BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)"

Transkript

1 BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou apısı belrleektedr. Halbuk kısıtlaalı optzasoda aşağıdak örekte de österldğ b kısıtlaıcı oksolar optu çözüü buluasıda öel rol oarlar. Örek 4.: Aşağıdak optzaso problede ede oksou u apa değer buluuz Kısıtlaalı optzaso probleler kısıtlaıcıı tpe bağlı olarak; eştlk kısıtlaıcılı Equalt Costrat ve eştszlk kısıtlaıcılı Iequalt Costrat olak üzere ke arılır ve er k duru ç arklı aklaşılar optu çözüü elde etek ç kullaılır. 4-

2 4... Reular pot Düzel okta Kısıtlaıcılı optzaso probleler çözüler ç elştrle larae aklaşı çere etotlar optu oktasıı reular düzel okta olası erekllğ üzere kuruludur. oktası öle br oktadır k bu oktada eştlk kısıtlaıcıları a eşt actve costrats ve bu kısıtlaıcıları radatları. türevler brbrlerde leer olarak bağısızdırlar leer depedec. eer olarak bağısızlık aşağıdak özellkler le verlr: k vektörü radatı brbre paralel olaalıdır era br vektörü radatı dğer vektörler radatlarıı br leer oksou olaalıdır. Hera k vea daa azla vektörü leer olarak bağısız vea bağılı olduğuu belrleek ç bu vektörler leer orda aşağıdak b azılır: k a a... k a ada A 4. Burada a vektörler tesl etektedr. Eğer bu dekle tek çözüü se bu vektörler leer olarak bağısızdırlar. Aks duruda vektörler leer olarak bağılıdırlar. Burada taılaa vektörler kısıtlaıcıları tasarı değşkelere öre oluşturuluş radatlarıır. Örek 4.: Aşağıda verle vektörler leer olarak bağıız olup oladıklarıı kotrol edz. a 6 a 4 3 a Geoetrk olarak leer bağılı vea bağısızlık aşağıdak öreklerle daa detalı olarak verleblr: 4-

3 4. EŞİTİK KISITAYICIARI Eştlk kısıtlaıcıları aşağıdak ora sap optzaso probleler tva eder:... [ ]... T Burada ve sırasıla kısıtlaıcı oksoları saısıı ve tasarı değşke österektedr. Optu çözü elde etek ç olak zorudadır. Eğer > se proble aşırı taılaış olur overdeed a çok azla saıda kısıtlaıcı çerekte olduğu alaıa elr ve çözüü oktur. Eştlk kısıtlaıcılı optzaso probleler çözüüde çoğulukla aşağıdak etotlarda brs kullaılaktadır. Drekt erleştre etodu drect substtuto Kısıtlaıcı değerledre costraed evaluato arae çarpaları arae ultplers Bu tür optzaso probleler ç erek ve eter şart ukarda verle etotlara bağlı olarak taılaır. 4.. DİREKT YEREŞTİRME METODU Drekt erleştre etoduda kısıtlaıcı oksolarda tasarı değşkeler çeklerek ede oksoa azılır ve dolaısıla proble kısıtlaasız optzaso proble al alır. Ya tasarı değşke ve kısıtlaıcı oksoa sap br optzaso proble teork olarak eştlk kısıtlaıcı çözülür ve değşke er kala - değşke csde ade edlr. Bu adeler ede oksoa azıldığıda kısıtlaıcı oksou çeree optzaso proble elde edlr ve kısıtlaasız optzaso tekkler uulaarak çözü elde edlr. Teork olarak bast br aklaşı olsa da pratkte uulaa üçlükler vardır. Pek çok pratk problede kısıtlaıcı oksolar olear apıdadır ve buları değşkee karşılık - değşke csde ade edles oldukça zordur. 4-3

4 Örek 4.3: Sabt br V ace sap olacak şeklde k taraı kapalı br sldrk takı u alette al etek ç erekl ölçüler buluuz. Malet olarak kullaıla etal levaı alaı dkkate alıacaktır. Metal levaı br alet C YT olarak kabul edz. Takı arıçapı R ve ükseklğ l olarak alıız. 4.. AGRANGE ÇARPANARI METODU arae çarpaları etodu optzaso teorsde ve optzasoda kullaıla saısal ötelerde oldukça öel br er tutaktadır. arae çarpaları etoduu taılaak ç aşağıdak örek dkkate alııştır. Örek 4.4: Aşağıdak optzaso problede ede oksou u apa değer buluuz..5.5 Çözü 3.3: Bu proble k tasarı değşkee sap olduğuda raksel optzaso uulaarak çözüü elde edleblr ve elde edle çözü aşağıda österlştr. ve Şekl 4.. Proble raksel çözüü 4-4

5 A-B doğrusu kısıtlaıcı oksou ve easble alaı österektedr. Bu edele optu çözü bu çz üzerde olalıdır. Hede okso se erkez.5.5 ola br çeber dekle österektedr. Şeklde ede oksou.5 ve.75 değerlere karşılık ele zo çzler österlektedr. Şeklde de örülebleceğ b optu okta C oktasıdır arae çarpalarıa rş Yukarıda verle örekte C oktasıda a şartları sağladığıa bakalı. Optu okta olarak österls. arae çarpalarıı belrleek ve taılaak ç eştlk kısıtlaıcısı br değşkee öre çözersek; φ 4. Burada φ e at br okso olsu. Yukarıdak örek ç aşağıdak b taılaablr: φ 4.3 Dekle 4. ede oksouda azılırsa adelerde ok edlş olur ve sadece e at optzaso problee çevrlş olur: φ 4.4 Bu örek ç ede oksou aşağıdak b belrler:.5.5 Bu oksou erek şartı d / d azılır ve çözülürse ada okta elde edlr. Bu ada oktada ede oksou değer.5 olarak esaplaır. Bu ada oktaı erçekte lokal u oktaı verp veredğ se eter şart şartıa bakılır ve bu örek ç bu şartı sağladığıda bu oktalar şeklde de örüldüğü b erçekte lokal u oktaı verr. d / d 4-5

6 Yukarıdak çözüde tasarı değşkeler açık br şeklde br oksoda ade edleblektedr. Acak çoğu pratk probleler ç böle br oksou taılaaı kaı oktur. Böle br duruda aşağıda k adılar erçekleştrldğde arae çarpalarıı şle doğası ereğ ortaa çıktığı örülecektr. Dekle 4.3 ç erek şart azıldığıda a esapladığıda aşağıdak ade türev alııdak zcr kuralıda elde edlr: / d d d d d d 4.5 ere φ azılırsa ukarıdak dekle optu oktada aşağıdak bç alır: d d φ 4.6 φ oksou bledğde ukarıdak dekledek / d dφ ades ok edles erekr. Buu ç eştlk kısıtlaıcısı dkkate alıarak optu oktada türev alıırsa aşağıdak ade elde edlr: d d d d φ 4.7 Bu adede / d dφ ades çeklrse / / d d φ 4.8 Bu ade ukarıda ede okso ç azıla deklee azılırsa: / / 4.9 elde edlr. 4-6

7 Eğer / / ν 4. olarak taılaırsa aşağıdak al alır: ν 4. Bezer duru ç aşağıdak b azılır: ν 4. Bu k dekle ve ades br oktaı ada okta olables ç erek şartları verr ve bu dekleler lal ede era br okta ada okta olaaz. Buradak skaler büüklük larae çarpaı olarak adladırılır. v 4... AGRANGE ÇARPANINI GEOMETRIK ANAMI Gerek şartları azak ç arae oksou dele br okso aşağıda belrtldğ b ede ve kısıtlaıcı oksoları çerecek şeklde azılır: ν ν 4.3 Yukarıda elde edle optu okta ç erek şart larae oksou csde aşağıdak b verlr: 4.4 Vektör orda azılırsa: 4.5 Burada radatı österr ve aşağıdak b açık orda belrtlr: T

8 Dekle 4. vektör orda düzelerse ν 4.7 Burada 4.8 Dekle 4.6 aşağıdak b düzeleeblr: ν 4.9 Bu dekle erek şartı eoetrk alaıı österr. Ya ada oktada ede oksou radatı ve kısıtlaıcı oksou radatı aı doğru üzerdedr ve larae çarpaı bu ks arasıdak oraı belrtr. Mevcut örek dkkate alıdığıda ada optu oktada ede ve kısıtlaıcı oksou radat değerler 4. ve Bu vektörler şekl üzerde C oktasıda österlştr. İk tasarı değşkee sap br kısıtlı optzaso proble ç arae çarpaları aşağıdak şeklde ade edlr: He ede oksou ve e de kısıtlaıcıı çere larae oksou aşağıdak b verlr: 4. Burada arae çarpaı olarak adladırıla br büüklük olup proble çersde dğer tasarı değşkeler b değer buluacaktır. Bu oksoa bağlı olarak erek şartlar ecessar codtos aşağıdak b verlr: 4-8

9 4. Verle bu erek şartlar ardııla elde edle ada oktalar arasıda optu ede vere değerler bulablek ç aşağıda verle eter şartlar uulaır. Yeter şart: oksou oktasıda u olası ç aşağıda verle Q oksou de bütü d değerler ç pozt taılı olası erekektedr. d d Q 4.3 Yukarda verle oksou açılıı aşağıdak deterat dekle ardııla verleblr. z polou kökler pozt vea eat taılı olasıa bağlı olarak da oksou u vea aksu olduğu belrlr M M z z z 4.4 Burada

10 olarak taılaır. Örek 4.5: Yüze alaı boutları buluuz. A 4π olacak şeklde br sldr ac aksu apacak 4.3 EŞİTİKSİZ KISITAYICII OPTİMİZASYON PROBEMERİ Br öcek bölüde kullaıla arae çarpaları etoduda kısıtlaıcılar eştlk kısıtlaıcıları şeklded. Bu bölüde se aşağıdak tptek optzaso probleler çözüü ç erekl ola şartlar verlecektr.... [ ]... T Bu tür probleler çözüüde kullaılacak etotlara eçede bu tür probleler eştlkl kısıtlaıcılı optzaso problelere çevrlp çevrleeeceğ araştırılır EŞİTİK KISITAYICI OPTİMİZASYON PROBEMERİNE ÇEVİRME Eştszlk kısıtlaıcılarıa sap ola br optzaso proble eştlk kısıtlaıcılı br optzaso problee çevrerek daa öcek bölülerde alatıla etotları kullaılır ve optu değerler elde edleblr. Buu ç se Slack evşek değşke taılaır ve bu değşke kares eştszlk kısıtlaıcısıa ekler. Ya: Burada kullaıla slack değşke pozt vea eat olasıda zade karel ades kısıtlaıcıa ekler ve bölece orudak kısıtlaıcı eştlk kısıtlaıcısıa çevrlş olur. Bölece optzaso proble aşağıdak tpe döüştürülür: 4-

11 4.7 G... Bu tp optzaso probleler çözüü ç br öcek bölüde alatıla arae çarpaları etodu kullaılabılır. Buu ç arae oksou aşağıdak b verlr: 4.8 G Statoar ada oktaları değerler aşağıdak dekleler çözüüde elde edlr.... G Örek 4.6: Aşağıdak optzao proble aarae çarpaları etoduu kullaarak çözüüz KUHN-TUCKER K-T GEREK ŞARTARI He eştlk ve e de eştszlk optzaso probleler ç erek şartlar Ku- Tucker erek şartları olarak derleeblr. Bu şartlar slack evşek değşkel ve slack değşkesz olak üzere k türlü verleblr. Aşağıdak optzaso proble dkkate alalı: 4-

12 ... p... [ ] T... Bu proble ç arae oksou aşağıdak şeklde azılablr: p u vs v u s 4.3 Burada νu: arae çarpaı s: slack değşke olarak ataıştır. Bu arae oksoua bağlı olarak K-T erek şartları aşağıdak b verlr. ;...p s s u u ; p ; ;... v u Bu şartlar aı zaada. derece erek şartlar rst-order codtos olarak da adladırılır. Bu dekleler reular pot düzel okta dele özel br oktada değerledrlştr. 4-

13 Ku-Tucker erek şartıı kullaı aacı Ku-Tucker erek şartları k aaç ç kullaılır: verle br oktaı uteel optu olup oladığıı kotrol etede ada u oktaları tesptde kullaılır Ku-Tucker. derece erek şartları le ll öel bazı özellkler aşağıda verlştr: K-T şartları acak reular düzel oktada uulaır. K-T şartlarıı sağlaaa oktalar eğer rreular düzesz oktalar değlse lokal u olaazlar. K-T şartlarıı sağlaa oktalar Ku-Tucker oktaları olara adladırılır. K-T şartlarıı sağlaa oktalar kısıtlı vea kısıtsız olablr. Eğer eştlk kısıtlaıcı varsa ve eştlksz kısıtlaıcıları çbr akt değlse K-T şartlarıı sağlaa bu oktalar statoar oktalardır. Ya bu oktalar u aksu vea döü oktaları olablr. Örek 4.7: Aşağıda verle optzaso proble ç Ku-Tucker şartlarıı azarak optu otaı belrlez. 3 b c bc 3 a d Burada < a < b < c < d ve br sabt değerdr. 4-3

14 ÖDEV: Aşağıda verle ede oksou u apa ada oktaları arae çarpaları etoduu kullaarak elde edz

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan

Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan III.5.RUNGE-KUTTA METODLARI Öcek bölümde özelee Talor meodlarıda erel kesme aa merebes üksek oluşu sele br özellkr. Dğer araa ürevler buluma ve esaplaması pek çok problem ç karmaşık ve zama alıcı olduğuda

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t)

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t) III.4. YÜKSEK MEREBE AYLOR MEODLARI Saısal tekkler amacı mmum çaba le olablğce uarlı aklaşımlar ele etmektr. Bu eele çeştl aklaşım ötemler vermllğ karşılaştıracak br krtere gereksm varır. İlk ele alıacak

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

DENGELEME PROBLEMİNE HEDEF PROGRAMLAMA YAKLAŞIMI

DENGELEME PROBLEMİNE HEDEF PROGRAMLAMA YAKLAŞIMI ÖE MMOB arta ve Kaastro Müesler Oası ürkye arta Blsel ve ekk Krltayı Mayıs Akara DENGELEME PROBLEMİNE EDEF PROGRAMLAMA AKLAŞIMI Mstaa ŞİMŞEK arta Geel Kotalığı Akara staassek@gkltr B çalışaa; e küçük karelerle

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları 1 8. Ntelksel ( Ölçüleeye Özellkler İç) Kotrol Dyagraları Ürüler taşıası gereke kalte karakterstkler br ya da br kaçı belrlee sesfkasyolara uyayablr. Ntelk olarak adladırıla bu özellk edeyle ürü belrl

Detaylı

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun: Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Anlık ve Ortalama Güç

Anlık ve Ortalama Güç ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

BÖLÜM 6 6. REGRESYON MODELİNİN TEMEL KONTROLÜ

BÖLÜM 6 6. REGRESYON MODELİNİN TEMEL KONTROLÜ BÖLÜM 6 6. REGRESYON MODELİNİN TEMEL KONTROLÜ Bu bölüde regresyo odel üzerde gerçekleştrlecek teel kotrol yöteler celeecektr. Bu kısıda açıklaacak ola tekkler sadece doğrusal regresyo ç değl doğrusal olaya

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI Doç. Dr. Cihat ARSLANTÜRK Doç. Dr. Yusuf Ali KARA ERZURUM BÖLÜM MATEMATİKSEL TEMELLER ve HATA ANALİZİ..

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı.

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı. 3 Nsa www.guve-kutay.ch DİŞLİ ÇARLAR LANET SİSTELERİ -. üve UTAY / 3-Nsa-4 Yede elde geçrlş çıktı. 3-Nsa4 www.guve-kutay.ch Sevgl eş FİSUN ' a ÖNSÖZ Br kouyu blek deek, ou eldek kalara göre kullaablek

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR

BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR Sezer SORGUN ve erfe BÜYÜKKÖSE Ercyes Üverstes, Fe Bller Esttüsü, Mateat Bölüü, KAYSER srgrzs@gal.co Ah Evra Üverstes,

Detaylı

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ S 6 KÜRESİNİN TÜMEL GERÇEL ALTMANİFOLDLARI. Beran PİRİNÇÇİ Matematik Anabilim Dalı

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ S 6 KÜRESİNİN TÜMEL GERÇEL ALTMANİFOLDLARI. Beran PİRİNÇÇİ Matematik Anabilim Dalı İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ S 6 KÜRESİNİN TÜMEL GERÇEL ALTMANİFOLDLARI Bera PİRİNÇÇİ Mateatk Aabl Dalı Daışa Prof.Dr. Mehet ERDOĞAN Hazra, 005 İSTANBUL ÖNSÖZ Yüksek

Detaylı

53.1 ve = Güncelleme:03/11/2018 YÜK VE GERİLME ANALİZİ ÖRNEK: 1

53.1 ve = Güncelleme:03/11/2018 YÜK VE GERİLME ANALİZİ ÖRNEK: 1 Gücellee:3/11/18 YÜK VE GERİLME ANALİZİ ÖRNEK: 1 Şeklde verle yüzey gerles duruu ç; (a) Asal düzle açılarıı (b) Asal gerleler (c) Maksu kaya gerles ve bu gerleye karşılık ral gerley buluuz. 5MPa 1MPa y

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

AÇIK SU PERVANE DENEYLERİ

AÇIK SU PERVANE DENEYLERİ AÇI SU PERNE ENEYLERİ Pervaeleri çalışa kapaitelerii tepiti aacıyla pervae deeyleri erçekleştirilir. Gerçek pervaei itei, trku ibi özellikleri bu deeyleride yararlaılarak tahi edileye çalışılır. Gei direci

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir BÖLÜM 1: VEKTÖRLER Vektörleri taımlamak içi iki yol vardır: uzayda oktalara karşılık gele bir koordiat sistemideki oktalar veya büyüklük ve yöü ola eseler. Bu kısımda, ede iki vektör taımıı buluduğu açıklaacak

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

STATİK MUKAVEMET İÇİN TASARIM (Design for Static Strength) Maksimum Normal Gerilme Teorisi (Maximum Normal Stress Theory)

STATİK MUKAVEMET İÇİN TASARIM (Design for Static Strength) Maksimum Normal Gerilme Teorisi (Maximum Normal Stress Theory) Gücelleme:04/11/018 TATİK MUKAVEMET İÇİN TAARIM (Desig for tatic tregth) MUKAVEMET TEORİLERİ (Failure Theories) Maksimum Normal Gerilme Teorisi (Maximum Normal tress Theor) Üç asal gerilmede birisii, malzemei

Detaylı

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ MANYETİK OLAAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLADA KÜTLE AKTAIM KATSAYILAININ İNCELENMESİ Metn ŞENGÜL, Ahet. ÖZDUAL* Şeker Enttüü Etegut/ANKAA; *H.Ü. Kya Mühendlğ Bölüü Beytepe/ANKAA ÖZET Bu çalışanın

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI

TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI 0 Ercyes Üverstes İktsad ve İdar Bller Fakültes Dergs, Sayı:, Ocak-Hazra 009, ss.19-7 TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI A. İhsa ÖZDEMİR * Gökha SEÇME ** ÖZ Ye s çevresdek

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

[ ]{} []{} []{} [ ]{} g

[ ]{} []{} []{} [ ]{} g ZAMAN TANIM ALANINDA ÇÖZÜM Yapı özellilerii ortogoalli şartlarıı sağlaaası duruuda, diferasiel hareet delei doğruda üeri ötelerle çözülebilir Depre etisi altıdai ço atlı apılara ugulaa üzere ii arı üeri

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

DERS 5 Limit Süreklilik ve Türev

DERS 5 Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev 5.. imit. Bir oksiou;, R verilmiş olsu. Eğer i e akı er iki tarata da er değeri içi saısı e akı oluorsa, saısıa saısı e aklaşırke oksiouu iti te it o as approaes deir ve

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ

ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ Gaz Üv. Müh. M. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt, No, -7, 7 Vol, No, -7, 7 ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ İsal Serka ÜNCÜ

Detaylı

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:4 Güz 2008/2 s.5-34 BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE

Detaylı

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : - PERDE ÇERÇEVE

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları:

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları: Blok yaraları: araşık teler, rok alt ten rrne uyun şeklde ağlanaından oluşur. Blok dyaraları, her r alt te araındak karşılıklı ağlantıyı öterek n kullanılır. Blok dyaralarında her r alt ten fonkyonu ve

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

SOYUT CEBİR VE SAYILAR TEORİSİ

SOYUT CEBİR VE SAYILAR TEORİSİ ÇÖZÜMLÜ PROBLEMLERLE SOYUT CEBİR VE SAYILAR TEORİSİ PROF. DR. MEHMET ERDOĞAN Beyket Üverstes Fe-Edebyat Fakültes Matematk-Blgsayar Bölümü YRD. DOÇ. DR. GÜLŞEN YILMAZ Beyket Üverstes Fe-Edebyat Fakültes

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

ÇOK AMAÇLI BULANIK OPTİMİZASYON TEKNİĞİ İLE DÜZLEM KAFES SİSTEMLERİN BOYUTLANDIRILMASI ÖZET

ÇOK AMAÇLI BULANIK OPTİMİZASYON TEKNİĞİ İLE DÜZLEM KAFES SİSTEMLERİN BOYUTLANDIRILMASI ÖZET Polteknk Ders Journal o Poltechnc Clt: 6 aı: s. 505-5, 00 Vol: 6 No: pp. 505-5, 00 ÇOK AMAÇLI BULANIK OPTİMİZAYON TEKNİĞİ İLE DÜZLEM KAFE İTEMLERİN BOYUTLANDIRILMAI Öer KELEŞOĞLU, Mehet ÜLKER Fırat Ünverstes,

Detaylı

KÜME ÖRNEKLEMESİ. Prof.Dr.Levent ŞENYAY VIII-1 Örnekleme Yöntemleri

KÜME ÖRNEKLEMESİ. Prof.Dr.Levent ŞENYAY VIII-1 Örnekleme Yöntemleri 8 KÜE ÖREKLEEİ 8.. Grş 8.. Populayo toplaıı tah 8.3. Populayo toplaıı tah varyaı ve tahleyc 8.4. Populayo toplaıı tah varya tah ç heaplaa yolları 8.5. Populayo ortalaaıı tah 8.6. Küe Hacler ve Alt örek

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız.

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız. OKULLAR ARASI 1.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen anıt kağıtlarına azınız. 1) Yukarıdaki şekilde AH BC BE DE m (BÂH) = m(aĉb) AH = BE BD = DC ve m (CBE) = dir.

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı