = f() = f() in grafi i verilmi tir. Buna göre f() = denkleminin kaç gerçel kökü vard r? Yukar da grafi i verilen = f() fonksionu için f() (fof)( ) ifadesinin e itini bulunuz. Grafik (, ), (, ) ve (, ) noktalar ndan geçti inden f() =, f() = ve f( ) = d r. (fof)( ) = ff (( )) = f() = olup Z f() (fof)( ) = = 5 bulunur. = Grafikte görüldü ü gibi = do rusu grafi i noktada kesmektedir. Dola s la f() = denkleminin kökü vard r. Bu kökler, ve tür. ÖRNEK ÖRNEK = f( ) Bir kenar n n uzunlu u br olan karenin alan n, çevresinin bir fonksionu olarak ifade edip bu fonksionun grafi ini çiziniz. Yukar da = f( ) fonksionunun grafi i çizilmi tir. Buna göre f( ) f( 5) f( ) kaçt r? Grafik (, ) noktas ndan geçiorsa = için = olur. Yani f(. ) = f() = olur. Bir kenar br olan karenin çevresi Ç = = Ç olur. Bu karenin alan, A = Ç A = c m A = Ç 6 olur. O halde, bir kenar uzunlu u br olan karenin alan n n, çevresinin bir fonksionu olarak ifadesi: A = f(ç) = Ç 6 d r. Grafik (, ) noktas ndan geçiorsa = için = olur. Yani f(. ) = f() = olur. A (Alan) A= Ç 6 Grafik (, ) noktas ndan geçiorsa = için = olur. Yani f(.( ) ) = f( 5) = olur. f( ) f( 5) = = bulunur. f( ) Ç (Çevre) 6

3 Fonksionlar BA INTI GRAF KLER ÖRNEK 7 ÖRNEK 6 = ba nt s n n grafi ini çiziniz. = f() = ba nt s için = < için = = olaca ndan grafi i a a daki gibi olur. = f() fonksionunun grafi i ukar daki gibidir. Buna göre = f() in grafi ini çiziniz. = Grafi in > olan (. ve. bölgeler) k sm n anen al p di er k sm n sileriz. Ald m z k s m ile bu k sm n eksenine göre simetri inin birle imi istenen grafiktir. = Pratik Yol: = f() ba nt s n n grafi i çizilirken = f() in grafi i çizilir. Çizilen grafi in > olan bölgesindeki k sm ile bu k sm n eksenine göre simetri inin birle imi = f() in grafi ini olu turur. = ba nt s n n grafi ini pratik oldan çizelim. = = ÖRNEK 8 = ba nt s n n grafi ini çiziniz. = = v = olaca ndan = v = = ile = fonksionlar n n grafiklerinin birle imi = ba nt s n n grafi idir. = ba nt s n n grafi ini pratik oldan çizelim. = = = = 6

4 Fonksionlar ÖRNEK 9 ba nt s n n grafi ini çiziniz. olaca ndan istenen grafik = ile = do rular n n aras ndaki bölgedir. (Do rular dahil) Pratik Yol: = f() ba nt s n n grafi i çizilirken = f() in grafi i ile bu grafi in eksenine göre simetri inin birle imi al n r. = f() a b ÖRNEK ba nt s n n grafi ini çiziniz. olaca ndan istenen grafik = ile = parabollerinin aras ndaki bölgedir. (Paraboller dahil) = = = f() a b ÖRNEK = sin ba nt s n n [, ] aral ndaki grafi ini çiziniz. = sin in grafi i a a daki gibidir. ÖRNEK = ba nt s n n grafi ini çiziniz. = = v = olaca ndan grafik a a daki gibi olur. = O halde, = sin in grafi i = bulunur. 7

5 Fonksionlar ÖRNEK 5 Pratik Yol: = f( ) fonksionunun grafi i çizilirken = f() in grafi i çizilir. = f() Çizilen grafi in > olan bölgesindeki k sm ile bu k sm n eksenine göre simetri inin birle imi al n r. = f() fonksionunun grafi i ukar daki gibidir. Buna ÖRNEK göre, = f(), = f( ), = f(), = f() fonk- d = f() sionlar n n grafiklerini çiziniz. a b c = f() in grafi i ukar daki gibidir. Buna göre = f( ) in grafi ini çiziniz. = f() Grafi in > olan (. ve. bölgeler) k sm n anen al p di er k sm n sileriz. Ald m z k s m ile bu k sm n eksenine göre simetri inin birle imi istenen grafiktir. = f( ) d = f( ) c b b c = f() ÖRNEK A a da = f() ile = f( ) fonksionlar n n grafik- leri çizilmi tir. nceleiniz. = f() = f( ) = f() 8

6 ÇÖZÜMLER. = = 5. Grafi in üzerinde bulunan (, ), (, ) ve (, ) noktalar n n üçünü de sa laan fonksion, = * fonksionudur., >. ekilde, ekseninin alt ndaki k s m eksenine göre simetri i al narak ukar katlanm t r. 6. f() = f () = olur.. f() = fonksionunun tan ml olmas için olmal d r.. f() = fonksi- onunun grafi i andaki gibidir. ekseninin alt ndaki k s m eksenine göre simetri i al narak ukar katland - = nda = in grafi i elde edilir. 7. < ve > e itsizlikleri taral bölgei sa lar. < < olur. > Ar ca. ve. bölgeleri sa laan bir di er ko ul. oldu undan E seçene i do rudur. 8. Grafi in üzerindeki (, ), (, ) ve (, ) noktalar n n üçünü de sa laan fonksion = fonksionudur.. 9. = ba nt s n n grafi i (, ] [, ] için = olaca ndan en küçük de er oktur. (, ) için = parabolünün en küçük de erini bulal m. b r = = = a. f(r) = fc m= c m = = olur. 8 8 < > = < < = > > = > < = En küçük de er 8 dir. biçiminde olup elde edilen ekil bir karedir.

7 Fonksionlar. < ise = ve = oldu undan f() = = =. f() = a f a () = a a = a = olur. olaca ndan, = = bulunur.. a > olmak üzere, Grafi in üzerindeki (a, a) noktas n sa laan fonksion = a fonksionudur. 5. Grafikte f () = oldu undan f[f() ] = f () = f () f () = = 7 bulunur.. için f() = = = < için f() = = = =, olaca ndan f() = ) bulunur., <. f() = ve g() = ise (gof)() = ( ) = 6. = ( f() f()) fonksionunda f() için = (f() f()) = f() f() < için = ( f() f()) = olaca ndan, f() için (gof)() = = < için (gof)() = = olaca ndan grafik a a daki gibi olur. = = 7. = fonksionunun tan ml olmas için 7 olmal d r.

8 Fonksionlar 8. = fonksionunda için = = < için = = oldu undan grafik a a daki gibi olur.. f() = fonksionunda için f() = = < için f() = = olaca ndan,, f() = ), < bulunur. Bu fonksionun grafi i a a daki gibidir. 9. {(, ), (, ), (, ) } fonksionu bire bir ve örten oldu undan ters fonksionu vard r.. < için < < < olur. =. f() = a b c iken f() = f( ) a b c = a b c a b = a b b = b b = olmal d r. < için < < < olur. = Buldu umuz iki grafi in kesi imi olan a a daki. Verilen karenin iç bölgesini elde etmek için < < ve < < olmal d r. Bu durumda grafik < ba nt s n n grafi idir. = < < < < < < olur. =

9 Fonksionlar. 7. f() = f () = f() f() = g() (f g)() Z, ] oldu undan (f g)() = [, ] \, < < bulunur. Bu fonksionun grafi i a a daki gibidir. f(f()) = f() = f() = oldu undan f( ) f ( ) = = bulunur. ff (( )) 8. f () = için f( ) = = = f() = = f() = = f( ) f() f() = = bulunur. 5. f : R { } R { }, f() = f () = b a olaca ndan a b b = = b, a = = a f() in tan m kümesi R b ' olur. 9. f () in tan m kümesi f () in de er kümesi olaca ndan f () = f () = = = f() in de er kümesi R {} bulunur. görüntü kümesi R a & olup b = b = 6, a = a = 9 (a, b) = (9, 6) bulunur.. <, f () = 6 6 = 6 9 = 9 ( ) = ( ) = f ( ) 6. = f () = f ( ) Bu durumda olur. f () = = bulunur. = = = f () = bulunur.

10 Fonksionlar. g() = (fog)() = fg ( ( )) Y = f() = g() = ve f() = oldu undan g( ) ( fog)( ) = = bulunur. f( ) 6. f() = fonksionu için tan ml olaca ndan Dola s la T = [, ] dir. Görüntü kümesinin olur. en büük de eri f() = =. f() do rusunun denklemi = f ( ) = f() = olur. f () = olaca ndan (f og)(6) = f (g(6)) = f (f(6)) = 6 en küçük de eri f() = = oldu undan G = [, ] olur. T G = [, ] [, ] = [, ] bulunur. (gof )( )) = g(f ( )) = g() = (f og)(6) (g of )( ) = 6 = 9 olur.. Verilen grafi e göre f() = f() =, f() = 8 g() = ve g () = (fog of)() = f(g )( f ( ))) W = f(g (8)) = f() = 8 7. f() = fonksionu ile g() = fonksionunun grafiklerinin kesim noktalar n n apsisleri = denkleminin kökleridir. = v = = 6 v = olur. = Ç = Ø = 6 = 6 v = 6 = 9 v = = 9 = 6 bulunur.. 9 = ba nt s için 9 = = 9 < için 9 = = 9 olur. Bu ko ullar sa laan grafik D seçene indedir. 8. f() = ise f() = vea f() = f() = vea f() = f() = f() = vea f() = = 5 vea = 5 5. log ( ) = = = f() = f() = vea f() = ( kök var) ( kök var) f () = O halde toplam 6 tane de eri vard r.

11 Fonksionlar 9. f() = 5 olur., ise. f : Z Z, f() = *, $ ise f = {..., (, ), (, ), (, ), (, ), (, ),...} olup f bire birdir. Görüntü kümesi Z \ {, } oldu undan örten de ildir. O halde, aln z I do rudur.. g() = f( ) g( ) = f( ) g( ) = f( ) olur. Grafi e bak ld nda f( ) = oldu u görülür. Bu durumda, g( ) = f( ) = = g() = f( ) g(5) = f(5 ) g(5) = f(). f() < f( ) olmak üzere, f() < f() I. f() < f(5) tir. f( ) < f( 5) II. f( ) < f() f( ) < f() f( ) > f() f( ) = f() olabilir. g(5) = = d r. O halde, g( ) g(5) = = tür. III. f() < f() f() < f() f() f() < f() f() <.f() ise f() f() <.f() tür.. f() = *, rasonelse, rasonel de ilse (fof) d n= ff d = fc m = fc m n p 5 =. = olur.

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ve birer tamsaı olmak üzere; 7 olduğuna göre, farkının alabileceği en büük değer ile en küçük değerin farkı aşağıdakilerden hangisidir? 0 8 8. 0 olmak üzere; ifadesinin eşiti

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

ÜN TE III. ÇEMBER N ANAL T K NCELENMES

ÜN TE III. ÇEMBER N ANAL T K NCELENMES ÜN TE III. ÇEMBER N ANAL T K NCELENMES 1. G R fi. ÇEMBER N DENKLEM 3. MERKEZLER R J NDE, EKSENLER ÜZER NDE V E YA EKSENLERE T E E T LAN ÇEMBERLER N DENKLEM 4. ÇEMBER N GENEL DENKLEM 5. VER LEN ÜÇ NKTADAN

Detaylı

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak

Detaylı

C E V A P L I T E S T ~ 1

C E V A P L I T E S T ~ 1 C E V A P L I T E S T ~. 5. () 7 ( ).( ) A) B) C) 0 D) E) A) B) C) 0 D) E). 6. 5 A) 0 B) C) D) E) A) B) C) D) E) 5. b b ab a a A) B) a C) b D) b E) 7. ( 5 ) A) B) C) 0 D) E). 9 8. 5 8 A) B) 0 C) D) E)

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! KİTPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BKNLIĞI ÖLÇME, DEĞERLENDİRME VE SINV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MTEMTİK 016 8. SINIF. DÖNEM MTEMTİK DERSİ MERKEZÎ ORTK SINVI 7 NİSN 016 Saat: 10.10 dı ve Soyadı

Detaylı

İLKÖĞRETİM MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER

İLKÖĞRETİM MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER ÖABT 05 Soruları aalaan omison tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Editör: Doç. Dr. Haan Efe Konu Anlatımı Özgün Sorular Arıntılı

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir?

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir? . BÖLÜM TÜREVİN GEOMETRİK YORUMU TEST TEST - 4 + 4=9 eğrisinin (, ) noktasındaki teğetinin denklemi nedir?. f()=( ). ( 5) fonksionun =4 noktasındaki teğetinin eğimi kaçtır? A) 4 B) C) D) E) 6. fonksionun.

Detaylı

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler DERS ki De i kenli Do rusal Denklem Sistemleri ve Matrisler.. Do rusal Denklem Sistemleri. Günlük a amda a a dakine benzer pek çok problemle kar la r z. Problem. Manavdan al veri eden bir mü teri, kg armut

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MTEMT K TEST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MTEMT K TEST " bölümüne iflaretleyiniz. 1. 1 3 1 3 1 2 1 2. 5 + 7 iflleminin sonucu

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise

Detaylı

7. SINIF MATEMATİK TESTİ A. 1. Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu

7. SINIF MATEMATİK TESTİ A. 1. Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu . Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu çıtaların şekildeki gibi birleştirilmesi ile oluşturulmuştur. Aşağıdakilerden hangisindeki çıtalar birbirinin orta dikmesidir?

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

ÜÇGEN,TESTERE işaret ÜRETEÇLERi VE veo

ÜÇGEN,TESTERE işaret ÜRETEÇLERi VE veo Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. 2 ÜÇGEN,TESTERE işaret ÜRETEÇLERi VE veo. Ön Bilgiler. Üçgen Dalga işaret Üreteci Üçgen dalga işareti kare dalga işaretinin

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. EYLÜL 2013-201 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. 9-13 Örüntü ve Süslemeler Dönüşüm Geometrisi 1. Doğru, çokgen ve çember modellerinden

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir?

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir? FONKSİYON HATIRLATMA ( FONKSİYON TANIMI ) A dan B e tanımlı f kuralının fonksion olm ası için; Örnek... : f( )= ise f() kaçtır? ) A daki her elemanın görüntüsü olmalı ( A da açıkta eleman kalmamalı) )A

Detaylı

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 =

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 = Öğrenci Seçme Sınavı (Öss) / 4 Haziran 009 Matematik I Soruları ve Çözümleri. ( ).( + ) işleminin sonucu kaçtır? A) 6 B) 6 C) D) 6 E) 6 Çözüm ( ).( + ) 0 ( ).( ) + ( 4 9 ). 6 36 6 36. 6 6. 0, 0,0 0,0 işleminin

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MATEMAT K TEST KKAT! + Bu bölümde cevaplayaca n z soru say s 40 t r + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 2 4. 4. 0,5 2. iflleminin sonucu

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

www.mehmetsahinkitaplari.org

www.mehmetsahinkitaplari.org MATEMA www.mehmetsahinkitaplari.org T T r. P ALME YA YINCILIK Ankara I PALME YAYINLARI: 76 Sinif Matematik Konu Anlatım / Mehmet Şahin Yaına Hazırlama : PALME Dizgi-Grafik Tasarım Birimi Yaın Editörü :

Detaylı

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME ÖZEL TANIMLI FONKSİYONLAR FONKSİYONLAR BÖLÜM FONKSİYONLARDA ÖTELEME VE SİMETRİ FONKSİYONLARDA ÖTELEME. Y EKSENİNDE ÖTELEMELER a) =f() fonksionu verildiğinde k R + olmak üzere, =f()+k fonksionunu çizmek

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor.

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor. PROJE KONUSU : İKİ KADEMELİ REDÜKTÖR. VERİLEN BİLGİLER VE İSTENENLER : Giriş gücü = P giriş =,5 kw Kademe sayısı = Giriş mil devri = n g = 750 devir/dakika.kademe dişli tipi = Düz dişli çark Çıkış mil

Detaylı

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan).

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan). KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 014-015 GÜZ YARIYILI SU KAYNAKLARI MÜHENDİSLİĞİ I ARASINAV SORULARI Tarih: 16 Kasım 014 SORULAR VE CEVAPLAR Adı Soyadı: No: İmza:

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR İçerik Giriş Helisel dişli geometrisi Kavrama oranı Helisel dişli boyutları Helisel dişlilerin mukavemet

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 10 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 8 Aralık 1999 Saat: 09.54 Problem 10.1 (a) Bir F kuvveti ile çekiyoruz (her iki ip ile). O

Detaylı

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü Deney-2 /5 DENEY 2 SĐLĐNDĐR ÜZERĐNE ETKĐ EDEN SÜRÜKLEME KUVVETĐNĐN BELĐRLENMESĐ AMAÇ Bu deneyin amacı, silindir üzerindeki statik basınç dağılımını, akışkan tarafından silindir üzerine uygulanan kuvveti

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

İçindekiler. İkinci Bölüm - Renkler 2.1. Kurumsal Renk Değerleri... 2.2. Yardımcı Kurumsal Renk Değerleri...

İçindekiler. İkinci Bölüm - Renkler 2.1. Kurumsal Renk Değerleri... 2.2. Yardımcı Kurumsal Renk Değerleri... İçindekiler Birinci Bölüm - Logotype 1.1. Logotype ın Hikâyesi... 1.2. Logotype ın Renkli Kullanımı... 1.3. Logotype ın Siyah-Beyaz Kullanımı... 1.4. Logotype ın Renkli Zeminde Kullanımı... 1.5. Logotype

Detaylı

G D S 4 2013 MART. Sınıf Ders Ünite Kazanım. 9. sınıf Dil ve Anlatım Türkçenin Ses Özellikleri 1. Türkçedeki seslerin özelliklerini açıklar.

G D S 4 2013 MART. Sınıf Ders Ünite Kazanım. 9. sınıf Dil ve Anlatım Türkçenin Ses Özellikleri 1. Türkçedeki seslerin özelliklerini açıklar. G D S 4 2013 MART Sınıf Ders Ünite Kazanım 9. sınıf Dil ve Anlatım Türkçenin Ses Özellikleri 1. Türkçedeki seslerin ni açıklar. 9. sınıf Dil ve Anlatım Türkçenin Ses Özellikleri 2. Türkçedeki ses uyumlarının

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

A)1/2 B)2/3 C)1 D)3/2 E)2

A)1/2 B)2/3 C)1 D)3/2 E)2 SORU1: Eşit bölmeli bir çubuğa büyüklükleri 2F,F olan F1,F2 kuvvetleri şekildeki gibi dik olarak uygulanıyor. F1,F2 kuvvetlerinin O noktasına göre momentlerinin büyüklüğü sırasıyla M1,M2 olduğuna göre,m1/m2

Detaylı

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK : MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden

Detaylı

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük MATEMATİ O ON NU UA AN NL L A A T T I I ML ML I I F F A AS S İ İ Ü ÜL LS S E E T T İ İ TEMALARI NA GÖREAYRI LMI Ş FASİ ÜL. SI NI F DOĞAL SAYILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak,

Detaylı

6. x ve y birer tam sayıdır. 7. a, b, c doğal sayılar olmak üzere, 8. a, b, c doğal sayılar olmak üzere, 9. x, y ve z birer tam sayı olmak üzere,

6. x ve y birer tam sayıdır. 7. a, b, c doğal sayılar olmak üzere, 8. a, b, c doğal sayılar olmak üzere, 9. x, y ve z birer tam sayı olmak üzere, İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

Hiperbolik Fonksiyonlar

Hiperbolik Fonksiyonlar Matematik Dünas, 0-III Kapak Konusu: İntegral IV Hiperbolik Fonksionlar sinh olarak a z - lan kosinüs sinüs hiperbolik fonksionlar ndan geçmiflte k saca sö zet mifltik Bu az da bu fonksionlardan biraz

Detaylı

ÜN TE I FONKS YONLAR

ÜN TE I FONKS YONLAR ÜN TE I FONKS YONLAR Fonksiyonlarla lgili Temel Kavramlar Eflit Fonksiyonlar Fonksiyon Türleri Birim Fonksiyon Sabit Fonksiyon Fonksiyonlar n Bileflkesi Bir Fonksiyonun Tersi Fonksiyonlarda fllemler Fonksiyonlar

Detaylı

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık.

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme ugun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. MATEMATİK SORU BANKASI tamamıla Milli Eğitim Bakanlığı Talim ve Terbie Kurulu

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SMNYOLU LİSELERİ 4. İLKÖĞRETİM MTEMTİK YRIŞMSI 2008 / MRT KİTPÇIĞI BİRİNCİ BÖLÜM Çoktan seçmeli 30 Test sorusundan oluşan ün süresi 90 dakikadır. Bu bölümün bitiminde kısa bir ara verilecektir. Elinizdeki

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

ÜN VERS TEYE G R SINAV SORULARI

ÜN VERS TEYE G R SINAV SORULARI ÜN VRS TY G R SINV SORULRI. 000 - ÖSS. 00 - ÖSS m( ) = 90 = cm = cm = cm > H G Yukar daki verilere göre ) ) ) ( ) ( ) ) 9 ) 9 kare, = =, G = G, H, G do rusal;, H, do rusal ise H H ) ) ) ) ). 000 - ÖSS.

Detaylı

LYS MATEMATİK SINAV ÖNCESİ TEKRAR TESTİ

LYS MATEMATİK SINAV ÖNCESİ TEKRAR TESTİ LYS MATEMATİK SINAV ÖNCESİ TEKRAR TESTİ İÇİNDEKİLER POLİNOMLAR... KÜMELER... 9 BAĞINTI VE FONKSİYON... 7 İŞLEM VE MODÜLER ARİTMETİK... İKİNCİ DERECEDEN DENKLEMLER... 7 PERMÜTASYON - KOMBİNASYON - OLASILIK...

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birinci Bölüm Soru Kitapçığı Türü DENEME-7 Bu sınav iki bölümden

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7 İÇİNDEKİLER 1 Projenin Amacı... 1 2 Giriş... 1 3 Yöntem... 1 4 Sonuçlar ve Tartışma... 6 5 Kaynakça... 7 FARKLI ORTAMLARDA HANGİ RENK IŞIĞIN DAHA FAZLA SOĞURULDUĞUNUN ARAŞTIRILMASI Projenin Amacı : Atmosfer

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

GEOMETR 7 ÜN TE III S L ND R

GEOMETR 7 ÜN TE III S L ND R ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Kenan Osmanoğlu / Kerem Köker. KPSS Matematik Konu Anlatımlı ISBN 978-605-318-091-3. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Kenan Osmanoğlu / Kerem Köker. KPSS Matematik Konu Anlatımlı ISBN 978-605-318-091-3. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Kenan Osmanoğlu / Kerem Köker KPSS Matematik Konu Anlatımlı ISBN 97860518091 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Pegem Akademi Bu kitabın basım, yayın ve satış hakları Pegem Akademi

Detaylı

Do ufl Üniversitesi Matematik Kulübü nün

Do ufl Üniversitesi Matematik Kulübü nün Matematik ünas, 003 Güz o ufl Üniversitesi Matematik Kulübü Matematik Yar flmas /. ölüm o ufl Üniversitesi Matematik Kulübü nün üniversitenin ö retim üelerinin de katk - lar la düzenledi i liseleraras

Detaylı