BIL 416 Dördüncü Bölüm SINIFLANDIRMA YÖNTEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BIL 416 Dördüncü Bölüm SINIFLANDIRMA YÖNTEMLERİ"

Transkript

1 BIL 416 Dördüncü Bölüm SINIFLANDIRMA YÖNTEMLERİ karar ağaçları ve model değerlendirme

2 Sınıflandırma : Tanım Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir Eğitim setindeki her kayıt bir tanesi sınıf (class) özniteliği olan özniteliklerden oluşur. Sınıflandırma modeli, diğer özniteliklerin değerleri ile sınıf (class) özniteliğinin bulunduğu fonksiyondur. Hedef: Yeni kayıtların doğru şekilde daha önceden belirlenmiş sınıflara atanmasıdır. Bir test kümesi modelin doğruluğunu belirlemek için kullanılır. Genellikle, veri seti eğitim ve test setlerine bölünür, eğitim seti ile model inşa edilirken test seti model doğrulama için kullanılır.

3 10 10 Sınıflandırma Görevinin Görselleştirilmesi Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No Learn Model 10 No Small 90K Yes Tid Attrib1 Attrib2 Attrib3 Class Apply Model 11 No Small 55K? 12 Yes Medium 80K? 13 Yes Large 110K? 14 No Small 95K? 15 No Large 67K?

4 Sınıflandırma Örnekleri Tümör hücrelerinin iyi veya kötü huylu olarak tahmin edilmesi Kredi kartı işlemlerinin yasal veya hileli olarak sınıflandırılması Yeni hikayelerin finans, hava durumu, eğlence, spor vs. şeklinde kategorilere ayrılması

5 Sınıflandırma Teknikleri Karar ağacı tabanlı yöntemler K -en yakın komşu yöntemi

6 10 Bir Karar Ağacı Örneği categorical Tid Refund Marital Status categorical continuous Taxable Income Cheat class Özniteliklerin bölünmesi 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No Yes Refund No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes MarSt Single, Divorced TaxInc < 80K > 80K Married 9 No Married 75K No 10 No Single 90K Yes YES Eğitim verisi Model: Karar ağacı

7 10 Karar Ağacı için Bir Diğer Örnek categorical Tid Refund Marital Status categorical Taxable Income continuous 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes class Married MarSt Yes Single, Divorced Refund No TaxInc < 80K > 80K YES Aynı veriyi uydurmak için birden fazla ağaç kullanılabilir.

8 10 10 Karar Ağacı Sınıflandırma Görevi Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No Learn Model 10 No Small 90K Yes Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K? 12 Yes Medium 80K? 13 Yes Large 110K? 14 No Small 95K? 15 No Large 67K? Apply Model Decision Tree

9 1 0 Modelin Test Verisine Uygulanması Ağacın kökünden başlayın Test verisi Refund Marital Status Taxable Income Cheat Refund No Married 80K? Yes No MarSt Single, Divorced Married TaxInc < 80K > 80K YES

10 1 0 Modelin Test Verisine Uygulanması Test Verisi Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? MarSt Single, Divorced Married TaxInc < 80K > 80K YES

11 1 0 Modelin Test Verisine Uygulanması Test Verisi Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? MarSt Single, Divorced Married TaxInc < 80K > 80K YES

12 1 0 Modelin Test Verisine Uygulanması Test Verisi Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? MarSt Single, Divorced Married TaxInc < 80K > 80K YES

13 1 0 Modelin Test Verisine Uygulanması Test Verisi Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? MarSt Single, Divorced Married TaxInc < 80K > 80K YES

14 1 0 Modelin Test Verisine Uygulanması Test Verisi Refund Marital Status Taxable Income Cheat Refund No Married 80K? Yes No MarSt Single, Divorced Married Cheat bilgisi No olarak atanır. TaxInc < 80K > 80K YES

15 Karar Ağacı Tümevarımı Birçok algoritma vardır: Hunt salgorithm (en eski- sadece bu gosterilecek) CART ID3, C4.5 SLIQ,SPRINT

16 1 0 Hunt s Algoritması için Genel Yapı D t bir t düğümünde bulunan eğitim kayıtlarının bir kümesi olsun Genel prosedür: Eğer D t aynı sınıfa (y t sınıfı) ait kayıtları içeriyorsa, t bir yaprak düğümdür ve y t olarak etiketlenir. Eğer D t bir boş kümeyse, t bir yaprak düğümdür ve geçerli sınıf tarafından etiketlenir, y d Eğer D t birden fazla sınıfa ait kayıtlar içeriyorsa, veriyi daha küçük alt kümelere bölmek için bir başka öznitelik kullanılır. Her bir alt küme için bu işlem özyineli olarak devam eder. Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes? D t

17 10 Hunt s Algoritması Tid Refund Marital Status Taxable Income Cheat 1 Yes Single 125K No Hileci değil Yes Hileci değil Refund No Hileci değil 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No Yes Refund No Yes Refund No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Hileci değil Single, Divorced Hileci Marital Status Married Hileci değil Hileci değil Single, Divorced Taxable Income Marital Status Married Hileci değil < 80K >= 80K Hileci değil Hileci

18 Bölünme Şekilleri 2-yollu bölünme Çok yollu bölünme

19 Nominal Özniteliklere Dayalı Olarak Bölünme Çok yollu bölünme: farklı değerler için birçok bölünme kullanılır. Aile ArabaTipi Spor Lüks İkili bölünme: değerler iki altkümeye bölünür. En uygun bölünmeyi bulmaya ihtiyaç vardır. {Spor, Lüks} ArabaTipi {Aile} veya {Aile, Lüks} ArabaTipi {Spor}

20 Ordinal Özniteliklere Dayalı Olarak Bölünme Çok yollu bölünme: farklı değerler için birçok bölünme kullanılır. Küçük Orta Boyut Büyük İkili bölünme: değerler iki altkümeye bölünür. En uygun bölünmeyi bulmaya ihtiyaç vardır {küçük, orta} Boyut {büyük} veya {orta, büyük} Boyut {küçük} {küçük, büyük} Bu bölünme ne ile ilgilidir? Boyut {orta}

21 Sürekli Özniteliklere Dayalı Olarak Bölünme Farklı yolları vardır sıralı bir kategorik öznitelik formuna ayrıklaştırma Statik başlangıçta ayrıklaştırma bir defaya mahsus olmak üzere yapılır Dinamik aralıklar eşit aralık demetleme ile bulunabilir (eşit frekans demetleme veya kümeleme). İkili karar: (A < v) veya (A v) olası bölünmelerin hepsi varsayılır ve en iyi dilim bulunur daha yoğun hesaplama gerekebilir

22 Sürekli Özniteliklere Dayalı Olarak Bölünme

23 En İyi Bölünme Nasıl Belirlenir? Bölünme öncesi : 10 kayıt class 0 10 kayıt class 1 Hangi test şartı en iyidir? Class 0 : bayanlar class 1: erkekler olabilir.

24 En İyi Bölünme Nasıl Belirlenir? Greedy yaklaşımı: Homojen sınıf dağılımına sahip düğümler tercih edilir Düğüm katışıklılığının (impurity) ölçümü bir ihtiyaçtır : Katışıklılık derecesi yüksek Katışıklılık derecesi düşük

25 Düğüm Homojenliğinin Ölçümü Gini Index

26 Homojenliğinin Ölçümü: GINI Verilen bir t düğümü için Gini Index : GINI( t) = 1 j [ p( j t)] 2 (T: p( j t) t düğümündeki j sınıfına ait bağıl olasılıktır). Maksimum (1-1/n c ), kayıtların bütün sınıflar arasında eşit olarak dağılması durumudur. (n c: sınıf adedi) Minimum (0.0) bütün kayıtların bir sınıfa ait olması durumudur C1 0 C2 6 Gini=0.000 C1 1 C2 5 Gini=0.278 C1 2 C2 4 Gini=0.444 C1 3 C2 3 Gini=0.500

27 GINI Hesaplama için Örnekler GINI( t) = 1 j [ p( j t)] 2 C1 0 C2 6 P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 P(C1) 2 P(C2) 2 = = 0 C1 1 C2 5 P(C1) = 1/6 P(C2) = 5/6 Gini = 1 (1/6) 2 (5/6) 2 = C1 2 C2 4 P(C1) = 2/6 P(C2) = 4/6 Gini = 1 (2/6) 2 (4/6) 2 = 0.444

28 GINI tabanlı Bölünme C-RT, SLIQ, SPRINT; GINI tabanlı bölünme kullanılır Bir p düğümü k parçaya bölüneceği zaman bölünme kalitesi şöyle hesaplanır, GINI split = k i= 1 n i n GINI ( i) formülde, n i = child i üzerindeki kayıt adedi, n = p düğümündeki kayıtların adedi.

29 İkili Öznitelikler : GINI Index Hesabı Kayıtlar iki parçaya bölünür Ağırlıkların etkisi hesaba katılır: Daha büyük ve katışık olmayan parçalar görülür. Gini(N1) = 1 (5/7) 2 (2/7) 2 = Gini(N2) = 1 (1/5) 2 (4/5) 2 = B? Yes No Node N1 Node N2 N1 N2 C1 5 1 C2 2 4 Gini=0.371 Parent C1 6 C2 6 Gini = Gini(Children) = 7/12 * /12 * = 0.371

30

31 Aşağıdaki Bölümlemelerden hangisi daha iyi? GINI indeks kullanarak hesaplayınız. Marital Status Marital Status {Single, Divorced} {Married} {Single} {Married,divorced}

32 Veri Madenciliği Ödev 2

33 Karar Ağacı tabanlı sınıflandırma Avantajları: İnşa edilmesi kolaydır Bilinmeyen kayıtların sınıflandırılmasında son derece hızlıdır Küçük boyutlu ağaçları yorumlamak kolaydır Birçok basit veri seti için diğer sınıflandırma teknikleri ile karar ağacı yöntemi doğruluk açısından karşılaştırılabilir.

34 Model Değerlendirme Performans değerlendirme ölçümleri Bir modelin performansını nasıl değerlendiririz? Performans değerlendirme yöntemleri Güvenilir tahminleri nasıl elde ederiz? Model karşılaştırma yöntemleri Kazanan modeller arasında bağıl performansı nasıl karşılaştırırız?

35 Performans Değerlendirme için Ölçümler Bir modelin tahminsel yetenekleri: Sınıflandırma veya model inşasının ne kadar hızlı yapıldığı, ölçeklenebilirliği v.s. Karıştırma (confusion) Matrisi : TAHMİN EDİLEN SINIF Class=Yes Class=No a: TP (true positive) GERÇEK SINIF Class=Yes Class=No a c b d b: FN (false negative) c: FP (false positive) d: TN (true negative)

36 Performans Değerlendirme için Ölçümler TAHMİN EDİLEN SINIF Class=Yes Class=No GERÇEK SINIF Class=Yes Class=No a (TP) c (FP) b (FN) d (TN) En çok kullanılan ölçüm: Accuracy = a a + b + + d c + d = TP TP + TN + TN + FP + FN

37 Örnek

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir sınıflandırma: temel kavramlar, karar ağaçları ve model değerlendirme Sınıflandırma : Tanım Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir Eğitim setindeki her kayıt

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Dördüncü Saat sınıflandırma: temel kavramlar, karar ağaçları ve model değerlendirme Dr. Hidayet Takçı Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Sınıflandırma : Tanım Eğitim seti (training

Detaylı

Gözetimli & Gözetimsiz Öğrenme

Gözetimli & Gözetimsiz Öğrenme Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir.

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir. Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

Regresyon ve Sınıflandırma

Regresyon ve Sınıflandırma Regresyon ve Sınıflandırma p Temel fark n n Sınıflandırmada sıralı olmayan kategorik bir hedef değişken vardır. Regresyon probleminde sürekli ya da sıralı bir hedef değişken vardır. p Tüm regresyon yaklaşımları,

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Besinci Saat Sınıflandırma: Alternatif Teknikler Dr. Hidayet Takçı Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Kural tabanlı Sınıflayıcı if then şeklinde ifade edilebilecek kurallarının

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

K En Yakın Komşu Methodu (KNearest Neighborhood)

K En Yakın Komşu Methodu (KNearest Neighborhood) K En Yakın Komşu Methodu (KNearest Neighborhood) K-NN algoritması, Thomas. M. Cover ve Peter. E. Hart tarafından önerilen, örnek veri noktasının bulunduğu sınıfın ve en yakın komşunun, k değerine göre

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Hafta 05 - Karar Ağaçları/Kümeleme

Hafta 05 - Karar Ağaçları/Kümeleme BGM 565 - Siber Güvenlik için Makine Öğrenme Yöntemleri Bilgi Güvenliği Mühendisliği Yüksek Lisans Programı Dr. Ferhat Özgür Çatak ozgur.catak@tubitak.gov.tr İstanbul Şehir Üniversitesi 2018 - Bahar İçindekiler

Detaylı

Çok Yollu Ağaçlar: B*-Trees B*-Trees

Çok Yollu Ağaçlar: B*-Trees B*-Trees Çok Yollu Ağaçlar: B*-Trees B*-Trees B-tree lerde bir node dolunca bölme işlemi yapılmaktadır Bölme sonucunda oluşan iki node da yarı yarıya doludur B*-tree lerde bölme işlemi geciktirilerek node ların

Detaylı

BiL416 Hafta-1 Veri Madenciliği:Giriş

BiL416 Hafta-1 Veri Madenciliği:Giriş BiL416 Hafta-1 Veri Madenciliği:Giriş Neden Veri Madenciliği? Ticari Bakış Açısı Çok miktarda veri toplanmış ve ambarlanmıştır. Web verisi, e-ticaret Bölüm ve dükkanlardaki ödemeler Banka/Kredi kartı işlemleri

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Kümeler arası. Küme içi. uzaklıklar. maksimize edilir. minimize edilir

Kümeler arası. Küme içi. uzaklıklar. maksimize edilir. minimize edilir Kümeleme Analizi: Temel Kavramlar ve Algoritmalar Kümeleme Analizi Nedir? Her biri bir dizi öznitelik ile, veri noktalarının bir kümesi ve noktalar arasındaki benzerliği ölçen bir benzerlik ölçümü verilmiş

Detaylı

YZM 3217 YAPAY ZEKA DERS#9: ÖĞRENME VE SINIFLANDIRMA

YZM 3217 YAPAY ZEKA DERS#9: ÖĞRENME VE SINIFLANDIRMA YZM 3217 YAPAY ZEKA DERS#9: ÖĞRENME VE SINIFLANDIRMA Makine Öğrenmesi Çok büyük miktardaki verilerin elle işlenip analiz edilmesi mümkün değildir. Bu tür problemlere çözüm bulmak amacıyla makine öğrenmesi

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Birinci Saat Veri Madenciliği: Giriş Dr. Hidayet Takçı Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Neden Veri Madenciliği? Ticari Bakış Açısı Çok miktarda veri toplanmış ve ambarlanmıştır.

Detaylı

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data

Detaylı

KARAR AĞAÇLARI SÜMEYYE ÖZKAN BAHAR BAKAR İZEL KOLCU

KARAR AĞAÇLARI SÜMEYYE ÖZKAN BAHAR BAKAR İZEL KOLCU KARAR AĞAÇLARI SÜMEYYE ÖZKAN 21323994 BAHAR BAKAR 21323573 İZEL KOLCU 21323918 NEDİR? Karar ağaçları ve karar ağaç algoritmaları Karar ağaçları; sınıflandırma ve tahmin için sıkça kullanılan ağaç şekilli

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Veri ve Metin Madenciliği. Zehra

Veri ve Metin Madenciliği. Zehra Veri ve Metin Madenciliği Zehra Taşkın @zehrataskin Büyük Veri https://www.youtube.com/watch?v=tzxmjbl-i4y Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Veri Madenciliği

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree Genel Kavramlar Bir ağaç yapısı

Detaylı

Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları

Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları Max - Min Heap Öncelikli kuyruk konusunu hatırlayın. Kuyruğa sonradan eklenmesine rağmen öncelik

Detaylı

Karar Ağaçları Destekli Vadeli Mevduat Analizi

Karar Ağaçları Destekli Vadeli Mevduat Analizi Karar Ağaçları Destekli Vadeli Mevduat Analizi Hakan Dalkılıç 1, Feriştah Dalkılıç 1 1 Dokuz Eylül Üniversitesi, Bilgisayar Mühendisliği Bölümü, İzmir hakand@hotmail.com, feristah@cs.deu.edu.tr Özet: C4.5

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Sıralama Problemi ve Analizi Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Problemi ve Analizi Bu bölümde öncelikle bir diğer böl-ve-yönet yöntemine dayalı algoritma olan Quick Sort algoritması

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Veri Madenciliği Karar Ağacı Oluşturma

Veri Madenciliği Karar Ağacı Oluşturma C4.5 Algoritması Veri Madenciliği Karar Ağacı Oluşturma Murat TEZGİDER 1 C4.5 Algoritması ID3 algoritmasını geliştiren Quinlan ın geliştirdiği C4.5 karar ağacı oluşturma algoritmasıdır. ID3 algoritmasında

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Makine Öğrenmesi 2. hafta

Makine Öğrenmesi 2. hafta Makine Öğrenmesi 2. hafta Uzaklığa dayalı gruplandırma K-means kümeleme K-NN sınıflayıcı 1 Uzaklığa dayalı gruplandırma Makine öğrenmesinde amaç birbirine en çok benzeyen veri noktalarını aynı grup içerisinde

Detaylı

2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması

2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması 2. Oracle Data Miner İle Örnek Bir Veri Madenciliği Çalışması Bu örnek uygulamada bir önceki yazımda Oracle SQL Developer a yüklediğim Data Miner Repository ile gelen hazır bir sigorta şirketi veri setini

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

Veri Madenciliği. Bölüm 6. Sınıflandırma 2. Doç. Dr. Suat Özdemir.

Veri Madenciliği. Bölüm 6. Sınıflandırma 2. Doç. Dr. Suat Özdemir. Bölüm 6. Sınıflandırma 2 http://ceng.gazi.edu.tr/~ozdemir Karar Ağacı Örnek Algoritma: ID3 Bütün nitelikler ayrık Bir düğüm oluştur N: Eğer örneklerin hepsi C sınıfına ait ise, N düğümü C etiketli yaprak

Detaylı

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri Konular VERİ MADENCİLİĞİ Farklı Sınıflandırma Yöntemleri Yrd. Doç. Dr. Şule Gündüz Öğüdücü Örnek tabanlı yöntemler ken Yakın Komşu Yöntemi Genetik Algoritmalar Bulanık Küme Sınıflandırıcılar Öngörü Eğri

Detaylı

tree) nedir? Karar Ağacı (Decision Decisiontree

tree) nedir? Karar Ağacı (Decision Decisiontree Karar Ağacı (Decision Decisiontree tree) nedir? Bir işletme yönetimi tarafından tercihlerin, risklerin, kazançların, hedeflerin tanımlanmasında yardımcı olabilen ve birçok önemli yatırım alanlarında uygulanabilen,

Detaylı

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri

Konular VERİ MADENCİLİĞİ. Örnek Tabanlı Yöntemler. En Yakın Komşu Sınıflandırıcı. En Yakın Komşu Yöntemi. Farklı Sınıflandırma Yöntemleri VERİ MADENCİLİĞİ Farklı Sınıflandırma Yöntemleri Yrd. Doç. Dr. Şule Gündüz Öğüdücü Örnek tabanlı yöntemler ken Yakın Komşu Yöntemi Genetik Algoritmalar Karar Destek Makinaları Bulanık Küme Sınıflandırıcılar

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

Veri Madenciliği - Giriş. Erdem Alparslan

Veri Madenciliği - Giriş. Erdem Alparslan Veri Madenciliği - Giriş Erdem Alparslan Amaçlar İş zekasının önemli bir parçası olan veri madenciliğinin tanımı İş analizi ve veri madenciliğinin amaçlarının anlaşılması Veri madenciliğini kullanan çok

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

Çok Yollu Ağaçlar (Multi-Way Trees)

Çok Yollu Ağaçlar (Multi-Way Trees) Çok Yollu Ağaçlar (Multi-Way Trees) B-Trees B*-Trees B+-Trees Yrd.Doç.Dr. M. Ali Akcayol Çok Yollu Ağaçlar (Multi-Way Trees) Disk üzerindeki bilgilerin elde edilmesinde kullanılır. 3600 rpm ile dönen bir

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

Veri madenciliği yöntemleri

Veri madenciliği yöntemleri Sınıflandırma ve Kümeleme Kavramları Giriş Verinin içerdiği ortak özelliklere göre ayrıştırılması işlemi sınıflandırma olarak adlandırılır, veri madenciliği tekniklerinden en çok bilinenidir; veri tabanlarındaki

Detaylı

Karar Ağaçları Destekli Vadeli Mevduat Analizi. Bank Deposit Analysis Based on Decision Tree

Karar Ağaçları Destekli Vadeli Mevduat Analizi. Bank Deposit Analysis Based on Decision Tree Karar Ağaçları Destekli Vadeli Mevduat Analizi Hakan Dalkılıç1, Feriştah Dalkılıç1 1 Dokuz Eylül Üniversitesi, Bilgisayar Mühendisliği Bölümü, İzmir hakand@hotmail.com, feristah@cs.deu.edu.tr Özet: C4.5

Detaylı

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ - 150110046 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori

Detaylı

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli Veri Modelleri Ağaç Veri Modeli Ağaç Veri Modeli Verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen bir veri modelidir. Ağaç veri modeli daha fazla bellek

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları

Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları BGM 565 - Siber Güvenlik için Makine Öğrenme Yöntemleri Bilgi Güvenliği Mühendisliği Yüksek Lisans Programı Dr. Ferhat Özgür Çatak ozgur.catak@tubitak.gov.tr

Detaylı

Karar Ağacı Öğrenmesi(Decision Tree Learning)

Karar Ağacı Öğrenmesi(Decision Tree Learning) Karar Ağacı Öğrenmesi(Decision Tree Learning) Bu yazımızda karar ağacı öğrenmesini inceleyeceğiz. Öncelikle karar ağacı öğrenmesi danışmanlı öğrenmenin, danışmanlı öğrenme de makine öğrenmesinin bir alt

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü

Detaylı

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir.

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. Veri Madenciliği Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. istatistik + makine öğrenmesi + yapay zeka = veri madenciliği Veri madenciliği süreçleri CRISP-DM

Detaylı

Veri Madenciliği. Bölüm 6. Sınıflandırma 2

Veri Madenciliği. Bölüm 6. Sınıflandırma 2 Bölüm 6. Sınıflandırma 2 http://ceng.gazi.edu.tr/~ozdemir Karar Ağacı Örnek Algoritma: ID3 Bütün nitelikler ayrık Bir düğüm oluştur N: Eğer örneklerin hepsi C sınıfına ait ise, N düğümü C etiketli yaprak

Detaylı

İSTATİSTİK. Bölüm 1 Giriş. Ankara Üniversitesi SBF İstatistik 1 Ders Notları Prof. Dr. Onur Özsoy 4/4/2018

İSTATİSTİK. Bölüm 1 Giriş. Ankara Üniversitesi SBF İstatistik 1 Ders Notları Prof. Dr. Onur Özsoy 4/4/2018 İSTATİSTİK Bölüm 1 Giriş 1 Bu Bölümde Anlatılacak Konular Bir Yönetici Neden İstatistik Bilmeli? Modern İstatistiğin Gelişimi İstatistiksel Düşünce ve Yönetim Tanımsal ve Yargısal İstatistik Data Türleri

Detaylı

3.Hafta Master Teorem ve Böl-Fethet Metodu

3.Hafta Master Teorem ve Böl-Fethet Metodu 1 3.Hafta Master Teorem ve Böl-Fethet Metodu 2 Ana Metod (The Master Method) Ana method aşağıda belirtilen yapıdaki yinelemelere uygulanır: T(n) = at(n/b) + f (n), burada a 1, b > 1, ve f asimptotik olarak

Detaylı

Copyright 2004 Pearson Education, Inc. Slide 1

Copyright 2004 Pearson Education, Inc. Slide 1 Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi

Detaylı

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) 1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır:

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri BLM2881 2015-1 DR. GÖKSEL Bİ R İ C İ K goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 16.09.2015 Tanışma, Ders Planı, Kriterler, Kaynaklar, Giriş Latex

Detaylı

METASEZGİSEL YÖNTEMLER

METASEZGİSEL YÖNTEMLER METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları 1 Veri Tabanı, Veri Ambarı, Veri Madenciliği Bilgi Keşfi Aşamaları Apriori Algoritması Veri Madenciliği Yöntemleri Problemler Veri Madenciliği Uygulama Alanları 2 Bir bilgisayarda sistematik şekilde saklanmış,

Detaylı

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-5 Bilgili Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Arama Grafları Eğer arama uzayı ağaç yapısından değil de graf

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda

Detaylı

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-3 Durum Uzayında Arama Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Durum uzayı temsilini öğrenmek ve durum uzayında

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Algoritmalar. Doğrusal Zamanda Sıralama. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Doğrusal Zamanda Sıralama. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Doğrusal Zamanda Sıralama Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Özet - Insertion sort Kodlaması kolay Küçük veri setleri için hızlı (~50 element) Neredeyse sıralı veri setleri için en

Detaylı

Dr. Hidayet Takçı. Veri Madencilii Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madencilii Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Dr. Hidayet Takçı Veri Madencilii Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Çok miktarda veri toplanmı ve ambarlanmıtır. Web verisi, e-ticaret Bölüm ve dükkanlardaki ödemeler Banka/Kredi kartı ilemleri

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

C++ Dersi: Nesne Tabanlı Programlama 2. Baskı

C++ Dersi: Nesne Tabanlı Programlama 2. Baskı C++ Dersi: Nesne Tabanlı Programlama 2. Baskı ³ Bölüm 19: Standart Şablon Kütüphanesi (vector) İçerik 19.1 Standart Şablon Kütüphanesi (STL) 19.2 vector SınıK 19.3 vectortanımı 19.4 vector Elemanlarına

Detaylı

Algoritmalar. İkili Arama Ağaçları. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. İkili Arama Ağaçları. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar İkili Arama Ağaçları Bahar 2016 Doç. Dr. Suat Özdemir 1 İkili Arama Ağaçları Binary Search Tree (BST) İkili arama ağaçları dinamik veri işlemlerini gerçekleştiren veri yapılarıdır Search,

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

Naive Bayes Yöntemi ile Spam Mail Teşhisi Kübra KURNAZ

Naive Bayes Yöntemi ile Spam Mail Teşhisi Kübra KURNAZ Naive Bayes Yöntemi ile Spam Mail Teşhisi 2 17574006-Kübra KURNAZ Yıldız Teknik Üniversitesi, Elektrik-Elektronik Fakültesi, Bilgisayar Mühendisliği Bölümü, Tezsiz Yüksek Lisans Bilgi Teknolojileri Özet

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

ÇOK KRİTERLİ KARAR VERME TEKNİKLERİ. Dersin Amacı Çok Kriterli Karar Verme Yaklaşımının Genel Yapısı. Dr.Öğr.Üyesi Gökçe BAYSAL TÜRKÖLMEZ

ÇOK KRİTERLİ KARAR VERME TEKNİKLERİ. Dersin Amacı Çok Kriterli Karar Verme Yaklaşımının Genel Yapısı. Dr.Öğr.Üyesi Gökçe BAYSAL TÜRKÖLMEZ ÇOK KRİTERLİ KARAR VERME TEKNİKLERİ Dr.Öğr.Üyesi Gökçe BAYSAL TÜRKÖLMEZ Zeleny (1982) multiple criteria decision making kitabına aşağıdaki cümle ile başlar: ıt has become more and more difficult to see

Detaylı

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI. BiR UYGULAMA YÜKSEK LİSANS TEZİ HÜLYA YILMAZ

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI. BiR UYGULAMA YÜKSEK LİSANS TEZİ HÜLYA YILMAZ T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI RANDOM FORESTS YöNTEMiNDE KAYIP VERi PROBLEMiNiN incelenmesi VE SAĞLIK ALANINDA BiR UYGULAMA YÜKSEK LİSANS

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 5-6. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 5-6. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 5-6 Doç. Dr. Yuriy Mishchenko PLAN Amazon ML hizmetini kullanmaya pratik giriş Baze ek gereken makine öğrenme kavramları genelleme, eğitim ve test veri kümeleri, makine öğrenme

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı